# Linear Algebra II Tutorial Sheet no. 12 

## Summer term 2011

Prof. Dr. Otto<br>Dr. Le Roux<br>Dr. Linshaw

June 27, 2011

## Exercise T1 (Warm-up)

Consider a symmetric bilinear form $\sigma$ in a finite-dimensional euclidean vector space ( $V,\langle\cdot, \cdot\rangle$ ). Suppose $\sigma$ has a diagonal representation w.r.t. basis $B$.
(a) Show that if $B$ consists of pairwise orthogonal basis vectors, then, for every $c$, the subset

$$
\mathbb{X}_{c}:=\{\mathbf{v} \in V: \sigma(\mathbf{v}, \mathbf{v})=c\}
$$

is invariant under reflections in the hyperplanes perpendicular to the basis vectors, $\operatorname{span}\left(\mathbf{b}_{i}\right)^{\perp}$.
(b) Which property of B or $\sigma$ guarantees that the sets $\mathbb{X}_{c}$ also have non-trivial rotational symmetries?

## Solution:

a) Since $\sigma$ has a diagonal representation w.r.t. basis $B$, for $i \neq j$ we have $\sigma\left(v_{j}, v_{i}\right)=0$ for all $v_{j} \in \operatorname{span}\left(\mathbf{b}_{j}\right)$ and $v_{i} \in \operatorname{span}\left(\mathbf{b}_{i}\right)$. Now let $v=v_{-i}+v_{i}$ where $v_{-i} \in \operatorname{span}\left(\mathbf{b}_{i}\right)^{\perp}$ and $\mathbf{v}_{i} \in \operatorname{span}\left(\mathbf{b}_{i}\right)$. Then $\sigma\left(\mathbf{v}_{-i}-\mathbf{v}_{i}, \mathbf{v}_{-i}-\mathbf{v}_{i}\right)=$ $\sigma\left(\mathbf{v}_{-i}, \mathbf{v}_{-i}\right)+\sigma\left(\mathbf{v}_{i}, \mathbf{v}_{i}\right)=\sigma\left(\mathbf{v}_{-i}+\mathbf{v}_{i}, \mathbf{v}_{-i}+\mathbf{v}_{i}\right)$ thanks to the remark above.
b) Assume that $B$ is an orthonormal basis. Let $\lambda$ be a scalar and let $I$ be such that $\sigma\left(\mathbf{b}_{i}, \mathbf{b}_{i}\right)=\lambda$ for all $i \in I$. Let $\varphi: V \rightarrow V$ be such that $i \notin I \Rightarrow \varphi\left(\mathbf{b}_{i}\right)=\mathbf{b}_{i}$ and such that $\varphi\left(\operatorname{span}\left\{\mathbf{b}_{i} \mid i \in I\right\}\right) \subseteq \operatorname{span}\left\{\mathbf{b}_{i} \mid i \in I\right\}$ and the restriction of $\varphi$ to $\operatorname{span}\left\{\mathbf{b}_{i} \mid i \in I\right\}$ is isometric. On $\operatorname{span}\left\{\mathbf{b}_{i} \mid i \in I\right\}, \sigma$ is a scalar multiple of the standard scalar product, so $\varphi$ preserves $\sigma$ on $\operatorname{span}\left\{\mathbf{b}_{i} \mid i \in I\right\}$. Now let $v_{I} \in \operatorname{span}\left\{\mathbf{b}_{i} \mid i \in I\right\}$ and $v_{-I} \in \operatorname{span}\left\{\mathbf{b}_{i} \mid i \notin I\right\}$. We have $\sigma\left(\varphi\left(\mathbf{v}_{-I}+\mathbf{v}_{I}\right), \varphi\left(\mathbf{v}_{-I}+\mathbf{v}_{I}\right)\right)=\sigma\left(\mathbf{v}_{-I}+\varphi\left(\mathbf{v}_{I}\right), \mathbf{v}_{-I}+\varphi\left(\mathbf{v}_{I}\right)\right)=\sigma\left(\mathbf{v}_{-I}, \mathbf{v}_{-I}\right)+\sigma\left(\varphi\left(\mathbf{v}_{I}\right), \varphi\left(\mathbf{v}_{I}\right)\right)=\sigma\left(\mathbf{v}_{-I}, \mathbf{v}_{-I}\right)+\sigma\left(\mathbf{v}_{I}, \mathbf{v}_{I}\right)=$ $\sigma\left(\mathbf{v}_{-I}+\mathbf{v}_{I}, \mathbf{v}_{-I}+\mathbf{v}_{I}\right)$.

