Linear Algebra II Tutorial Sheet no. 11

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

June 20, 2011

Exercise T1 (Warmup: Skew-hermitian and skew-symmetric matrices)
A matrix $A \in \mathbb{C}^{(n, n)}$ is called skew-hermitian if $A^{+}=-A$. Similarly, in the real case, $A \in \mathbb{R}^{(n, n)}$ is called skew-symmetric if $A=-A^{t}$.
(a) Show that any skew-hermitian or skew-symmetric matrix is normal.
(b) Conclude that for any skew-hermitian matrix A, there exists a unitary matrix U such that $U A U^{-1}=D$, where D is diagonal.
(c) Let $A \in \mathbb{C}^{(n, n)}$ be skew-hermitian. What can you say about the eigenvalues of A ?

Solution:

a) If $A^{+}=-A$ then $A A^{+}=-A^{2}=A^{+} A$.
b) By Corollary 2.4.11 in the notes.
c) $A^{+}=\left(U D U^{+}\right)^{+}=U D^{+} U^{+}$on the one hand, and $A^{+}=-A=-U D U^{+}$on the other hand, so $D=-D^{+}$. Therefore the eigenvalues are pure imaginary.

Exercise T2 (Self-adjoint and normal endomorphisms)
Let V be a finite dimensional euclidean or unitary space and φ an endomorphism of V. Prove the following.
(a) If V is euclidean, then

$$
\varphi \text { is self-adjoint } \Leftrightarrow V \text { has an orthonormal basis consisting of eigenvectors of } \varphi \text {. }
$$

(b) If V is unitary, which one of the implications from (a) does not hold?
(c) If V is unitary, then

$$
\varphi \text { is normal } \Leftrightarrow V \text { has an orthonormal basis consisting of eigenvectors of } \varphi \text {. }
$$

Solution:

a) \Rightarrow is Proposition 2.4.5. \Leftarrow Let B be an orthonormal basis of V consisting of eigenvectors of φ. The matrix of φ with respect to this basis is diagonal. Since any diagonal matrix is symmetric, it follows that φ is self-adjoint.
b) \Rightarrow holds in a unitary space, by Proposition 2.4.5. The converse does not hold: take $\varphi=i \cdot i d_{V}$. Then V has an orthonormal basis consisting of eigenvectors of φ, since every vector is an eigenvector of this map, so any orthonormal basis of V will do. On the other hand, φ is not self-adjoint, since its adjoint is $\varphi^{+}:=-i \cdot i d_{V}$.
c) \Rightarrow is Theorem 2.4.10.
\Leftarrow Let B be an orthonormal basis consisting of eigenvectors of φ. As $\llbracket \varphi \rrbracket_{B}^{B}$ is diagonal, $\llbracket \varphi^{+} \rrbracket_{B}^{B}=\left(\llbracket \varphi \rrbracket_{B}^{B}\right)^{+}$is diagonal, too. Since any two diagonal matrices commute, so do φ and φ^{+}.

Exercise T3 (Orthogonal diagonalisability)

Find an orthogonal matrix C such that the matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

is transformed into a diagonal matrix by $C^{-1} A C=C^{t} A C$. Which property of A guarantees that you can find such a C ?
[Hint: The charactaristic polynomial is $p_{A}=(X-1)^{2}(X-4)$]

Solution:

The matrix A is real symmetric, and therefore is similar to a diagonal matrix using an orthogonal transformation matrix C (Corollary 2.4.6 on page 77 of the notes).

To compute C, we first note that the characteristic polynomial is $p_{A}=(X-1)^{2}(X-4)$. Thus the eigenvalues of A are 1 (with multiplicity 2) and 4.

For the eigenvalue $\lambda=4$, we get the eigenspace: $\operatorname{ker}\left(\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$.
For the eigenvalue $\lambda=1$, we get the eigenspace: $\operatorname{ker}\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)\right\}$.
Since we look for an orthogonal transformation matrix C, we have to use Gram-Schmidt on the latter eigenspace:

$$
\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right)
$$

After normalising the vectors, we obtain the following matrix C :

$$
C=\left(\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & 0 & 2 / \sqrt{6}
\end{array}\right)
$$

and $C^{t} A C=C^{-1} A C=\left(\begin{array}{lll}4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

