Linear Algebra II Tutorial Sheet no. 5

TECHNISCHE UNIVERSITAT DARMSTADT

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

Exercise T1 (Polynomials of matrices and linear maps)
In the following p, q stand for polynomials in $\mathbb{F}[X], \varphi$ for an endomorphism of an n-dimensional \mathbb{F}-vector space V, A, B for $n \times n$ matrices over \mathbb{F}. Which of these claims are generally true, which are false in general (and which are plain nonsense)?
(a) $p(A B)=p(A) p(B)($? $)$
(b) $(p q)(A)=p(A) q(A)=q(A) p(A)($?)
(c) $(p(\varphi))(\mathbf{v})=p(\varphi(\mathbf{v}))(?)$
(d) $\llbracket p(\varphi) \rrbracket_{B}^{B}=p\left(\llbracket \varphi \rrbracket_{B}^{B}\right)($?)
(e) A regular $\Rightarrow p(A)$ regular (?)
(f) $A \sim B \Rightarrow p(A) \sim p(B)$ (?)
(g) $\varphi(\mathbf{v})=\lambda \mathbf{v} \Rightarrow(p(\varphi))(\mathbf{v})=p(\lambda) \mathbf{v}$ (?)
(h) $p(A) q(A)=0 \Rightarrow(p(A)=0 \vee q(A)=0)(?)$
(i) φ and $p(\varphi)$ have the same invariant subspaces (?)
(j) $U \subseteq V$ an invariant subspace of $\varphi \Rightarrow U$ invariant under $p(\varphi)$ (?)
(k) $U \subseteq V$ an invariant subspace of $\varphi \Rightarrow(p(\varphi))(\mathbf{v}+U)=(p(\varphi))(\mathbf{v})+U$ (?) (φ viewed as a map on subsets of V.)
(l) $U \subseteq V$ an invariant subspace of $\varphi^{\prime} \Rightarrow\left(p\left(\varphi^{\prime}\right)\right)(\mathbf{v}+U)=(p(\varphi))(\mathbf{v})+U$ (?) (φ^{\prime} the induced endomorphism of V / U.

Exercise T2 (Eigenvectors)

Consider the matrices $A:=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 6\end{array}\right)$ and $B:=\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4\end{array}\right)$
(a) Determine the characteristic and minimal polynomials of A and B.
(b) For the matrix B:
i. Show that $\mathbf{v}_{1}=(1,0,0,0)$ and $\mathbf{v}_{2}=(0,0,1,1)$ are eigenvectors with eigenvalue 2 .
ii. Determine an eigenvector \mathbf{v}_{4} with eigenvalue 3 .
iii. Check that $\mathbf{v}_{3}=(0,1,0,0)$ is a solution of $\left(B-2 E_{4}\right)^{2} \mathbf{x}=\mathbf{0}$ and that $B \mathbf{v}_{3}=2 \mathbf{v}_{3}+\mathbf{v}_{1}$.
iv. Determine the matrix that represents φ_{B} w.r.t. the basis $\left(\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{2}, \mathbf{v}_{4}\right)$.

Exercise T3 (Complexification)

For $A \in \mathbb{R}^{(2,2)}$ consider the associated endomorphisms $\varphi_{A}^{\mathbb{R}}$ and $\varphi_{A}^{\mathbb{C}}$, which are represented by A w.r.t. the standard bases of \mathbb{R}^{2} and of \mathbb{C}^{2}, respectively.

Let the characteristic polynomial p_{A} be irreducible in $\mathbb{R}[X]$.
(a) Show that p_{A} has a pair of complex conjugate zeroes. (Recall that the complex conjugate of $z=\alpha+i \beta$ is $\bar{z}=\alpha-i \beta$.)
(b) Show that \mathbb{C}^{2} has a basis $B=(\mathbf{v}, \overline{\mathbf{v}})$ of eigenvectors of φ_{A} consisting of a vector \mathbf{v} with eigenvalue λ, and its complex conjugate $\overline{\mathbf{v}}$, which has eigenvalue $\bar{\lambda}$.
(c) Let $\mathbf{b}_{1}=\frac{1}{2}(\mathbf{v}+\overline{\mathbf{v}})$ and $\mathbf{b}_{2}=\frac{1}{2 i}(\mathbf{v}-\overline{\mathbf{v}})$, which lie in \mathbb{R}^{2}.
i. Show that $B^{\prime}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ is a basis for \mathbb{R}^{2}.
ii. Determine the matrix representation of $\varphi_{A}^{\mathbb{R}}$ w.r.t. basis B^{\prime} and discuss the similarity of A with a matrix that would suggest the interpretation as "rotation followed by dilation"

Exercise T4 (Simultaneous diagonalisation and polynomials)

Let $A \in \mathbb{R}^{(n, n)}$ be a matrix with n distinct real eigenvalues, and let $B \in \mathbb{R}^{(n, n)}$ be an abitrary matrix such that A and B are simultaneously diagonalisable. Show that there exists a polynomial $p \in \mathbb{R}[X]$ such that $B=p(A)$.

Hint. Recall that, last semester in Linear Algebra I, we have shown in exercise (E14.2) that, given n distinct real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and n arbitrary real numbers $b_{1}, \ldots, b_{n} \in \mathbb{R}$, there exists a polynomial p of degree $n-1$ such that $p\left(a_{i}\right)=b_{i}$ for all i.

