Linear Algebra II Tutorial Sheet no. 1

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

April 11, 2011

Discuss and compare as many different solution strategies as possible for the following two questions from your exam.

Exercise T1 (Exam problem 2)

Let $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ be an ordered basis of an n-dimensional \mathbb{F}-vector space V.
(a) Let B^{\prime} be obtained by replacing \mathbf{b}_{i} by $\mathbf{b}_{i}^{\prime}=\sum_{j=1}^{i} \mathbf{b}_{j}$ for $1 \leq i \leq n$:

$$
B^{\prime}:=\left(\mathbf{b}_{1}, \mathbf{b}_{1}+\mathbf{b}_{2}, \mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{3}, \ldots, \mathbf{b}_{1}+\cdots+\mathbf{b}_{n}\right) .
$$

Determine whether B^{\prime} always also forms a basis of V.
(b) For $\mathbf{v} \in V$ let

$$
B-\mathbf{v}:=\left(\mathbf{b}_{1}-\mathbf{v}, \mathbf{b}_{2}-\mathbf{v}, \ldots, \mathbf{b}_{n}-\mathbf{v}\right) .
$$

Show that the set of those $\mathbf{v} \in V$ for which $B-\mathbf{v}$ is not a basis of V forms an affine subspace of dimension $n-1$ (which contains, and is therefore spanned by, the \mathbf{b}_{i}).

Hint: turn the condition that $B-\mathbf{v}$ admits a non-trivial linear combination of $\mathbf{0}$ into a vector equation for \mathbf{v}.

Exercise T2 (Exam Problem 4)

In $V=\mathbb{R}^{4}$, let $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear map with

$$
\begin{array}{ll}
\varphi((1,0,0,1))=(2,0,0,1), & \varphi((2,0,0,1))=(0,1,1,0), \\
\varphi((0,1,1,0))=(0,1,2,0), & \varphi((0,1,2,0))=(1,0,0,1) .
\end{array}
$$

(a) Check that $\mathbf{b}_{1}=(1,0,0,1), \mathbf{b}_{2}=(2,0,0,1), \mathbf{b}_{3}=(0,1,1,0), \mathbf{b}_{4}=(0,1,2,0)$ form a basis $B=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}\right)$ of \mathbb{R}^{4} and determine the matrix representation $\llbracket \varphi \rrbracket_{B}^{B}$ of φ.
Is φ injective? Does it have an inverse?
(b) Let $S=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right)$ be the standard basis. Derive the matrix representations $\llbracket \varphi \rrbracket_{S}^{B}$ and $\llbracket \varphi \rrbracket_{S}^{S}$ from $\llbracket \varphi \rrbracket_{B}^{B}$ through a systematic application of suitable basis transformation matrices.

Exercise T3 (Complex numbers)

Recall that complex numbers are represented by expressions of the form

$$
z=a+b i
$$

with $a, b \in \mathbb{R}, i \notin \mathbb{R}$ a new constant. Identifying $a \in \mathbb{R}$ with the complex number $a+0 i$ and the new constant i with $0+1 i$, one may introduce addition and multiplication as the natural extensions of addition and multiplication in \mathbb{R} based on associativity, commutativity, distributivity and the identity $i^{2}=-1$. \mathbb{R} thus becomes a subfield of the field of complex numbers.
(a) Let $z_{1}=3+4 i$ and $z_{2}=5+12 i$ be complex numbers. Compute

$$
z_{1}^{-1}, \quad z_{2}^{-1}, \quad z_{1}^{2}, \quad z_{2}^{2}, \quad \text { and } \quad z_{1} z_{2},
$$

and draw them in the complex plane. Find the complex square roots of i, z_{1} and z_{2}, i.e., solve the equations $x^{2}=i, x^{2}=z_{1}, x^{2}=z_{2}$ over \mathbb{C}.
(b) Define for $\varphi \in \mathbb{R}$,

$$
e^{i \varphi}:=\cos \varphi+i \sin \varphi .
$$

Show that $e^{i \varphi} e^{i \psi}=e^{i(\varphi+\psi)}$ and $\left(e^{i \varphi}\right)^{n}=e^{i n \varphi}$ for every natural number n.
(c) Show that every complex number $z \in \mathbb{C} \backslash\{0\}$ can be represented as:

$$
z=r e^{i \varphi}
$$

with $r \in \mathbb{R}_{>0}$. Prove that this representation is unique in the following sense:
$z=s e^{i \psi}$ with $s>0$ implies $r=s$ and $\varphi \equiv \psi \bmod 2 \pi$.
(d) Use the representation from (c) to
i. give a geometric description of complex multiplication in terms of rotations and rescalings (i.e., dilations or contractions) in \mathbb{R}^{2}.
ii. find all complex solutions of $z^{5}=1$ and draw these in the complex plane. In general, find all solutions to $z^{n}=w$ for $w \in \mathbb{C} \backslash\{0\}, n \in \mathbb{N}$.

