Linear Algebra II Tutorial Sheet no. 14

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011 July 12, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise T1 (Restriction of bilinear forms)

Consider a bilinear form σ in \mathbb{R}^n and its restriction $\sigma' = \sigma|_U$ to some linear subspace $U \subseteq \mathbb{R}^n$. Which of the following are generally true? (Give a proof sketch or a counter-example.)

- (a) σ symmetric $\Rightarrow \sigma'$ symmetric
- (b) σ non-degenerate $\Rightarrow \sigma'$ non-degenerate
- (c) σ degenerate $\Rightarrow \sigma'$ degenerate
- (d) σ positive definite $\Rightarrow \sigma'$ positive definite
- (e) All restrictions σ' for all possible subspaces *U* are non-degenerate $\Rightarrow \sigma$ either positive definite or negative definite.

Solution:

- a) is true: $\sigma'(\mathbf{v}, \mathbf{w}) = \sigma(\mathbf{v}, \mathbf{w}) = \sigma(\mathbf{w}, \mathbf{v}) = \sigma'(\mathbf{w}, \mathbf{v})$ for all $\mathbf{v}, \mathbf{w} \in U$.
- b) is false: let σ be the bilinear form corresponding to the matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and let U be the subspace spanned by $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. σ is non-degenerate: For each vector $\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \neq 0$ we get $\sigma(\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \begin{pmatrix} v_1 \\ -v_2 \end{pmatrix}) = v_1^2 + v_2^2 > 0$. But σ' is degenerate: $\sigma'(\begin{pmatrix} \lambda_1 \\ \lambda_1 \end{pmatrix}, \begin{pmatrix} \lambda_2 \\ \lambda_2 \end{pmatrix}) = \lambda_1 \lambda_2 \lambda_1 \lambda_2 = 0$ for all $\lambda_1, \lambda_2 \in \mathbb{R}$.
- c) is false. The bilinear form on \mathbb{R}^2 represented by $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ in the standard basis is clearly degenerate, but its restriction to the one-dimensional space spanned by \mathbf{e}_1 is non-degenerate.
- d) is true: $\sigma'(\mathbf{v}, \mathbf{v}) = \sigma(\mathbf{v}, \mathbf{v}) \ge 0$ and $\sigma'(\mathbf{v}, \mathbf{v}) = 0 \Rightarrow \sigma(\mathbf{v}, \mathbf{v}) = 0$ and $\sigma(\mathbf{v}, \mathbf{v}) = 0 \Rightarrow \mathbf{v} = 0$.
- e) is true. If σ is indefinite, there is a non-zero vector **v** such that $\sigma(\mathbf{v}, \mathbf{v}) = 0$. This implies that the restriction of σ to the subspace spanned by **v** is degenerate.

Exercise T2 (Matrices over \mathbb{F}_2)

(a) Consider the following three matrices $A_i \in \mathbb{F}_2^{(3,3)}$ over the two-element field \mathbb{F}_2 .

$$A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad A_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad A_3 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

- (i) Determine the characteristic polynomials p_{A_i} for i = 1, 2, 3 and decompose them into irreducible factors in $\mathbb{F}_2[X]$. List for each of them all eigenvalues together with their geometric multiplicities.
- (ii) Which of the matrices A₁, A₂, A₃ are similar to upper triangle matrices over F₂? Which of them are similar to a Jordan normal form matrix over F₂? Which of them are diagonalisable over F₂?

- (b) (i) Provide precisely one representative for every similarity class of matrices in F₂^(2,2) whose characteristic polynomials split into linear factors.
 - Hint: consider possible Jordan normal forms.
 - (ii) Which degree 2 polynomial is irreducible in F₂[X]?
 Which matrices in F₂^(2,2) give rise to this characteristic polynomial? Use this to extend the list from (i) to provide precisely one representative for every similarity class of matrices in F₂^(2,2).
 Hint: a degree 2 polynomial in F₂[X] is irreducible iff it has no zeroes over F₂.

Solution:

- (a) (i) We have $p_{A_1} = x^3 + x^2 + 1$. This has no roots in \mathbb{F}_2 , so it is irreducible. Therefore A_1 has no eigenvalues. Next, $p_{A_2} = (x+1)(x^2 + x + 1)$. The factor $x^2 + x + 1$ is irreducible since it has no roots in \mathbb{F}_2 , so the only eigenvalue of A_2 is 1, and it has geometric (as well as algebraic) multiplicity 1. Finally, $p_{A_3} = x(x+1)^2$. A calculation shows that the eigenvalues 0 and 1 both have geometric multiplicity 1.
 - (ii) A_1 and A_2 are not similar to upper triangular matrices over \mathbb{F}_2 , since the characteristic polynomials p_{A_1} and p_{A_2} do not split into linear factors. Therefore A_1 and A_2 are neither diagonalizable nor similar to Jordan normal form matrices over \mathbb{F}_2 .

