Linear Algebra II Tutorial Sheet no. 12

TECHNISCHE UNIVERSITÄT DARMSTADT

June 27, 2011

Summer term 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise T1 (Warm-up)

Consider a symmetric bilinear form σ in a finite-dimensional euclidean vector space $(V, \langle \cdot, \cdot \rangle)$. Suppose σ has a diagonal representation w.r.t. basis *B*.

(a) Show that if *B* consists of pairwise orthogonal basis vectors, then, for every *c*, the subset

$$\mathbb{X}_c := \{ \mathbf{v} \in V : \sigma(\mathbf{v}, \mathbf{v}) = c \}$$

is invariant under reflections in the hyperplanes perpendicular to the basis vectors, span $(\mathbf{b}_i)^{\perp}$.

(b) Which property of B or σ guarantees that the sets \mathbb{X}_c also have non-trivial rotational symmetries?

Solution:

- a) Since σ has a diagonal representation w.r.t. basis *B*, for $i \neq j$ we have $\sigma(v_j, v_i) = 0$ for all $v_j \in \text{span}(\mathbf{b}_j)$ and $v_i \in \text{span}(\mathbf{b}_i)$. Now let $v = v_{-i} + v_i$ where $v_{-i} \in \text{span}(\mathbf{b}_i)^{\perp}$ and $\mathbf{v}_i \in \text{span}(\mathbf{b}_i)$. Then $\sigma(\mathbf{v}_{-i} \mathbf{v}_i, \mathbf{v}_{-i} \mathbf{v}_i) = \sigma(\mathbf{v}_{-i}, \mathbf{v}_{-i}) + \sigma(\mathbf{v}_i, \mathbf{v}_i) = \sigma(\mathbf{v}_{-i} + \mathbf{v}_i, \mathbf{v}_{-i} + \mathbf{v}_i)$ thanks to the remark above.
- b) Assume that *B* is an orthonormal basis. Let λ be a scalar and let *I* be such that $\sigma(\mathbf{b}_i, \mathbf{b}_i) = \lambda$ for all $i \in I$. Let $\varphi : V \to V$ be such that $i \notin I \Rightarrow \varphi(\mathbf{b}_i) = \mathbf{b}_i$ and such that $\varphi(\operatorname{span}\{\mathbf{b}_i | i \in I\}) \subseteq \operatorname{span}\{\mathbf{b}_i | i \in I\}$ and the restriction of φ to $\operatorname{span}\{\mathbf{b}_i | i \in I\}$ is isometric. On $\operatorname{span}\{\mathbf{b}_i | i \in I\}$, σ is a scalar multiple of the standard scalar product, so φ preserves σ on $\operatorname{span}\{\mathbf{b}_i | i \in I\}$. Now let $v_I \in \operatorname{span}\{\mathbf{b}_i | i \in I\}$ and $v_{-I} \in \operatorname{span}\{\mathbf{b}_i | i \notin I\}$. We have $\sigma(\varphi(\mathbf{v}_{-I} + \mathbf{v}_I), \varphi(\mathbf{v}_{-I} + \mathbf{v}_I)) = \sigma(\mathbf{v}_{-I} + \varphi(\mathbf{v}_I)) = \sigma(\mathbf{v}_{-I}, \mathbf{v}_{-I}) + \sigma(\varphi(\mathbf{v}_I), \varphi(\mathbf{v}_I)) = \sigma(\mathbf{v}_{-I}, \mathbf{v}_{-I}) + \sigma(\mathbf{v}_I, \mathbf{v}_I) = \sigma(\mathbf{v}_{-I} + \mathbf{v}_I, \mathbf{v}_{-I} + \mathbf{v}_I)$.

Exercise T2 (Antisymmetric/skew-symmetric bilinear forms)

A bilinear form $\sigma : V \times V \to \mathbb{R}$ is called antisymmetric if $\sigma(\mathbf{v}, \mathbf{w}) = -\sigma(\mathbf{w}, \mathbf{v})$ for all $\mathbf{v}, \mathbf{w} \in V$.

Prove that every bilinear form is the sum of a symmetric bilinear form and an antisymmetric bilinear form, and that decomposition is unique.

Hint (for uniqueness): think of direct sums.

Solution:

If $\sigma: V \times V \to \mathbb{R}$ is a bilinear form, then we define by

$$\sigma_s(\mathbf{v}, \mathbf{w}) := \frac{1}{2} \big(\sigma(\mathbf{v}, \mathbf{w}) + \sigma(\mathbf{w}, \mathbf{v}) \big) \quad \text{and} \quad \sigma_a(\mathbf{v}, \mathbf{w}) := \frac{1}{2} \big(\sigma(\mathbf{v}, \mathbf{w}) - \sigma(\mathbf{w}, \mathbf{v}) \big)$$

two bilinear forms $\sigma_s, \sigma_a : V \times V \to \mathbb{R}$. By construction, σ_s is symmetric and σ_a is antisymmetric. Furthermore, $\sigma = \sigma_s + \sigma_a$.

For uniqueness, let $\sigma_s + \sigma_a = \sigma'_s + \sigma'_a$ where σ_s and σ'_s are symmetric and σ_a and σ'_a are antisymmetric. Then $\sigma_s - \sigma'_s = \sigma_a - \sigma'_a$ is both symmetric and antisymmetric, and is therefore the null form.

Exercise T3 (Preservation of bilinear forms)

Let σ be a symmetric bilinear form on \mathbb{R}^n , represented by $A \in \mathbb{R}^{(n,n)}$ w.r.t. the standard basis. The function $Q : \mathbb{R}^n \to \mathbb{R}$ defined by $Q(\mathbf{x}) = \sigma(\mathbf{x}, \mathbf{x})$ is called the *associated quadratic form* of σ .

