Linear Algebra II Tutorial Sheet no. 4

TECHNISCHE UNIVERSITAT DARMSTADT

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

May 2, 2011

Exercise T1 (Algebraic and geometric multiplicity)
Let φ be an endomorphism on a finite dimensional \mathbb{F}-vector space V and $\lambda \in \mathbb{F}$ an eigenvalue of φ with geometric multiplicity d and algebraic multiplicity s. Show that $d \leq s$.

Hint: Choose a basis B of V that contains d eigenvectors of φ with eigenvalue λ.

Exercise T2 (Upper triangle shape)

Find a real upper triangular matrix similar to

$$
A=\left(\begin{array}{ccc}
3 & 0 & -2 \\
-2 & 0 & 1 \\
2 & 1 & 0
\end{array}\right)
$$

Exercise T3 (Ideals)
Recall that a non-empty subset I of a commutative ring R is called an ideal, if it is closed under addition and under multiplication with arbitrary ring elements. The principal ideal I_{a} generated by a fixed element $a \in R$ is defined by

$$
I_{a}=\{r a: r \in R\}
$$

as the set of all multiples of a (see Definition 1.2.16 on page 22 of the notes).
(a) Verify that I_{a} is the smallest (\subseteq-minimal) ideal containing a.
(b) Let I and J be two ideals in a commutative ring R. Prove that

$$
I+J=\{i+j: i \in I, j \in J\}
$$

is again an ideal, in fact, the smallest ideal containing both I and J.
(c) Prove that every ideal over \mathbb{Z} is principal. Is the same true in the rings $\mathbb{Z}_{n}(n \in \mathbb{Z})$? (As already discussed in H3.3 from LA I 2010/11.)
(d) For two elements $m, n \in \mathbb{Z}$, the set $I_{m}+I_{n}$ is an ideal over \mathbb{Z}, hence principal. This means that $I_{m}+I_{n}=I_{k}$ for some element $k \in \mathbb{Z}$. Express k in terms of m and n.
(e) For any two ideals I and J in a commutative ring R, find an expression for $I \wedge J$, the largest ideal contained in both I and J. Over the ring \mathbb{Z}, how does one determine for any pair $m, n \in \mathbb{Z}$ the $k \in \mathbb{Z}$ such that $I_{m} \wedge I_{n}=I_{k}$?

