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Exercise T1 (Restriction of bilinear forms)
Consider a bilinear form σ in Rn and its restriction σ′ = σ|U to some linear subspace U ⊆ Rn.
Which of the following are generally true? (Give a proof sketch or a counter-example.)

(a) σ symmetric⇒ σ′ symmetric

(b) σ non-degenerate⇒ σ′ non-degenerate

(c) σ degenerate⇒ σ′ degenerate

(d) σ positive definite⇒ σ′ positive definite

(e) All restrictions σ′ for all possible subspaces U are non-degenerate⇒ σ either positive definite or negative definite.

Solution:

a) is true: σ′(v,w) = σ(v,w) = σ(w,v) = σ′(w,v) for all v,w ∈ U .

b) is false: let σ be the bilinear form corresponding to the matrix
�

1 0
0 −1

�

and let U be the subspace spanned

by
�

1
1

�

. σ is non-degenerate: For each vector
�

v1
v2

�

6= 0 we get σ(
�

v1
v2

�

,
�

v1
−v2

�

) = v 2
1 + v 2

2 > 0. But σ′ is

degenerate: σ′(
�

λ1
λ1

�

,
�

λ2
λ2

�

) = λ1λ2 −λ1λ2 = 0 for all λ1,λ2 ∈ R.

c) is false. The bilinear form on R2 represented by
�

1 0
0 0

�

in the standard basis is clearly degenerate, but its

restriction to the one-dimensional space spanned by e1 is non-degenerate.

d) is true: σ′(v,v) = σ(v,v)¾ 0 and σ′(v,v) = 0⇒ σ(v,v) = 0 and σ(v,v) = 0⇒ v= 0.

e) is true. If σ is indefinite, there is a non-zero vector v such that σ(v,v) = 0. This implies that the restriction of σ to
the subspace spanned by v is degenerate.

Exercise T2 (Matrices over F2)
(a) Consider the following three matrices Ai ∈ F

(3,3)
2 over the two-element field F2.

A1 =







0 1 0
0 1 1
1 0 0






A2 =







0 1 0
0 0 1
1 0 0






A3 =







1 1 0
1 0 1
0 1 1







(i) Determine the characteristic polynomials pAi
for i = 1,2, 3 and decompose them into irreducible factors in

F2[X ]. List for each of them all eigenvalues together with their geometric multiplicities.

(ii) Which of the matrices A1, A2, A3 are similar to upper triangle matrices over F2?
Which of them are similar to a Jordan normal form matrix over F2?
Which of them are diagonalisable over F2?
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(b) (i) Provide precisely one representative for every similarity class of matrices in F(2,2)
2 whose characteristic polyno-

mials split into linear factors.
Hint: consider possible Jordan normal forms.

(ii) Which degree 2 polynomial is irreducible in F2[X ]?
Which matrices in F(2,2)

2 give rise to this characteristic polynomial? Use this to extend the list from (i) to
provide precisely one representative for every similarity class of matrices in F(2,2)

2 .
Hint: a degree 2 polynomial in F2[X ] is irreducible iff it has no zeroes over F2.

Solution:

(a) (i) We have pA1
= x3 + x2 + 1. This has no roots in F2, so it is irreducible. Therefore A1 has no eigenvalues.

Next, pA2
= (x + 1)(x2 + x + 1). The factor x2 + x + 1 is irreducible since it has no roots in F2, so the only

eigenvalue of A2 is 1, and it has geometric (as well as algebraic) multiplicity 1. Finally, pA3
= x(x + 1)2. A

calculation shows that the eigenvalues 0 and 1 both have geometric multiplicity 1.

(ii) A1 and A2 are not similar to upper triangular matrices over F2, since the characteristic polynomials pA1
and

pA2
do not split into linear factors. Therefore A1 and A2 are neither diagonalizable nor similar to Jordan

normal form matrices over F2.

Since pA3
splits into linear factors, A3 is similar to an upper triangular matrix over F2, which is easily seen

to be a matrix in Jordan normal form. However, A3 is not diagonalizable since the eigenvalue 1 only has
geometric multiplicity 1.

(b) (i) There are five such similarity classes, with Jordan normal form representatives
�

0 0
0 1

�

,
�

0 0
0 0

�

,
�

0 1
0 0

�

,
�

1 0
0 1

�

,
�

1 1
0 1

�

.

(ii) The polynomial x2 + x + 1 is clearly irreducible in F2[X ], since it has no roots. It is easy to verify that the

only two matrices in F(2,2)
2 with this characteristic polynomial are

�

1 1
1 0

�

and
�

0 1
1 1

�

, which lie in the

same similarity class since
�

0 1
1 1

�

=
�

0 1
1 0

��

1 1
1 0

��

0 1
1 0

�

. Therefore adjoining
�

0 1
1 1

�

to the list of

possible Jordan normal forms above gives us exactly one representative for every similarity class of matrices
in F(2,2)

2 .

Exercise T3 (Polynomials of linear maps)
Let V be a unitary vector space, ϕ,ψ : V → V endomorphisms of V , and p, q ∈ C[X ] polynomials. Which of the

following statements are always true? Either give a proof or find a counterexample.

(a) If ϕ ◦ψ=ψ ◦ϕ, then p(ϕ) ◦ q(ψ) = q(ψ) ◦ p(ϕ).

(b) Every ϕ-invariant subspace U of V is also p(ϕ)-invariant.

(c) If ϕ is invertible, then p(ϕ) is also invertible.

(d) If ϕ is diagonalisable, then p(ϕ) is also diagonalisable.

(e) If ϕ is unitary, then p(ϕ) is also unitary.

(f) If ϕ is self-adjoint, then p(ϕ) is also self-adjoint.

Solution:

a) First, note that ϕ ◦ψ=ψ◦ϕ implies ϕk ◦ψn =ψn ◦ϕk, for all k, n ∈ N. Let p =
∑

k akX k and q =
∑

k bkX k. Then

p(ϕ) ◦ q(ψ) =
�
∑

k

akϕ
k
�

◦
�
∑

k

bkψ
k
�

=
∑

k

∑

n

ak bn(ϕ
k ◦ψn)

=
∑

k

∑

n

ak bn(ψ
n ◦ϕk)

=
�
∑

k

bkψ
k
�

◦
�
∑

k

akϕ
k
�

= q(ψ) ◦ p(ϕ) .
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b) Suppose that U is ϕ-invariant and let p =
∑

k akX k. For every x ∈ U , we have ϕ(x) ∈ U . It follows that ϕk(x) ∈ U ,
for every k ∈ N. Since U is a subspace and, hence, closed under linear combinations, we obtain

(p(ϕ))(x) =
∑

k

akϕ
k(x) ∈ U .

c) This is false. For instance, if ϕ = id and p = 0 then ϕ is invertible, but p(ϕ) = 0.

d) Choose a basis B such that

¹ϕºB
B =













λ1
λ2

. . .
λn













is a diagonal matrix. Then

¹p(ϕ)ºB
B = p(¹ϕºB

B) =













p(λ1)
p(λ2)

. . .
p(λn)













is also diagonal.

e) This is false. For instance, if ϕ = id and p = 0 then ϕ unitary, but p(ϕ) = 0, which is clearly not.

f) This claim is false. Suppose that p = i is the constant polynomial with value i. Then p(ϕ)+ = (i · id)+ = −i · id
while p(ϕ+) = i · id.
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