Linear Algebra II Tutorial Sheet no. 2

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

April 18, 2011

Exercise T1 (Geometric characterisation of linear maps by eigenvalues)
Give a geometric description of all the endomorphisms of \mathbb{R}^{3} with the following sets of eigenvalues:
(a) $\lambda_{1}=-1, \lambda_{2}=0, \lambda_{3}=1$
(b) $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3$
(c) $\lambda_{1}=-1, \lambda_{2}=1, \lambda_{3}=2$

Note that you cannot assume anything about the corresponding eigenvectors other than that they form a basis (why?).
Exercise T2 (Eigenvalues and eigenvectors over \mathbb{R} and \mathbb{C})
Let A be the 3×3-matrix $\left(\begin{array}{ccc}0 & -1 & 4 \\ 1 & 0 & 2 \\ 0 & 0 & 1\end{array}\right)$.
(a) Determine the characteristic polynomial of the matrix A.
(b) Find all real eigenvalues of A and the corresponding eigenvectors of the map $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $\varphi(x)=A x$.
(c) Find all eigenvalues for the corresponding map $\varphi: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ with $\varphi(x)=A x$ and give a basis of each eigenspace.

Exercise T3 (Diagonalisation)

Consider the matrix $A=\left(\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right)$ over \mathbb{R}.
(a) Determine all eigenvalues of A and corresponding eigenvectors.
(b) Find a regular matrix C such that $D=C^{-1} A C$ is a diagonal matrix.
(c) Calculate A^{6}.
(d) Find a "positive square root" of A, i.e., find a matrix R with non-negative eigenvalues such that $R^{2}=A$
(e) Check that $t \mapsto e^{t A} \mathbf{v}_{0}$ solves the differential equation $\frac{d}{d t} \mathbf{v}(t)=A \mathbf{v}(t)$ with initial value $\mathbf{v}(0)=\mathbf{v}_{0}$.

Exercise T4 (Eigenvalues of nilpotent maps)
Let V be a vector space of dimension greater than 0 , and let $\varphi: V \rightarrow V$ be a nilpotent endomorphism, that is, an endomorphism such that $\varphi^{k}=\mathbf{0}$ for some $k \in \mathbb{N}$.
(a) Show that 0 is the only possible eigenvalue of φ.
(b) Show that 0 is an eigenvalue of φ.

