Linear Algebra II Tutorial Sheet no. 14

TECHNISCHE **UNIVERSITÄT**
DARMSTADT

Summer term 2011 Prof. Dr. Otto July 12, 2011

Dr. Le Roux Dr. Linshaw

Exercise T1 (Restriction of bilinear forms)

Consider a bilinear form σ in \mathbb{R}^n and its restriction $\sigma' = \sigma|_U$ to some linear subspace $U \subseteq \mathbb{R}^n$. Which of the following are generally true? (Give a proof sketch or a counter-example.)

- (a) σ symmetric \Rightarrow σ' symmetric
- (b) σ non-degenerate $\Rightarrow \sigma'$ non-degenerate
- (c) σ degenerate $\Rightarrow \sigma'$ degenerate
- (d) σ positive definite $\Rightarrow \sigma'$ positive definite
- (e) All restrictions σ' for all possible subspaces *U* are non-degenerate $\Rightarrow \sigma$ either positive definite or negative definite.

Solution:

- a) is true: $\sigma'(\mathbf{v}, \mathbf{w}) = \sigma(\mathbf{v}, \mathbf{w}) = \sigma(\mathbf{w}, \mathbf{v}) = \sigma'(\mathbf{w}, \mathbf{v})$ for all $\mathbf{v}, \mathbf{w} \in U$.
- b) is false: let σ be the bilinear form corresponding to the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $0 -1$ and let *U* be the subspace spanned by $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 1). σ is non-degenerate: For each vector $\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ v_2 $\left\{ \phi \neq 0 \text{ we get } \sigma\left(\begin{array}{c} v_1 \\ v_2 \end{array}\right)$ *v*2 $\Big)$, $\Big(\begin{array}{c} v_1 \\ v_2 \end{array} \Big)$ $-v_2$) = $v_1^2 + v_2^2 > 0$. But *σ'* is degenerate: σ'(*λ*1 *λ*1 $\bigg)$, $\bigg(\frac{\lambda_2}{2} \bigg)$ λ_{2} $\lambda_1 \lambda_2 - \lambda_1 \lambda_2 = 0$ for all $\lambda_1, \lambda_2 \in \mathbb{R}$.
- c) is false. The bilinear form on \mathbb{R}^2 represented by $\begin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}$ in the standard basis is clearly degenerate, but its restriction to the one-dimensional space spanned by \mathbf{e}_{1} is non-degenerate.
- d) is true: $\sigma'(\mathbf{v}, \mathbf{v}) = \sigma(\mathbf{v}, \mathbf{v}) \ge 0$ and $\sigma'(\mathbf{v}, \mathbf{v}) = 0 \Rightarrow \sigma(\mathbf{v}, \mathbf{v}) = 0$ and $\sigma(\mathbf{v}, \mathbf{v}) = 0 \Rightarrow \mathbf{v} = 0$.
- e) is true. If σ is indefinite, there is a non-zero vector **v** such that $\sigma(\mathbf{v}, \mathbf{v}) = 0$. This implies that the restriction of σ to the subspace spanned by **v** is degenerate.

Exercise T2 (Matrices over \mathbb{F}_2)

(a) Consider the following three matrices $A_i \in \mathbb{F}_2^{(3,3)}$ over the two-element field \mathbb{F}_2 .

$$
A_1 = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{array}\right) \quad A_2 = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right) \quad A_3 = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right)
$$

- (i) Determine the characteristic polynomials p_{A_i} for $i = 1, 2, 3$ and decompose them into irreducible factors in $\mathbb{F}_2[X]$. List for each of them all eigenvalues together with their geometric multiplicities.
- (ii) Which of the matrices A_1 , A_2 , A_3 are similar to upper triangle matrices over \mathbb{F}_2 ? Which of them are similar to a Jordan normal form matrix over \mathbb{F}_2 ? Which of them are diagonalisable over \mathbb{F}_2 ?
- (b) (i) Provide precisely one representative for every similarity class of matrices in $\mathbb{F}_2^{(2,2)}$ whose characteristic polynomials split into linear factors.
	- Hint: consider possible Jordan normal forms.
	- (ii) Which degree 2 polynomial is irreducible in $\mathbb{F}_2[X]$? Which matrices in $\mathbb{F}_2^{(2,2)}$ give rise to this characteristic polynomial? Use this to extend the list from (i) to provide precisely one representative for every similarity class of matrices in $\mathbb{F}_2^{(2,2)}$. Hint: a degree 2 polynomial in $\mathbb{F}_2[X]$ is irreducible iff it has no zeroes over \mathbb{F}_2 .