Since p_{A_3} splits into linear factors, A_3 is similar to an upper triangular matrix over \mathbb{F}_2 , which is easily seen to be a matrix in Jordan normal form. However, A_3 is not diagonalizable since the eigenvalue 1 only has geometric multiplicity 1.

(b) (i) There are five such similarity classes, with Jordan normal form representatives

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

(ii) The polynomial $x^2 + x + 1$ is clearly irreducible in $\mathbb{F}_2[X]$, since it has no roots. It is easy to verify that the only two matrices in $\mathbb{F}_2^{(2,2)}$ with this characteristic polynomial are $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, which lie in the same similarity class since $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Therefore adjoining $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ to the list of possible Jordan normal forms above gives us exactly one representative for every similarity class of matrices in $\mathbb{F}_2^{(2,2)}$.

Exercise T3 (Polynomials of linear maps)

Let *V* be a unitary vector space, $\varphi, \psi : V \to V$ endomorphisms of *V*, and $p, q \in \mathbb{C}[X]$ polynomials. Which of the following statements are always true? Either give a proof or find a counterexample.

- (a) If $\varphi \circ \psi = \psi \circ \varphi$, then $p(\varphi) \circ q(\psi) = q(\psi) \circ p(\varphi)$.
- (b) Every φ -invariant subspace *U* of *V* is also $p(\varphi)$ -invariant.
- (c) If φ is invertible, then $p(\varphi)$ is also invertible.
- (d) If φ is diagonalisable, then $p(\varphi)$ is also diagonalisable.
- (e) If φ is unitary, then $p(\varphi)$ is also unitary.
- (f) If φ is self-adjoint, then $p(\varphi)$ is also self-adjoint.

Solution:

a) First, note that $\varphi \circ \psi = \psi \circ \varphi$ implies $\varphi^k \circ \psi^n = \psi^n \circ \varphi^k$, for all $k, n \in \mathbb{N}$. Let $p = \sum_k a_k X^k$ and $q = \sum_k b_k X^k$. Then

$$p(\varphi) \circ q(\psi) = \left(\sum_{k} a_{k} \varphi^{k}\right) \circ \left(\sum_{k} b_{k} \psi^{k}\right)$$
$$= \sum_{k} \sum_{n} a_{k} b_{n} (\varphi^{k} \circ \psi^{n})$$
$$= \sum_{k} \sum_{n} a_{k} b_{n} (\psi^{n} \circ \varphi^{k})$$
$$= \left(\sum_{k} b_{k} \psi^{k}\right) \circ \left(\sum_{k} a_{k} \varphi^{k}\right) = q(\psi) \circ p(\varphi).$$

b) Suppose that *U* is φ -invariant and let $p = \sum_k a_k X^k$. For every $\mathbf{x} \in U$, we have $\varphi(\mathbf{x}) \in U$. It follows that $\varphi^k(\mathbf{x}) \in U$, for every $k \in \mathbb{N}$. Since *U* is a subspace and, hence, closed under linear combinations, we obtain

$$(p(\varphi))(\mathbf{x}) = \sum_{k} a_k \varphi^k(\mathbf{x}) \in U.$$

- c) This is false. For instance, if $\varphi = id$ and p = 0 then φ is invertible, but $p(\varphi) = 0$.
- d) Choose a basis *B* such that

$$\llbracket \varphi \rrbracket_B^B = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \lambda_n \end{pmatrix}$$

is a diagonal matrix. Then

$$\llbracket p(\varphi) \rrbracket_B^B = p(\llbracket \varphi \rrbracket_B^B) = \begin{pmatrix} p(\lambda_1) & & \\ & p(\lambda_2) & \\ & & \ddots & \\ & & & p(\lambda_n) \end{pmatrix}$$

is also diagonal.

- e) This is false. For instance, if $\varphi = id$ and p = 0 then φ unitary, but $p(\varphi) = 0$, which is clearly not.
- f) This claim is false. Suppose that p = i is the constant polynomial with value *i*. Then $p(\varphi)^+ = (i \cdot id)^+ = -i \cdot id$ while $p(\varphi^+) = i \cdot id$.