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Exercise T1 (Warm-up: Determinant revisited)
We consider the real vector space V of symmetric, 2× 2 real matrices.

(a) Prove that det : V → R is a a quadratic form.

(b) Determine the matrix of the associated bilinear form with respect to the basis

B =
�

B1 =
�

1 0
0 0

�

, B2 =
�

0 0
0 1

�

, B3 =
�

0 1
1 0

��

.

(c) Determine the principal axes and sketch the sets

{v ∈ V | detv= 1}, {v ∈ V | detv=−1}.

(as subsets of R3, when every matrix is identified with its coordinates w.r.t. the basisB).

Solution:

a) Let A=
�

a1 a3
a3 a2

�

, B =
�

b1 b3
b3 b2

�

∈ V . Then

det(λA) = λ2a1a2 −λ2a2
3 = λ

2(a1a2 − a2
3) = λ

2 det(A).

Furthermore

σdet(A, B) =
1

2

�

det(A+ B)− det(A)− det(B)
�

=
1

2

�

(a1 + b1)(a2 + b2)− (a3 + b3)
2)− (a1a2 − a2

3)− (b1 b2 − b2
3)

=
1

2
(a1 b2 + a2 b1 − 2a3 b3).

Let C =
�

c1 c3
c3 c2

�

∈ V and λ,µ ∈ R. It follows that

σdet(λA+µC , B) =
1

2

�

(λa1 +µc1)b2 + (λa2 +µc2)b1 − 2(λa3 +µc3)b3
�

=
1

2
λ(a1 b2 + a2 b1 − 2a3 b3) +

1

2
µ(c1 b2 + c2 b1 − 2c3 b3)

= λσdet(A, B) +µσdet(C , B),

hence σdet is a bilinear form.

b) We have to compute σdet(Bi , B j) for i, j = 1,2, 3. We get σdet(B1, B1) = σdet(B2, B2) = 0, σdet(B3, B3) = −1,
σdet(B1, B2) = σdet(B2, B1) =

1
2
, σdet(B1, B3) = σdet(B3, B1) = 0 und σdet(B2, B3) = σdet(B3, B1) = 0. Therefore we

get the following matrix:

M = ¹σdetº
B =







0 1
2

0
1
2

0 0
0 0 −1






.
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c) We apply principal axes transformation to M . For this we determine first the eigenvalues and eigenvectors of M .

pM = det(M −λE) =−(λ+ 1)
�

λ−
1

2

��

λ+
1

2

�

.

The eigenvalues of M are then λ1 =−1,λ2 =
1
2
, λ3 =−

1
2
. The corresponding normalized eigenvectors are

V1 =







0
0
1






, V2 =

1
p

2







1
1
0






, V3 =

1
p

2







−1
1
0






.

Translated back to matrices, we get that the three principal axes are the three one-dimensional subspaces of V
spanned by the matrices

M1 =
�

0 1
1 0

�

, M2 =
1
p

2

�

1 0
0 1

�

, M3 =
1
p

2

�

−1 0
0 1

�

.

By identifying every matrix with its coordinates w.r.t. the basis B , the subspaces become subsets of R3. Hence,
the quadric {v ∈ V | detv = 1} describes a two-sheet hyperboloid with the principal axes generated by the vectors
V1,V2,V3 ∈ R3. The set {v ∈ V | detv=−1} describes a single-sheet hyperboloid.

Exercise T2 (A quadric up to rotation/translation)
Consider the quadratic X given by 3x2 + 3y2 − 2x y + 20x − 12y + 40 = 0. Our goal is to find the principal axes and

describe the graph of X.

(a) Regarding the quadratic part of the above equation as a quadratic form, diagonalise the associated symmetric
bilinear form to obtain a basis for which the cross term x y vanishes.

(b) Working in this new basis, eliminate the linear terms by a translation.

(c) Describe X.

Solution:

a) The quadratic form is Q(x) = 3x2 − 2x y + 3y2, so the corresponding symmetric bilinear form is represented

with respect to the standard basis by the matrix A =
�

3 −1
−1 3

�

. The eigenvalues of A and 2 and 4, and the

corresponding eigenvectors are v1 =

� 1p
2

1p
2

�

and v2 =

�

− 1p
2

1p
2

�

, respectively. Letting C be the orthogonal matrix

with columns (v1,v2) we see that C tAC =
�

2 0
0 4

�

.

b) Let u= 1
2
(x + y) and v = 1

2
(−x + y). Then y = u+ v and x = u− v , and the equation for X can be rewritten as

4u2 + 8v 2 + 8u− 32v + 40.

A translation yields 4(u+ 1)2 + 8(v − 2)2 = 4

c) X is in an ellipse centred at the point (−1, 2) that has been rotated by π

4
. Its principal axes are span(1,−1) and

span(1, 1), respectively with major and minor diameters 2 and
p

2.

Exercise T3 (Slicing a quadric)
Consider the quadric Xλ,µ in R3 defined by

Xλ,µ := {x= (x1, x2, x3) ∈ R3 : λ(x2
1 + x2

2) +µx2
3 = 1},

where λ and µ are real parameters.

(a) Determine the intersection of every Xλ,µ with the plane defined by x3 = c ∈ R.
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(b) Prove that Xλ,µ can be obtained by rotating the set

X′λ,µ := {x= (x1, x2, x3) ∈ R3 : x1 = 0, λx2
2 +µx2

3 = 1}

about the x3-axis.

(c) For each pair of values

λ µ

1. −1 1
2. 1 −1
3. 2 1

,

sketch Xλ,µ and X′λ,µ.

Solution:

a) The intersection of Xλ,µ with the plane x3 = c is given by

{x= (x1, x2, x3) ∈ R3 : λ(x2
1 + x2

2) = 1−µc2, x3 = c}.

In case 1−µc2

λ
¾ 0, this is a circle with radius r =

q

1−µc2

λ
, otherwise the intersection is empty.

b) Rotating about the x3-axis does not change the x3-coordinate of a point. So we look at the planes defined by
x3 = c. The points obtained from a point p = (0, b, c) ∈ X′λ,µ by rotation about the x3-axis are the ones that have
the same distance to the x3-axis as p, hence the points (x1, x2, c) satisfying x2

1 + x2
2 = b2. From λb2+µc2 = 1, we

obtain λ(x2
1 + x2

2) +µc2 = 1, so all these points are in Xλ,µ.

Conversely, every point x = (x1, x2, x3) ∈ Xλ,µ can be obtained by rotating a point p = (0, b, c) with b =

±
p

x2
1 + x2

2 and c = x3 through an appropriate angle.

c) In the first case, X′−1,1 is a north-south opening hyperbola in the x2−x3-plane, which consists of x3 = +
p

1+ x2
2

and x3 =−
p

1+ x2
2 . Hence X−1,1 is a two-sheet hyperboloid.

In the second case, X′1,−1 is an east-west opening hyperbola in the x2−x3-plane, which consists of x2 =+
p

1+ x2
3

and x2 =−
p

1+ x2
3; so it is the previous figure, but tilted. Therefore X1,−1 is a single-sheet hyperboloid.

In the third case, X′2,1 is an ellipse in the x2−x3-plane, which consists of x3 = +
p

1− 2x2
2 and x3 = −

p

1− 2x2
2 .

X2,1 is therefore an ellipsoid.
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