Linear Algebra II Tutorial Sheet no. 13

Prof. Dr. Otto
 Dr. Le Roux
 Dr. Linshaw

July 5, 2011

Exercise T1 (Warm-up: Determinant revisited)
We consider the real vector space V of symmetric, 2×2 real matrices.
(a) Prove that det: $V \rightarrow \mathbb{R}$ is a a quadratic form.
(b) Determine the matrix of the associated bilinear form with respect to the basis

$$
\mathscr{B}=\left(B_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad B_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad B_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right) .
$$

(c) Determine the principal axes and sketch the sets

$$
\{\mathbf{v} \in V \mid \operatorname{det} \mathbf{v}=1\}, \quad\{\mathbf{v} \in V \mid \operatorname{det} \mathbf{v}=-1\}
$$

(as subsets of \mathbb{R}^{3}, when every matrix is identified with its coordinates w.r.t. the basis \mathscr{B}).

Solution:

a) Let $A=\left(\begin{array}{ll}a_{1} & a_{3} \\ a_{3} & a_{2}\end{array}\right), B=\left(\begin{array}{ll}b_{1} & b_{3} \\ b_{3} & b_{2}\end{array}\right) \in V$. Then

$$
\operatorname{det}(\lambda A)=\lambda^{2} a_{1} a_{2}-\lambda^{2} a_{3}^{2}=\lambda^{2}\left(a_{1} a_{2}-a_{3}^{2}\right)=\lambda^{2} \operatorname{det}(A)
$$

Furthermore

$$
\begin{aligned}
\sigma_{\operatorname{det}}(A, B) & =\frac{1}{2}(\operatorname{det}(A+B)-\operatorname{det}(A)-\operatorname{det}(B)) \\
& =\frac{1}{2}\left(\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right)-\left(a_{3}+b_{3}\right)^{2}\right)-\left(a_{1} a_{2}-a_{3}^{2}\right)-\left(b_{1} b_{2}-b_{3}^{2}\right) \\
& =\frac{1}{2}\left(a_{1} b_{2}+a_{2} b_{1}-2 a_{3} b_{3}\right)
\end{aligned}
$$

Let $C=\left(\begin{array}{ll}c_{1} & c_{3} \\ c_{3} & c_{2}\end{array}\right) \in V$ and $\lambda, \mu \in \mathbb{R}$. It follows that

$$
\begin{aligned}
\sigma_{\mathrm{det}}(\lambda A+\mu C, B) & =\frac{1}{2}\left(\left(\lambda a_{1}+\mu c_{1}\right) b_{2}+\left(\lambda a_{2}+\mu c_{2}\right) b_{1}-2\left(\lambda a_{3}+\mu c_{3}\right) b_{3}\right) \\
& =\frac{1}{2} \lambda\left(a_{1} b_{2}+a_{2} b_{1}-2 a_{3} b_{3}\right)+\frac{1}{2} \mu\left(c_{1} b_{2}+c_{2} b_{1}-2 c_{3} b_{3}\right) \\
& =\lambda \sigma_{\operatorname{det}}(A, B)+\mu \sigma_{\operatorname{det}}(C, B),
\end{aligned}
$$

hence $\sigma_{\text {det }}$ is a bilinear form.
b) We have to compute $\sigma_{\text {det }}\left(B_{i}, B_{j}\right)$ for $i, j=1,2,3$. We get $\sigma_{\text {det }}\left(B_{1}, B_{1}\right)=\sigma_{\text {det }}\left(B_{2}, B_{2}\right)=0, \sigma_{\text {det }}\left(B_{3}, B_{3}\right)=-1$, $\sigma_{\text {det }}\left(B_{1}, B_{2}\right)=\sigma_{\text {det }}\left(B_{2}, B_{1}\right)=\frac{1}{2}, \sigma_{\text {det }}\left(B_{1}, B_{3}\right)=\sigma_{\text {det }}\left(B_{3}, B_{1}\right)=0$ und $\sigma_{\text {det }}\left(B_{2}, B_{3}\right)=\sigma_{\operatorname{det}}\left(B_{3}, B_{1}\right)=0$. Therefore we get the following matrix:

$$
M=\llbracket \sigma_{\mathrm{det}} \rrbracket^{B}=\left(\begin{array}{ccc}
0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

c) We apply principal axes transformation to M. For this we determine first the eigenvalues and eigenvectors of M.

$$
p_{M}=\operatorname{det}(M-\lambda E)=-(\lambda+1)\left(\lambda-\frac{1}{2}\right)\left(\lambda+\frac{1}{2}\right) .
$$

The eigenvalues of M are then $\lambda_{1}=-1, \lambda_{2}=\frac{1}{2}, \lambda_{3}=-\frac{1}{2}$. The corresponding normalized eigenvectors are

$$
\mathscr{V}_{1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad \mathscr{V}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad \mathscr{V}_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
$$

Translated back to matrices, we get that the three principal axes are the three one-dimensional subspaces of V spanned by the matrices

$$
M_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad M_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad M_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

By identifying every matrix with its coordinates w.r.t. the basis \mathscr{B}, the subspaces become subsets of \mathbb{R}^{3}. Hence, the quadric $\{\mathbf{v} \in V \mid \operatorname{det} \mathbf{v}=1\}$ describes a two-sheet hyperboloid with the principal axes generated by the vectors $\mathscr{V}_{1}, \mathscr{V}_{2}, \mathscr{V}_{3} \in \mathbb{R}^{3}$. The set $\{\mathbf{v} \in V \mid \operatorname{det} \mathbf{v}=-1\}$ describes a single-sheet hyperboloid.

