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Exercise T1 (Warm-up: Determinant revisited)
We consider the real vector space V of symmetric, 2 x 2 real matrices.

(a) Prove that det: V — R is a a quadratic form.

(b) Determine the matrix of the associated bilinear form with respect to the basis

2= (m=(o 5) %= %) == 3)),

(c) Determine the principal axes and sketch the sets
{veV|detv=1}, {veV|detv=-1}

(as subsets of R, when every matrix is identified with its coordinates w.r.t. the basis ).

Solution:
a) LetA= (al a3) ,B= (bl b3) € V. Then
as dax bs b,
det(Ad) = A%aja, — Azag = A%(aya, — ag) = A2 det(A).
Furthermore
1
T4e(A,B) = 5 (det(A+ B) — det(A) — det(B))

1 2 2 2
= E((Ch + by)(ay + by) — (ag + b3)*) — (ayay, — a3) — (byby — b3)

1
= E(a1b2 +ayb; — 2azbs).

Let C = (El 23) €V and A, u € R. It follows that
3 G2

1
0 get(AA+uC, B) > ((Aay + pey)by + (Aay + pcy)by — 2(Aaz + uc3)bs)

1 1
= El(albz‘i‘azbl _2a3b3)+EM(C1b2+C2bl _2C3b3)
= Ao'clet(A, B) + “Udet(c, B),
hence o, is a bilinear form.

b) We have to compute 04 (B;,B;) for i,j = 1,2,3. We get 04e(B1,B1) = Tget(B2,By) = 0, 0g4e(Bs, B3) = —1,
o.det(BbBZ) = O.det(B21B1) = %) Udet(B13B3) = O.det(BS’Bl) =0 und O.det(BZ’BS) = O-det(BB’Bl) = 0. Therefore we
get the following matrix:

M= [adet]]B =

onvik O
O ONI-
o




c) We apply principal axes transformation to M. For this we determine first the eigenvalues and eigenvectors of M.

py =det(tM —AE)=—(A+1) (A—%) (k+1).

2
The eigenvalues of M are then A; = —-1,A, = %, Ag = —%. The corresponding normalized eigenvectors are
w=lo]. m=Ll1]. n=1]"
1= > 2= & > 3T &
1 V2 0 V2 0

Translated back to matrices, we get that the three principal axes are the three one-dimensional subspaces of V
spanned by the matrices

01 1 (1 0 1 (-1 0
=1 o) m=ml ) = e 1)

By identifying every matrix with its coordinates w.r.t. the basis %, the subspaces become subsets of R3. Hence,
the quadric {v € V | detv = 1} describes a two-sheet hyperboloid with the principal axes generated by the vectors
Y, Vs, V3 € R3. The set {ve V | detv = —1} describes a single-sheet hyperboloid.

Exercise T2 (A quadric up to rotation/translation)

Consider the quadratic X given by 3x? + 3y? — 2xy + 20x — 12y + 40 = 0. Our goal is to find the principal axes and
describe the graph of X.

(a) Regarding the quadratic part of the above equation as a quadratic form, diagonalise the associated symmetric
bilinear form to obtain a basis for which the cross term xy vanishes.

(b) Working in this new basis, eliminate the linear terms by a translation.

(c) Describe X.

Solution:

a) The quadratic form is Q(x) = 3x2 — 2xy + 3y2, so the corresponding symmetric bilinear form is represented

3 -1

-1 3
L L

corresponding eigenvectors are v; = (‘?) and v, = ( 1‘5) , respectively. Letting C be the orthogonal matrix

V2
with columns (vy,v,) we see that C'AC = (

with respect to the standard basis by the matrix A = ( ) The eigenvalues of A and 2 and 4, and the

V2
2 0
0 4)
b) Letu= %(x +y)andv = %(—x +y). Then y =u+ v and x = u — v, and the equation for X can be rewritten as
4u® 4+ 8v* + 8u — 32v + 40.
A translation yields 4(u + 1) +8(v —2)> = 4
¢) Xisin an ellipse centred at the point (—1,2) that has been rotated by %. Its principal axes are span(1,—1) and

span(1, 1), respectively with major and minor diameters 2 and 2.

Exercise T3 (Slicing a quadric)
Consider the quadric X, , in R3 defined by

X = 1x=(x1,x,x3) € R®: A(xf +x§) +,ux§ =1},

where A and u are real parameters.

(a) Determine the intersection of every X, , with the plane defined by x; =c € R.




(b)

(0

Prove that X, , can be obtained by rotating the set

X’l,u = {X = (x15x2’x3) € RB X = O’ Ax% +‘[,Lx§ = 1}

about the x5-axis.

For each pair of values
Al uw
1I.|-1( 1
2.1 (-1~
3.1 2 1

sketch X, , and X .

Solution:

a)

b)

)

The intersection of X, , with the plane x; = c is given by
{x=(x1,%2,x3) €R®: A(x? +x3) =1 — pc?, x3=c}.

l—uc2
A

l—uc2
A

In case

= 0, this is a circle with radius r = , otherwise the intersection is empty.

Rotating about the x;-axis does not change the xs;-coordinate of a point. So we look at the planes defined by
x3 = c. The points obtained from a point p = (0, b,c) € X, " by rotation about the x;-axis are the ones that have

the same distance to the x;-axis as p, hence the points (x;, x5, ¢) satisfying xf + xg = b2. From Ab% +uc? =1, we
obtain A(x} +x3) + uc® = 1, so all these points are in X;, .

Conversely, every point x = (x,x,,x3) € X, , can be obtained by rotating a point p = (0,b,c) with b =

+4/x? + x% and ¢ = x; through an appropriate angle.
In the first case, X 11 1s a north-south opening hyperbola in the x, —x3-plane, which consists of x3 = +4/1+ x§
and x3 = —y/1+ x3. Hence X_, ; is a two-sheet hyperboloid.

In the second case, Xll,—l is an east-west opening hyperbola in the x,—x;-plane, which consists of x, = +4/1 + x2

and x, = —4/1+ x§ ; so it is the previous figure, but tilted. Therefore X; _; is a single-sheet hyperboloid.

In the third case, X/z,l is an ellipse in the x, —x3-plane, which consists of x5 = +4/1 — 2x2 and x3 = —1/1 — 2x3.
X, is therefore an ellipsoid.