Exercise T2 (Antisymmetric/skew-symmetric bilinear forms)
A bilinear form $\sigma: V \times V \rightarrow \mathbb{R}$ is called antisymmetric if $\sigma(\mathbf{v}, \mathbf{w})=-\sigma(\mathbf{w}, \mathbf{v})$ for all $\mathbf{v}, \mathbf{w} \in V$.
Prove that every bilinear form is the sum of a symmetric bilinear form and an antisymmetric bilinear form, and that decomposition is unique.

Hint (for uniqueness): think of direct sums.

## Solution:

If $\sigma: V \times V \rightarrow \mathbb{R}$ is a bilinear form, then we define by

$$
\sigma_{s}(\mathbf{v}, \mathbf{w}):=\frac{1}{2}(\sigma(\mathbf{v}, \mathbf{w})+\sigma(\mathbf{w}, \mathbf{v})) \quad \text { and } \quad \sigma_{a}(\mathbf{v}, \mathbf{w}):=\frac{1}{2}(\sigma(\mathbf{v}, \mathbf{w})-\sigma(\mathbf{w}, \mathbf{v}))
$$

two bilinear forms $\sigma_{s}, \sigma_{a}: V \times V \rightarrow \mathbb{R}$. By construction, $\sigma_{s}$ is symmetric and $\sigma_{a}$ is antisymmetric. Furthermore, $\sigma=\sigma_{s}+\sigma_{a}$.

For uniqueness, let $\sigma_{s}+\sigma_{a}=\sigma_{s}^{\prime}+\sigma_{a}^{\prime}$ where $\sigma_{s}$ and $\sigma_{s}^{\prime}$ are symmetric and $\sigma_{a}$ and $\sigma_{a}^{\prime}$ are antisymmetric. Then $\sigma_{s}-\sigma_{s}^{\prime}=\sigma_{a}-\sigma_{a}^{\prime}$ is both symmetric and antisymmetric, and is therefore the null form.

## Exercise T3 (Preservation of bilinear forms)

Let $\sigma$ be a symmetric bilinear form on $\mathbb{R}^{n}$, represented by $A \in \mathbb{R}^{(n, n)}$ w.r.t. the standard basis. The function $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $Q(\mathbf{x})=\sigma(\mathbf{x}, \mathbf{x})$ is called the associated quadratic form of $\sigma$.

We say that an endomorphism $\varphi$ of $\mathbb{R}^{n}$ preserves the bilinear from $\sigma$ if $\sigma(\varphi(\mathbf{x}), \varphi(\mathbf{y}))=\sigma(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Analogously, $\varphi$ preserves the associated quadratic form $Q$ if $Q(\varphi(\mathbf{x}))=Q(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

Show that for an endomorphism $\varphi$ represented by the matrix $C$ w.r.t. the standard basis, the following are equivalent:
(a) $\varphi$ preserves $Q$;
(b) $\varphi$ preserves $\sigma$;
(c) $C^{t} A C=A$.

## Solution:

a) $\Rightarrow$ (b) Since

$$
\sigma(\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y})=\sigma(\mathbf{x}, \mathbf{x})+2 \sigma(\mathbf{x}, \mathbf{y})+\sigma(\mathbf{y}, \mathbf{y})
$$

we have

$$
\sigma(\mathbf{x}, \mathbf{y})=\frac{1}{2}[Q(\mathbf{x}+\mathbf{y})-Q(\mathbf{x})-Q(\mathbf{y})]
$$

Hence, if $\varphi$ preserves $Q$, then it also preserves $\sigma$.
b) $\Rightarrow$ (c) If $\varphi$ preserves $\sigma$, then

$$
\mathbf{x}^{t} A \mathbf{y}=\sigma(\mathbf{x}, \mathbf{y})=\sigma(\varphi(\mathbf{x}), \varphi(\mathbf{y}))=\mathbf{x}^{t} C^{t} A C \mathbf{y} \quad \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

It follows that $A=C^{t} A C$. (In order to extract the entries in position $(i, j)$ look at the $i$-th and $j$-th standard basis vector for $\mathbf{x}$ and $\mathbf{y}$, respectively.)
c) $\Rightarrow$ (a) If $A=C^{t} A C$, then $Q(\varphi(\mathbf{x}))=\mathbf{x}^{t} C^{t} A C \mathbf{x}=\mathbf{x}^{t} A \mathbf{x}=Q(\mathbf{x})$.

