Linear Algebra II Tutorial Sheet no. 4

TECHNISCHE UNIVERSITÄT DARMSTADT

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Summer term 2011 May 2, 2011

Exercise T1 (Algebraic and geometric multiplicity)

Let φ be an endomorphism on a finite dimensional \mathbb{F} -vector space V and $\lambda \in \mathbb{F}$ an eigenvalue of φ with geometric multiplicity d and algebraic multiplicity s. Show that $d \leq s$.

Hint: Choose a basis *B* of *V* that contains *d* eigenvectors of φ with eigenvalue λ .

Exercise T2 (Upper triangle shape)

Find a real upper triangular matrix similar to

$$A = \begin{pmatrix} 3 & 0 & -2 \\ -2 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}.$$

Exercise T3 (Ideals)

Recall that a non-empty subset *I* of a commutative ring *R* is called an ideal, if it is closed under addition and under multiplication with arbitrary ring elements. The principal ideal I_a generated by a fixed element $a \in R$ is defined by

$$I_a = \{ra : r \in R\}$$

as the set of all multiples of a (see Definition 1.2.16 on page 22 of the notes).

- (a) Verify that I_a is the smallest (\subseteq -minimal) ideal containing a.
- (b) Let I and J be two ideals in a commutative ring R. Prove that

$$I + J = \{i + j : i \in I, j \in J\}$$

is again an ideal, in fact, the smallest ideal containing both I and J.

- (c) Prove that every ideal over \mathbb{Z} is principal. Is the same true in the rings \mathbb{Z}_n $(n \in \mathbb{Z})$? (As already discussed in H3.3 from LA I 2010/11.)
- (d) For two elements $m, n \in \mathbb{Z}$, the set $I_m + I_n$ is an ideal over \mathbb{Z} , hence principal. This means that $I_m + I_n = I_k$ for some element $k \in \mathbb{Z}$. Express k in terms of m and n.
- (e) For any two ideals *I* and *J* in a commutative ring *R*, find an expression for $I \wedge J$, the largest ideal contained in both *I* and *J*. Over the ring \mathbb{Z} , how does one determine for any pair $m, n \in \mathbb{Z}$ the $k \in \mathbb{Z}$ such that $I_m \wedge I_n = I_k$?