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Exercise T1 (Warm-up)
Consider a symmetric bilinear form ¢ in a finite-dimensional euclidean vector space (V, (-,-)). Suppose ¢ has a diagonal
representation w.r.t. basis B.

(a) Show that if B consists of pairwise orthogonal basis vectors, then, for every c, the subset

X, :={veV:co(v,v)=c}

is invariant under reflections in the hyperplanes perpendicular to the basis vectors, span(b;)*.
(b) Which property of B or o guarantees that the sets X, also have non-trivial rotational symmetries?

Solution:

a) Since o has a diagonal representation w.r.t. basis B, for i # j we have o(v;,v;) = 0 for all v; € span(b;) and
v; € span(b;). Now let v = v_; + v; where v_; € span(b;)* and v; € span(b;). Then o(v_; —v;,v_; —V;) =
o(v_,v_))+o(v;,v;) =0o(v_; +v;,v_; +v;) thanks to the remark above.

b) Assume that B is an orthonormal basis. Let A be a scalar and let I be such that o(b;,b;) = A for all i € I.
Let ¢ : V — V be such that i ¢ I = ¢(b;) = b; and such that p(span{b;|i € I}) C span{b;|i € I} and the
restriction of ¢ to span{b;|i € I} is isometric. On span{b;|i € I}, o is a scalar multiple of the standard scalar
product, so ¢ preserves ¢ on span{b;|i € I}. Now let v, € span{b;|i € I} and v_; € span{b;|i ¢ I}. We have
o(e(v_tv), p(v_+v))) = o(v_+e(v),v_+e(v)) = o(v_,v_)+o(e(v), p(v)) = o(v_,v_)+o(v,v) =
o(v_;+v,v_;+vp).

Exercise T2 (Antisymmetric/skew-symmetric bilinear forms)

A bilinear form ¢ : V x V — R is called antisymmetric if o(v,w) = —o(w,v) forallv,we V.

Prove that every bilinear form is the sum of a symmetric bilinear form and an antisymmetric bilinear form, and that
decomposition is unique.

Hint (for uniqueness): think of direct sums.

Solution:
If 0 : V xV — R is a bilinear form, then we define by

1 1
o,(v,w):= 3 (c(v,w)+0o(w,v)) and o,(v,w):= 5 (oc(v,w) — o(w,V))

two bilinear forms o,,0, : V x V — R. By construction, o, is symmetric and o, is antisymmetric. Furthermore,
o=0,+0,.

For uniqueness, let o, + 0, = 0 + 0/ where o, and o] are symmetric and o, and o/, are antisymmetric. Then
0 — 0. =0, — 0, is both symmetric and antisymmetric, and is therefore the null form.

Exercise T3 (Preservation of bilinear forms)

Let o be a symmetric bilinear form on R", represented by A € R™™ w.r.t. the standard basis. The function Q : R — R
defined by Q(x) = o(x,x) is called the associated quadratic form of o.

We say that an endomorphism ¢ of R" preserves the bilinear from o if o(p(x), ¢(y)) = o(x,y) for all x,y € R".
Analogously, ¢ preserves the associated quadratic form Q if Q(¢(x)) = Q(x) for all x € R".

Show that for an endomorphism ¢ represented by the matrix C w.r.t. the standard basis, the following are equivalent:

1



(a) ¢ preserves Q;
(b) ¢ preserves o;

(c) C'AC =A.

Solution:
a) = (b) Since
o(x+ty,x+y)=0(x,x)+20(x,y)+0o(y,y)

we have

ox,y) = 5100 +) ~ QG0 - Q.
Hence, if ¢ preserves Q, then it also preserves o.
b) = (c) If ¢ preserves o, then
x'Ay = o(x,y) = o(¢(x), p(y)) =x'C'ACy for all x,y € R".

It follows that A = C'AC. (In order to extract the entries in position (i, j) look at the i-th and j-th standard basis
vector for x and y, respectively.)

¢) = (a) If A= C'AC, then Q(p(x)) = x'C'ACx = x'Ax = Q(x).

Exercise T4 (Diagonalisability of bilinear forms)
Let the bilinear forms o; and o, on R® be defined by the matrices

A1:
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with respect to the standard basis of R3.
(a) Is o, or o, degenerate?
(b) Determine for i = 1,2 an orthonormal basis of R® with respect to which the matrix of o; is diagonal.

(c) What are the signatures of o; and o,? Are they positive definite? Is there any plane of symmetry of the "unit
surfaces" or any invariance under translation?

Solution:

a) o, is non degenerate since A; has rank 3, and o, is degenerate since A, has rank 2.

b) We determine an orthonormal basis B; of eigenvectors for each of the matrices A;. These eigenvectors form the
columns of a transformation matrix C;. Then [o,;]% = C;'A,C; is the matrix of o, in this basis and, by Proposition
3.2.9 (4, is symmetric), [o;]% is diagonal.

For o,: The eigenvalues of A; are given by
0=det(A; —AE)=—(3-A)(2—-A)(2+ 1),

hence they are 3, 2, and —2. We determine now the eigenvectors:

For A =3:

0
ker(A; — 3E) =span(v;), wherev; = |1
0




c)

For A = 2:
1
V2
ker(A; — E) =span(v,), wherev,=| 0
1
=
For A = —2:
1
V2
ker(A; + E) =span(v;), wherevs=| 0
1
V2
3 0 O
Then B, = (v;,V,,v3) and [o,;]®'=]0 2 0
0 0 -2
For 0,: The eigenvalues of A; are given by
0 =det(A, — AE) = A(2 — A?),
hence they are 0, v/2, and —+/2. We determine now the eigenvectors:
For A =0:
L
V2
ker(A,) =span(v;), wherev; =] O
1
=
For A = v/2:
1
2
ker(A; — V2E) = span(v,), wherev, = %
2
For A = —+/2:
1
2
ker(A; + v2E) = span(v;), where v5 = —?
1
2
0 0 0
Then B, = (v;,V,,v3) and [0,]%22=]0 V2 0
0 0 -2

The signatures are (+,+, —) and (+, —, 0) respectively. Neither o, nor o, is positive definite. For o, and o,, each
span(v;)* is a plane of symmetry of the "unit surfaces". Moreover the "unit surface" of o, is invariant by translation
along the corresponding span(v,).