## Exercise T4 (Diagonalisability of bilinear forms)

Let the bilinear forms $\sigma_{1}$ and $\sigma_{2}$ on $\mathbb{R}^{3}$ be defined by the matrices

$$
A_{1}=\left(\begin{array}{lll}
0 & 0 & 2 \\
0 & 3 & 0 \\
2 & 0 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

with respect to the standard basis of $\mathbb{R}^{3}$.
(a) Is $\sigma_{1}$ or $\sigma_{2}$ degenerate?
(b) Determine for $i=1,2$ an orthonormal basis of $\mathbb{R}^{3}$ with respect to which the matrix of $\sigma_{i}$ is diagonal.
(c) What are the signatures of $\sigma_{1}$ and $\sigma_{2}$ ? Are they positive definite? Is there any plane of symmetry of the "unit surfaces" or any invariance under translation?

## Solution:

a) $\sigma_{1}$ is non degenerate since $A_{1}$ has rank 3 , and $\sigma_{2}$ is degenerate since $A_{2}$ has rank 2 .
b) We determine an orthonormal basis $B_{i}$ of eigenvectors for each of the matrices $A_{i}$. These eigenvectors form the columns of a transformation matrix $C_{i}$. Then $\llbracket \sigma_{i} \rrbracket^{B_{i}}=C_{i}^{t} A_{i} C_{i}$ is the matrix of $\sigma_{i}$ in this basis and, by Proposition 3.2.9 $\left(A_{i}\right.$ is symmetric), $\llbracket \sigma_{i} \rrbracket^{B_{i}}$ is diagonal.

For $\sigma_{1}$ : The eigenvalues of $A_{1}$ are given by

$$
0=\operatorname{det}\left(A_{1}-\lambda E\right)=-(3-\lambda)(2-\lambda)(2+\lambda),
$$

hence they are 3,2 , and -2 . We determine now the eigenvectors:
For $\lambda=3$ :

$$
\operatorname{ker}\left(A_{1}-3 E\right)=\operatorname{span}\left(\mathbf{v}_{1}\right), \quad \text { where } \mathbf{v}_{1}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

For $\lambda=2$ :

$$
\operatorname{ker}\left(A_{1}-E\right)=\operatorname{span}\left(\mathbf{v}_{2}\right), \quad \text { where } \mathbf{v}_{2}=\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right)
$$

For $\lambda=-2$ :

$$
\operatorname{ker}\left(A_{1}+E\right)=\operatorname{span}\left(\mathbf{v}_{3}\right), \quad \text { where } \mathbf{v}_{3}=\left(\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right)
$$

Then $B_{1}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ and $\llbracket \sigma_{1} \rrbracket^{B_{1}}=\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2\end{array}\right)$.
For $\sigma_{2}$ : The eigenvalues of $A_{1}$ are given by

$$
0=\operatorname{det}\left(A_{1}-\lambda E\right)=\lambda\left(2-\lambda^{2}\right)
$$

hence they are $0, \sqrt{2}$, and $-\sqrt{2}$. We determine now the eigenvectors:
For $\lambda=0$ :

$$
\operatorname{ker}\left(A_{1}\right)=\operatorname{span}\left(\mathbf{v}_{1}\right), \quad \text { where } \mathbf{v}_{1}=\left(\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right)
$$

For $\lambda=\sqrt{2}$ :

$$
\operatorname{ker}\left(A_{1}-\sqrt{2} E\right)=\operatorname{span}\left(\mathbf{v}_{2}\right), \quad \text { where } \mathbf{v}_{2}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{\sqrt{2}}{2} \\
\frac{1}{2}
\end{array}\right)
$$

For $\lambda=-\sqrt{2}$ :

$$
\operatorname{ker}\left(A_{1}+\sqrt{2} E\right)=\operatorname{span}\left(\mathbf{v}_{3}\right), \quad \text { where } \mathbf{v}_{3}=\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{\sqrt{2}}{2} \\
\frac{1}{2}
\end{array}\right) .
$$

Then $B_{2}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ and $\llbracket \sigma_{2} \rrbracket^{B_{2}}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & -\sqrt{2}\end{array}\right)$.
c) The signatures are $(+,+,-)$ and $(+,-, 0)$ respectively. Neither $\sigma_{1}$ nor $\sigma_{2}$ is positive definite. For $\sigma_{1}$ and $\sigma_{2}$, each $\operatorname{span}\left(\mathbf{v}_{i}\right)^{\perp}$ is a plane of symmetry of the "unit surfaces". Moreover the "unit surface" of $\sigma_{2}$ is invariant by translation along the corresponding $\operatorname{span}\left(\mathbf{v}_{1}\right)$.

