Linear Algebra II Tutorial Sheet no. 3

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

Exercise T1 (Polynomials and polynomial functions)
Let \mathbb{F} be a field (possibly finite). Recall that $\mathbb{F}[X]$ denotes the ring of polynomials

$$
p=\sum_{i=0}^{n} a_{i} X^{i}, \quad a_{i} \in \mathbb{F} \quad n \geq 0
$$

For each element $p=\sum_{i=0}^{n} a_{i} X^{i} \in \mathbb{F}[X]$, we obtain a function $\check{p}: \mathbb{F} \rightarrow \mathbb{F}$, defined by $\check{p}(\lambda):=\sum_{i=0}^{n} a_{i} \lambda^{i}$ for $\lambda \in \mathbb{F}$. Recall that $\operatorname{Pol}(\mathbb{F})$ denotes the set of functions obtained in this way, which we call polynomial functions. Let ${ }^{2}: \mathbb{F}[X] \rightarrow \operatorname{Pol}(\mathbb{F})$ denote the (surjective) map sending $p \mapsto \check{p}$. (You may refer, e.g., to Exercise 1.2.1. in the lecture notes.)
(a) Show that ${ }^{\wedge}$ is a ring homomorphism. In other words, $\check{0}=0$ and $\check{1}=1$, where 0 (resp. 1) may also represent the constant function sending everything to 0 (resp. 1). Also, given $p, q \in \mathbb{F}[X]$, we have $(p+q)^{v}=\check{p}+\check{q}$ and $(p q)^{v}=\check{p} \check{q}$.
(b) Show that $\mathbb{F}[X]$ is infinite-dimensional for any \mathbb{F} by showing that all elements X^{k} for $k \geq 0$ are linearly independent.
(c) Show that $\operatorname{Pol}(\mathbb{F})$ is finite-dimensional when $\mathbb{F}=\mathbb{F}_{p}$ for a prime p. Conclude that ${ }^{\wedge}$ is not an isomorphism in this case.
(d) Can you give an upper bound of the dimension of $\operatorname{Pol}(\mathbb{F})$? A better upper bound?
(e) Can you think of any other evaluation maps $\mathbb{F}[X] \rightarrow R$ for other rings R, defined in a similar way?

Exercise T2 (The Cayley-Hamilton Theorem for diagonalisable matrices)
(a) Let $A=\left(\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right)$. Recall from Exercise Sheet 2 that the characteristic polynomial $p_{A}(\lambda)=\lambda^{2}-5 \lambda+4$. Show that the characteristic polynomial of A annihilates A in the sense that $p_{A}(A)=A^{2}-5 A+4 E=0$, where E denotes the identity matrix and 0 denotes the zero matrix.
(b) Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ be a diagonal matrix. Write down the characteristic polynomial $p_{d}(\lambda)$. Show that D satisfies its characteristic polynomial in the sense that $p_{D}(D)=O$ where O denotes the zero $n \times n$ matrix.
(c) Let A be a diagonalisable matrix. Without appeal to the Cayley-Hamilton Theorem (which will later generalise this assertion to all matrices), show that $p_{A}(A)=O$.

Exercise T3 (Polynomial division with remainder)
Let $p_{1}(x)=x^{6}+5 x^{5}+6 x^{4}-x^{3}+2 x^{2}+5 x+4$ and $p_{2}(x)=x^{2}+2 x$. Using polynomial division with remainder, find the unique polynomials $q(x)$ and $r(x)$ with $\operatorname{deg}(r)<2=\operatorname{deg}\left(p_{2}\right)$ such that

$$
p_{1}(x)=q(x) p_{2}(x)+r(x) .
$$

(See Definition 1.2.8. and Lemma 1.2.9 in the lecture notes.)

