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Exercise T1 (Warm-up)
Consider a symmetric bilinear formσ in a finite-dimensional euclidean vector space (V, 〈·, ·〉). Supposeσ has a diagonal

representation w.r.t. basis B.

(a) Show that if B consists of pairwise orthogonal basis vectors, then, for every c, the subset

Xc := {v ∈ V : σ(v,v) = c}

is invariant under reflections in the hyperplanes perpendicular to the basis vectors, span(bi)⊥.

(b) Which property of B or σ guarantees that the sets Xc also have non-trivial rotational symmetries?

Solution:

a) Since σ has a diagonal representation w.r.t. basis B, for i 6= j we have σ(v j , v i) = 0 for all v j ∈ span(b j) and
v i ∈ span(bi). Now let v = v−i + v i where v−i ∈ span(bi)⊥ and vi ∈ span(bi). Then σ(v−i − vi ,v−i − vi) =
σ(v−i ,v−i) +σ(vi ,vi) = σ(v−i + vi ,v−i + vi) thanks to the remark above.

b) Assume that B is an orthonormal basis. Let λ be a scalar and let I be such that σ(bi ,bi) = λ for all i ∈ I .
Let ϕ : V → V be such that i /∈ I ⇒ ϕ(bi) = bi and such that ϕ(span{bi |i ∈ I}) ⊆ span{bi |i ∈ I} and the
restriction of ϕ to span{bi |i ∈ I} is isometric. On span{bi |i ∈ I}, σ is a scalar multiple of the standard scalar
product, so ϕ preserves σ on span{bi |i ∈ I}. Now let v I ∈ span{bi |i ∈ I} and v−I ∈ span{bi |i /∈ I}. We have
σ(ϕ(v−I+vI),ϕ(v−I+vI)) = σ(v−I+ϕ(vI ),v−I+ϕ(vI )) = σ(v−I ,v−I )+σ(ϕ(vI ),ϕ(vI )) = σ(v−I ,v−I)+σ(vI ,vI ) =
σ(v−I + vI ,v−I + vI ).

Exercise T2 (Antisymmetric/skew-symmetric bilinear forms)
A bilinear form σ : V × V → R is called antisymmetric if σ(v,w) =−σ(w,v) for all v,w ∈ V .
Prove that every bilinear form is the sum of a symmetric bilinear form and an antisymmetric bilinear form, and that

decomposition is unique.
Hint (for uniqueness): think of direct sums.

Solution:
If σ : V × V → R is a bilinear form, then we define by

σs(v,w) :=
1

2

�

σ(v,w) +σ(w,v)
�

and σa(v,w) :=
1

2

�

σ(v,w)−σ(w,v)
�

two bilinear forms σs,σa : V × V → R. By construction, σs is symmetric and σa is antisymmetric. Furthermore,
σ = σs +σa.

For uniqueness, let σs + σa = σ′s + σ
′
a where σs and σ′s are symmetric and σa and σ′a are antisymmetric. Then

σs −σ′s = σa −σ′a is both symmetric and antisymmetric, and is therefore the null form.

Exercise T3 (Preservation of bilinear forms)
Let σ be a symmetric bilinear form on Rn, represented by A∈ R(n,n) w.r.t. the standard basis. The function Q : Rn→ R

defined by Q(x) = σ(x,x) is called the associated quadratic form of σ.
We say that an endomorphism ϕ of Rn preserves the bilinear from σ if σ(ϕ(x),ϕ(y)) = σ(x,y) for all x,y ∈ Rn.

Analogously, ϕ preserves the associated quadratic form Q if Q(ϕ(x)) =Q(x) for all x ∈ Rn.
Show that for an endomorphism ϕ represented by the matrix C w.r.t. the standard basis, the following are equivalent:
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(a) ϕ preserves Q ;

(b) ϕ preserves σ;

(c) C tAC = A.

Solution:

a) ⇒ (b) Since

σ(x+ y,x+ y) = σ(x,x) + 2σ(x,y) +σ(y,y)

we have

σ(x,y) =
1

2
[Q(x+ y)−Q(x)−Q(y)] .

Hence, if ϕ preserves Q, then it also preserves σ.

b) ⇒ (c) If ϕ preserves σ, then

xtAy= σ(x,y) = σ(ϕ(x),ϕ(y)) = xt C tACy for all x,y ∈ Rn.

It follows that A= C tAC . (In order to extract the entries in position (i, j) look at the i-th and j-th standard basis
vector for x and y, respectively.)

c) ⇒ (a) If A= C tAC , then Q(ϕ(x)) = xt C tACx= xtAx=Q(x).

Exercise T4 (Diagonalisability of bilinear forms)
Let the bilinear forms σ1 and σ2 on R3 be defined by the matrices

A1 =







0 0 2
0 3 0
2 0 0






, A2 =







0 1 0
1 0 1
0 1 0







with respect to the standard basis of R3.

(a) Is σ1 or σ2 degenerate?

(b) Determine for i = 1, 2 an orthonormal basis of R3 with respect to which the matrix of σi is diagonal.

(c) What are the signatures of σ1 and σ2? Are they positive definite? Is there any plane of symmetry of the "unit
surfaces" or any invariance under translation?

Solution:

a) σ1 is non degenerate since A1 has rank 3, and σ2 is degenerate since A2 has rank 2.

b) We determine an orthonormal basis Bi of eigenvectors for each of the matrices Ai . These eigenvectors form the
columns of a transformation matrix Ci . Then ¹σiº

Bi = Ci
tAiCi is the matrix of σi in this basis and, by Proposition

3.2.9 (Ai is symmetric), ¹σiº
Bi is diagonal.

For σ1: The eigenvalues of A1 are given by

0= det(A1 −λE) =−(3−λ)(2−λ)(2+λ),

hence they are 3, 2, and −2. We determine now the eigenvectors:

For λ= 3:

ker(A1 − 3E) = span(v1), where v1 =







0
1
0






.
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For λ= 2:

ker(A1 − E) = span(v2), where v2 =







1p
2

0
1p
2






.

For λ=−2:

ker(A1 + E) = span(v3), where v3 =







− 1p
2

0
1p
2






.

Then B1 = (v1,v2,v3) and ¹σ1º
B1 =







3 0 0
0 2 0
0 0 −2






.

For σ2: The eigenvalues of A1 are given by

0= det(A1 −λE) = λ(2−λ2),

hence they are 0,
p

2, and −
p

2. We determine now the eigenvectors:

For λ= 0:

ker(A1) = span(v1), where v1 =







− 1p
2

0
1p
2






.

For λ=
p

2:

ker(A1 −
p

2E) = span(v2), where v2 =









1
2p
2

2
1
2









.

For λ=−
p

2:

ker(A1 +
p

2E) = span(v3), where v3 =









1
2

−
p

2
2

1
2









.

Then B2 = (v1,v2,v3) and ¹σ2º
B2 =







0 0 0
0
p

2 0
0 0 −

p
2






.

c) The signatures are (+,+,−) and (+,−, 0) respectively. Neither σ1 nor σ2 is positive definite. For σ1 and σ2, each
span(vi)⊥ is a plane of symmetry of the "unit surfaces". Moreover the "unit surface" of σ2 is invariant by translation
along the corresponding span(v1).
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