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Exercise T1 (Polynomials of matrices and linear maps)

In the following p,q stand for polynomials in F[X], ¢ for an endomorphism of an n-dimensional F-vector space V,
A,B for n X n matrices over F. Which of these claims are generally true, which are false in general (and which are plain
nonsense)?

(@) p(AB) =p(A)p(B) ()

(®) (pq)(A) = p(A)q(A) = q(A)p(A) ()

© (p(p))=ple() )

(@ [p(e)]; =p(Lel}) )

(e) Aregular = p(A) regular (?)

() A~B=p(A)~pB) ()

®) ¢(v)=2av=(p(¢))(v)=pA)v ()

(h) p(A)q(A)=0=(p(A)=0V q(A)=0) (?)
(.

() U CV an invariant subspace of ¢ = U invariant under p(p) (?)

—

) ¢ and p(y) have the same invariant subspaces (?)

(k) U CV aninvariant subspace of ¢ = (p(p))(v+U)=(p(p))(v)+ U (?) (p viewed as a map on subsets of V)
(I) U CV an invariant subspace of ¢’ = (p(¢)(v+U)=(p(p))(v)+U (?) (¢’ the induced endomorphism of

V/U)
0
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(a) Determine the characteristic and minimal polynomials of A an

Exercise T2 (Eigenvectors)

SO OoOnN
O N =
— O O

Consider the matrices A := and B :=

w N =
W = N
A W W

(b) For the matrix B:
i. Show that v; =(1,0,0,0) and v, = (0,0, 1, 1) are eigenvectors with eigenvalue 2.
ii. Determine an eigenvector v, with eigenvalue 3.
iii. Check that v; = (0,1,0,0) is a solution of (B — 2E4)?*x = 0 and that Bv; = 2v; + v;.
iv. Determine the matrix that represents ¢ w.r.t. the basis (v;, Vs, vy, V4).

Exercise T3 (Complexification)

For A € R?? consider the associated endomorphisms goff and @f, which are represented by A w.r.t. the standard bases
of R? and of C2, respectively.

Let the characteristic polynomial p, be irreducible in R[X].

(a) Show that p, has a pair of complex conjugate zeroes. (Recall that the complex conjugate of z = a+iff isz = a—if3.)

(b) Show that C? has a basis B = (v, V) of eigenvectors of ¢, consisting of a vector v with eigenvalue A, and its complex
conjugate v, which has eigenvalue A.




(c) Letb, = %(v+‘7) and b, = %(v— V), which lie in R2.
i. Show that B’ = {b;,b,} is a basis for R2.

ii. Determine the matrix representation of ¢ w.rt. basis B’ and discuss the similarity of A with a matrix that
would suggest the interpretation as "rotation followed by dilation"

Exercise T4 (Simultaneous diagonalisation and polynomials)

Let A € R™™ be a matrix with n distinct real eigenvalues, and let B € R®*™ be an abitrary matrix such that A and B
are simultaneously diagonalisable. Show that there exists a polynomial p € R[X] such that B = p(A).

Hint. Recall that, last semester in Linear Algebra I, we have shown in exercise (E14.2) that, given n distinct real
numbers a,...,a, € R and n arbitrary real numbers b,..., b, € R, there exists a polynomial p of degree n — 1 such that
p(a;) = b; for all i.




