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Discuss and compare as many different solution strategies as possible for the following two questions from your exam.

Exercise T1 (Exam problem 2)
Let B = (b1, . . . ,bn) be an ordered basis of an n-dimensional F-vector space V .

(a) Let B′ be obtained by replacing bi by b′i =
∑i

j=1 b j for 1≤ i ≤ n:

B′ := (b1, b1 + b2, b1 + b2 + b3, . . . ,b1 + · · ·+ bn).

Determine whether B′ always also forms a basis of V .

(b) For v ∈ V let

B− v := (b1 − v, b2 − v, . . . , bn − v).

Show that the set of those v ∈ V for which B − v is not a basis of V forms an affine subspace of dimension n− 1
(which contains, and is therefore spanned by, the bi).

Hint: turn the condition that B− v admits a non-trivial linear combination of 0 into a vector equation for v.

Exercise T2 (Exam Problem 4)
In V = R4, let ϕ : R4→ R4 be the linear map with

ϕ((1,0, 0,1)) = (2,0, 0,1), ϕ((2, 0,0, 1)) = (0, 1,1, 0),
ϕ((0,1, 1,0)) = (0,1, 2,0), ϕ((0, 1,2, 0)) = (1, 0,0, 1).

(a) Check that b1 = (1,0, 0,1), b2 = (2, 0,0, 1), b3 = (0,1, 1,0), b4 = (0, 1,2, 0) form a basis B = (b1,b2,b3,b4) of R4

and determine the matrix representation ¹ϕºBB of ϕ.
Is ϕ injective? Does it have an inverse?

(b) Let S = (e1,e2,e3,e4) be the standard basis. Derive the matrix representations ¹ϕºBS and ¹ϕºSS from ¹ϕºBB
through a systematic application of suitable basis transformation matrices.

Exercise T3 (Complex numbers)
Recall that complex numbers are represented by expressions of the form

z = a+ bi

with a, b ∈ R, i 6∈ R a new constant. Identifying a ∈ R with the complex number a + 0i and the new constant i with
0+1i, one may introduce addition and multiplication as the natural extensions of addition and multiplication in R based
on associativity, commutativity, distributivity and the identity i2 = −1. R thus becomes a subfield of the field of complex
numbers.

(a) Let z1 = 3+ 4i and z2 = 5+ 12i be complex numbers. Compute

z−1
1 , z−1

2 , z2
1 , z2

2 , and z1z2,

and draw them in the complex plane. Find the complex square roots of i, z1 and z2, i.e., solve the equations
x2 = i, x2 = z1, x2 = z2 over C.
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(b) Define for ϕ ∈ R,

eiϕ := cosϕ+ i sinϕ.

Show that eiϕeiψ = ei(ϕ+ψ) and (eiϕ)n = einϕ for every natural number n.

(c) Show that every complex number z ∈ C\{0} can be represented as:

z = reiϕ,

with r ∈ R>0. Prove that this representation is unique in the following sense:
z = seiψ with s > 0 implies r = s and ϕ ≡ψ mod 2π.

(d) Use the representation from (c) to
i. give a geometric description of complex multiplication in terms of rotations and rescalings (i.e., dilations or

contractions) in R2.
ii. find all complex solutions of z5 = 1 and draw these in the complex plane. In general, find all solutions to

zn = w for w ∈ C\{0}, n ∈ N.
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