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Exercise T1 (Warmup: Skew-hermitian and skew-symmetric matrices)
A matrix A∈ C(n,n) is called skew-hermitian if A+ = −A. Similarly, in the real case, A∈ R(n,n) is called skew-symmetric

if A=−At .

(a) Show that any skew-hermitian or skew-symmetric matrix is normal.

(b) Conclude that for any skew-hermitian matrix A, there exists a unitary matrix U such that UAU−1 = D, where D is
diagonal.

(c) Let A∈ C(n,n) be skew-hermitian. What can you say about the eigenvalues of A?

Solution:

a) If A+ =−A then AA+ =−A2 = A+A.

b) By Corollary 2.4.11 in the notes.

c) A+ = (U DU+)+ = U D+U+ on the one hand, and A+ = −A= −U DU+ on the other hand, so D = −D+. Therefore
the eigenvalues are pure imaginary.

Exercise T2 (Self-adjoint and normal endomorphisms)
Let V be a finite dimensional euclidean or unitary space and ϕ an endomorphism of V . Prove the following.

(a) If V is euclidean, then

ϕ is self-adjoint ⇔ V has an orthonormal basis consisting of eigenvectors of ϕ.

(b) If V is unitary, which one of the implications from (a) does not hold?

(c) If V is unitary, then

ϕ is normal ⇔ V has an orthonormal basis consisting of eigenvectors of ϕ.

Solution:

a) ⇒ is Proposition 2.4.5. ⇐ Let B be an orthonormal basis of V consisting of eigenvectors of ϕ. The matrix of ϕ
with respect to this basis is diagonal. Since any diagonal matrix is symmetric, it follows that ϕ is self-adjoint.

b) ⇒ holds in a unitary space, by Proposition 2.4.5. The converse does not hold: take ϕ = i · idV . Then V has
an orthonormal basis consisting of eigenvectors of ϕ, since every vector is an eigenvector of this map, so any
orthonormal basis of V will do. On the other hand, ϕ is not self-adjoint, since its adjoint is ϕ+ :=−i · idV .

c) ⇒ is Theorem 2.4.10.

⇐ Let B be an orthonormal basis consisting of eigenvectors of ϕ. As ¹ϕºBB is diagonal, ¹ϕ+ºBB = (¹ϕº
B
B)
+ is

diagonal, too. Since any two diagonal matrices commute, so do ϕ and ϕ+.
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Exercise T3 (Orthogonal diagonalisability)
Find an orthogonal matrix C such that the matrix

A=







2 1 1
1 2 1
1 1 2







is transformed into a diagonal matrix by C−1AC = C tAC . Which property of A guarantees that you can find such a C?
[Hint: The charactaristic polynomial is pA = (X − 1)2(X − 4)]

Solution:
The matrix A is real symmetric, and therefore is similar to a diagonal matrix using an orthogonal transformation matrix
C (Corollary 2.4.6 on page 77 of the notes).

To compute C , we first note that the characteristic polynomial is pA = (X − 1)2(X − 4). Thus the eigenvalues of A are
1 (with multiplicity 2) and 4.

For the eigenvalue λ= 4, we get the eigenspace: ker







−2 1 1
1 −2 1
1 1 −2






= span{







1
1
1






}.

For the eigenvalue λ= 1, we get the eigenspace: ker







1 1 1
1 1 1
1 1 1






= span{







−1
1
0






,







−1
0
1






}.

Since we look for an orthogonal transformation matrix C , we have to use Gram-Schmidt on the latter eigenspace:







−1
0
1






− 1

2







−1
1
0






= 1

2







−1
−1
2






.

After normalising the vectors, we obtain the following matrix C:

C =







1/
p

3 −1/
p

2 −1/
p

6
1/
p

3 1/
p

2 −1/
p

6
1/
p

3 0 2/
p

6






,

and C tAC = C−1AC =







4 0 0
0 1 0
0 0 1






.
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