We say that an endomorphism φ of \mathbb{R}^n preserves the bilinear from σ if $\sigma(\varphi(\mathbf{x}), \varphi(\mathbf{y})) = \sigma(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Analogously, φ preserves the associated quadratic form Q if $Q(\varphi(\mathbf{x})) = Q(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.

Show that for an endomorphism φ represented by the matrix *C* w.r.t. the standard basis, the following are equivalent:

- (a) φ preserves Q;
- (b) φ preserves σ ;
- (c) $C^{t}AC = A$.

Solution:

a) \Rightarrow (b) Since

$$\sigma(\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y}) = \sigma(\mathbf{x}, \mathbf{x}) + 2\sigma(\mathbf{x}, \mathbf{y}) + \sigma(\mathbf{y}, \mathbf{y})$$

we have

$$\sigma(\mathbf{x}, \mathbf{y}) = \frac{1}{2} [Q(\mathbf{x} + \mathbf{y}) - Q(\mathbf{x}) - Q(\mathbf{y})].$$

Hence, if φ preserves *Q*, then it also preserves σ .

b) \Rightarrow (c) If φ preserves σ , then

$$\mathbf{x}^{t}A\mathbf{y} = \sigma(\mathbf{x}, \mathbf{y}) = \sigma(\varphi(\mathbf{x}), \varphi(\mathbf{y})) = \mathbf{x}^{t}C^{t}AC\mathbf{y}$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.

It follows that $A = C^{t}AC$. (In order to extract the entries in position (i, j) look at the *i*-th and *j*-th standard basis vector for **x** and **y**, respectively.)

c)
$$\Rightarrow$$
 (a) If $A = C^{t}AC$, then $Q(\varphi(\mathbf{x})) = \mathbf{x}^{t}C^{t}AC\mathbf{x} = \mathbf{x}^{t}A\mathbf{x} = Q(\mathbf{x})$.

Exercise T4 (Diagonalisability of bilinear forms)

Let the bilinear forms σ_1 and σ_2 on \mathbb{R}^3 be defined by the matrices

$$A_1 = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

with respect to the standard basis of \mathbb{R}^3 .

- (a) Is σ_1 or σ_2 degenerate?
- (b) Determine for i = 1, 2 an orthonormal basis of \mathbb{R}^3 with respect to which the matrix of σ_i is diagonal.
- (c) What are the signatures of σ_1 and σ_2 ? Are they positive definite? Is there any plane of symmetry of the "unit surfaces" or any invariance under translation?

Solution:

- a) σ_1 is non degenerate since A_1 has rank 3, and σ_2 is degenerate since A_2 has rank 2.
- b) We determine an orthonormal basis B_i of eigenvectors for each of the matrices A_i . These eigenvectors form the columns of a transformation matrix C_i . Then $[[\sigma_i]]^{B_i} = C_i^{\ t}A_iC_i$ is the matrix of σ_i in this basis and, by Proposition 3.2.9 (A_i is symmetric), $[[\sigma_i]]^{B_i}$ is diagonal.

For σ_1 : The eigenvalues of A_1 are given by

$$0 = \det(A_1 - \lambda E) = -(3 - \lambda)(2 - \lambda)(2 + \lambda),$$

hence they are 3, 2, and -2. We determine now the eigenvectors:

For $\lambda = 3$:

$$\operatorname{ker}(A_1 - 3E) = \operatorname{span}(\mathbf{v}_1), \quad \operatorname{where} \mathbf{v}_1 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

< >

For $\lambda = 2$:

$$\ker(A_1 - E) = \operatorname{span}(\mathbf{v}_2), \quad \text{where } \mathbf{v}_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}.$$

For $\lambda = -2$:

ker(
$$A_1 + E$$
) = span(\mathbf{v}_3), where $\mathbf{v}_3 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$.

Then
$$B_1 = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$$
 and $[[\sigma_1]]^{B_1} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$.

For σ_2 : The eigenvalues of A_1 are given by

$$0 = \det(A_1 - \lambda E) = \lambda(2 - \lambda^2),$$

hence they are 0, $\sqrt{2}$, and $-\sqrt{2}$. We determine now the eigenvectors: For $\lambda = 0$:

$$\ker(A_1) = \operatorname{span}(\mathbf{v}_1), \quad \text{where } \mathbf{v}_1 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}.$$

For $\lambda = \sqrt{2}$:

$$\ker(A_1 - \sqrt{2}E) = \operatorname{span}(\mathbf{v}_2), \quad \text{where } \mathbf{v}_2 = \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{2}}{2} \\ \frac{1}{2} \end{pmatrix}.$$

For $\lambda = -\sqrt{2}$:

$$\ker(A_1 + \sqrt{2}E) = \operatorname{span}(\mathbf{v}_3), \quad \text{where } \mathbf{v}_3 = \begin{pmatrix} \frac{1}{2} \\ -\frac{\sqrt{2}}{2} \\ \frac{1}{2} \end{pmatrix}.$$

Then
$$B_2 = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$$
 and $[[\sigma_2]]^{B_2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & -\sqrt{2} \end{pmatrix}$

c) The signatures are (+,+,-) and (+,-,0) respectively. Neither σ₁ nor σ₂ is positive definite. For σ₁ and σ₂, each span(**v**_i)[⊥] is a plane of symmetry of the "unit surfaces". Moreover the "unit surface" of σ₂ is invariant by translation along the corresponding span(**v**₁).