Exercise T2 (A quadric up to rotation/translation)
Consider the quadratic \mathbb{X} given by $3 x^{2}+3 y^{2}-2 x y+20 x-12 y+40=0$. Our goal is to find the principal axes and describe the graph of \mathbb{X}.
(a) Regarding the quadratic part of the above equation as a quadratic form, diagonalise the associated symmetric bilinear form to obtain a basis for which the cross term $x y$ vanishes.
(b) Working in this new basis, eliminate the linear terms by a translation.
(c) Describe \mathbb{X}.

Solution:

a) The quadratic form is $Q(x)=3 x^{2}-2 x y+3 y^{2}$, so the corresponding symmetric bilinear form is represented with respect to the standard basis by the matrix $A=\left(\begin{array}{cc}3 & -1 \\ -1 & 3\end{array}\right)$. The eigenvalues of A and 2 and 4 , and the corresponding eigenvectors are $\mathbf{v}_{1}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$ and $\mathbf{v}_{2}=\binom{-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$, respectively. Letting C be the orthogonal matrix with columns $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ we see that $C^{t} A C=\left(\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right)$.
b) Let $u=\frac{1}{2}(x+y)$ and $v=\frac{1}{2}(-x+y)$. Then $y=u+v$ and $x=u-v$, and the equation for \mathbb{X} can be rewritten as

$$
4 u^{2}+8 v^{2}+8 u-32 v+40
$$

A translation yields $4(u+1)^{2}+8(v-2)^{2}=4$
c) \mathbb{X} is in an ellipse centred at the point $(-1,2)$ that has been rotated by $\frac{\pi}{4}$. Its principal axes are span $(1,-1)$ and $\operatorname{span}(1,1)$, respectively with major and minor diameters 2 and $\sqrt{2}$.

Exercise T3 (Slicing a quadric)
Consider the quadric $\mathbb{X}_{\lambda, \mu}$ in \mathbb{R}^{3} defined by

$$
\mathbb{X}_{\lambda, \mu}:=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: \lambda\left(x_{1}^{2}+x_{2}^{2}\right)+\mu x_{3}^{2}=1\right\}
$$

where λ and μ are real parameters.
(a) Determine the intersection of every $\mathbb{X}_{\lambda, \mu}$ with the plane defined by $x_{3}=c \in \mathbb{R}$.
(b) Prove that $\mathbb{X}_{\lambda, \mu}$ can be obtained by rotating the set

$$
\mathbb{X}_{\lambda, \mu}^{\prime}:=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}=0, \lambda x_{2}^{2}+\mu x_{3}^{2}=1\right\}
$$

about the x_{3}-axis.
(c) For each pair of values

	λ	μ
1.	-1	1
2.	1	-1
3.	2	1

sketch $\mathbb{X}_{\lambda, \mu}$ and $\mathbb{X}_{\lambda, \mu}^{\prime}$.

Solution:

a) The intersection of $\mathbb{X}_{\lambda, \mu}$ with the plane $x_{3}=c$ is given by

$$
\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: \lambda\left(x_{1}^{2}+x_{2}^{2}\right)=1-\mu c^{2}, x_{3}=c\right\} .
$$

In case $\frac{1-\mu c^{2}}{\lambda} \geqslant 0$, this is a circle with radius $r=\sqrt{\frac{1-\mu c^{2}}{\lambda}}$, otherwise the intersection is empty.
b) Rotating about the x_{3}-axis does not change the x_{3}-coordinate of a point. So we look at the planes defined by $x_{3}=c$. The points obtained from a point $\mathbf{p}=(0, b, c) \in \mathbb{X}_{\lambda, \mu}^{\prime}$ by rotation about the x_{3}-axis are the ones that have the same distance to the x_{3}-axis as \mathbf{p}, hence the points (x_{1}, x_{2}, c) satisfying $x_{1}^{2}+x_{2}^{2}=b^{2}$. From $\lambda b^{2}+\mu c^{2}=1$, we obtain $\lambda\left(x_{1}^{2}+x_{2}^{2}\right)+\mu c^{2}=1$, so all these points are in $\mathbb{X}_{\lambda, \mu}$.
Conversely, every point $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{X}_{\lambda, \mu}$ can be obtained by rotating a point $\mathbf{p}=(0, b, c)$ with $b=$ $\pm \sqrt{x_{1}^{2}+x_{2}^{2}}$ and $c=x_{3}$ through an appropriate angle.
c) In the first case, $\mathbb{X}_{-1,1}^{\prime}$ is a north-south opening hyperbola in the $x_{2}-x_{3}$-plane, which consists of $x_{3}=+\sqrt{1+x_{2}^{2}}$ and $x_{3}=-\sqrt{1+x_{2}^{2}}$. Hence $\mathbb{X}_{-1,1}$ is a two-sheet hyperboloid.
In the second case, $\mathbb{X}_{1,-1}^{\prime}$ is an east-west opening hyperbola in the $x_{2}-x_{3}$-plane, which consists of $x_{2}=+\sqrt{1+x_{3}^{2}}$ and $x_{2}=-\sqrt{1+x_{3}^{2}}$; so it is the previous figure, but tilted. Therefore $\mathbb{X}_{1,-1}$ is a single-sheet hyperboloid.
In the third case, $\mathbb{X}_{2,1}^{\prime}$ is an ellipse in the $x_{2}-x_{3}$-plane, which consists of $x_{3}=+\sqrt{1-2 x_{2}^{2}}$ and $x_{3}=-\sqrt{1-2 x_{2}^{2}}$. $\mathbb{X}_{2,1}$ is therefore an ellipsoid.