Solution:

- (a) (i) We have $p_{A_1} = x^3 + x^2 + 1$. This has no roots in \mathbb{F}_2 , so it is irreducible. Therefore A_1 has no eigenvalues. Next, $p_{A_2} = (x+1)(x^2+x+1)$. The factor $x^2 + x + 1$ is irreducible since it has no roots in \mathbb{F}_2 , so the only eigenvalue of A_2 is 1, and it has geometric (as well as algebraic) multiplicity 1. Finally, $p_{A_3} = x(x + 1)^2$. A calculation shows that the eigenvalues 0 and 1 both have geometric multiplicity 1.
	- (ii) A_1 and A_2 are not similar to upper triangular matrices over \mathbb{F}_2 , since the characteristic polynomials p_{A_1} and p_{A_2} do not split into linear factors. Therefore A_1 and A_2 are neither diagonalizable nor similar to Jordan normal form matrices over \mathbb{F}_2 .

Since p_{A_3} splits into linear factors, A_3 is similar to an upper triangular matrix over \mathbb{F}_2 , which is easily seen to be a matrix in Jordan normal form. However, A_3 is not diagonalizable since the eigenvalue 1 only has geometric multiplicity 1.

(b) (i) There are five such similarity classes, with Jordan normal form representatives

$$
\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
$$

(ii) The polynomial $x^2 + x + 1$ is clearly irreducible in $\mathbb{F}_2[X]$, since it has no roots. It is easy to verify that the only two matrices in $\mathbb{F}_2^{(2,2)}$ with this characteristic polynomial are $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, which lie in the same similarity class since $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ = $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Therefore adjoining $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ to the list of possible Jordan normal forms above gives us exactly one representative for every similarity class of matrices in $\mathbb{F}_2^{(2,2)}$.

Exercise T3 (Polynomials of linear maps)

Let *V* be a unitary vector space, $\varphi, \psi : V \to V$ endomorphisms of *V*, and $p, q \in \mathbb{C}[X]$ polynomials. Which of the following statements are always true? Either give a proof or find a counterexample.

- (a) If $\varphi \circ \psi = \psi \circ \varphi$, then $p(\varphi) \circ q(\psi) = q(\psi) \circ p(\varphi)$.
- (b) Every φ -invariant subspace *U* of *V* is also $p(\varphi)$ -invariant.
- (c) If φ is invertible, then $p(\varphi)$ is also invertible.
- (d) If φ is diagonalisable, then $p(\varphi)$ is also diagonalisable.
- (e) If φ is unitary, then $p(\varphi)$ is also unitary.
- (f) If φ is self-adjoint, then $p(\varphi)$ is also self-adjoint.

Solution:

a) First, note that $\varphi \circ \psi = \psi \circ \varphi$ implies $\varphi^k \circ \psi^n = \psi^n \circ \varphi^k$, for all $k, n \in \mathbb{N}$. Let $p = \sum_k a_k X^k$ and $q = \sum_k b_k X^k$. Then

$$
p(\varphi) \circ q(\psi) = \left(\sum_{k} a_{k} \varphi^{k}\right) \circ \left(\sum_{k} b_{k} \psi^{k}\right)
$$

=
$$
\sum_{k} \sum_{n} a_{k} b_{n} (\varphi^{k} \circ \psi^{n})
$$

=
$$
\sum_{k} \sum_{n} a_{k} b_{n} (\psi^{n} \circ \varphi^{k})
$$

=
$$
\left(\sum_{k} b_{k} \psi^{k}\right) \circ \left(\sum_{k} a_{k} \varphi^{k}\right) = q(\psi) \circ p(\varphi).
$$

b) Suppose that U is φ -invariant and let $p = \sum_k a_k X^k$. For every $\mathbf{x} \in U$, we have $\varphi(\mathbf{x}) \in U$. It follows that $\varphi^k(\mathbf{x}) \in U$, for every *k* ∈ N. Since *U* is a subspace and, hence, closed under linear combinations, we obtain

$$
(p(\varphi))(\mathbf{x}) = \sum_{k} a_k \varphi^k(\mathbf{x}) \in U.
$$

- c) This is false. For instance, if $\varphi = id$ and $p = 0$ then φ is invertible, but $p(\varphi) = 0$.
- d) Choose a basis *B* such that

$$
\llbracket \varphi \rrbracket_{B}^{B} = \begin{pmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{pmatrix}
$$

is a diagonal matrix. Then

$$
\llbracket p(\varphi) \rrbracket_B^B = p(\llbracket \varphi \rrbracket_B^B) = \begin{pmatrix} p(\lambda_1) & & & \\ & p(\lambda_2) & & \\ & & \ddots & \\ & & & p(\lambda_n) \end{pmatrix}
$$

is also diagonal.

- e) This is false. For instance, if $\varphi = id$ and $p = 0$ then φ unitary, but $p(\varphi) = 0$, which is clearly not.
- f) This claim is false. Suppose that $p = i$ is the constant polynomial with value *i*. Then $p(\varphi)^{+} = (i \cdot id)^{+} = -i \cdot id$ while $p(\varphi^+) = i \cdot id$.