Linear Algebra II Tutorial Sheet no. 11

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011

June 20, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise T1 (Warmup: Skew-hermitian and skew-symmetric matrices)

A matrix $A \in \mathbb{C}^{(n,n)}$ is called skew-hermitian if $A^+ = -A$. Similarly, in the real case, $A \in \mathbb{R}^{(n,n)}$ is called skew-symmetric if $A = -A^t$.

- (a) Show that any skew-hermitian or skew-symmetric matrix is normal.
- (b) Conclude that for any skew-hermitian matrix *A*, there exists a unitary matrix *U* such that $UAU^{-1} = D$, where *D* is diagonal.
- (c) Let $A \in \mathbb{C}^{(n,n)}$ be skew-hermitian. What can you say about the eigenvalues of *A*?

Solution:

- a) If $A^+ = -A$ then $AA^+ = -A^2 = A^+A$.
- b) By Corollary 2.4.11 in the notes.
- c) $A^+ = (UDU^+)^+ = UD^+U^+$ on the one hand, and $A^+ = -A = -UDU^+$ on the other hand, so $D = -D^+$. Therefore the eigenvalues are pure imaginary.

Exercise T2 (Self-adjoint and normal endomorphisms)

Let V be a finite dimensional euclidean or unitary space and φ an endomorphism of V. Prove the following.

(a) If V is euclidean, then

 φ is self-adjoint \Leftrightarrow V has an orthonormal basis consisting of eigenvectors of φ .

- (b) If V is unitary, which one of the implications from (a) does not hold?
- (c) If V is unitary, then

 φ is normal \Leftrightarrow *V* has an orthonormal basis consisting of eigenvectors of φ .

Solution:

- a) \Rightarrow is Proposition 2.4.5. \leftarrow Let *B* be an orthonormal basis of *V* consisting of eigenvectors of φ . The matrix of φ with respect to this basis is diagonal. Since any diagonal matrix is symmetric, it follows that φ is self-adjoint.
- b) \Rightarrow holds in a unitary space, by Proposition 2.4.5. The converse does not hold: take $\varphi = i \cdot i d_V$. Then *V* has an orthonormal basis consisting of eigenvectors of φ , since every vector is an eigenvector of this map, so any orthonormal basis of *V* will do. On the other hand, φ is not self-adjoint, since its adjoint is $\varphi^+ := -i \cdot i d_V$.
- c) \Rightarrow is Theorem 2.4.10.

 \leftarrow Let *B* be an orthonormal basis consisting of eigenvectors of φ . As $\llbracket \varphi \rrbracket_B^B$ is diagonal, $\llbracket \varphi^+ \rrbracket_B^B = (\llbracket \varphi \rrbracket_B^B)^+$ is diagonal, too. Since any two diagonal matrices commute, so do φ and φ^+ .

Exercise T3 (Orthogonal diagonalisability)

Find an *orthogonal* matrix *C* such that the matrix

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

is transformed into a diagonal matrix by $C^{-1}AC = C^{t}AC$. Which property of *A* guarantees that you can find such a *C*? [Hint: The charactaristic polynomial is $p_{A} = (X - 1)^{2}(X - 4)$]

Solution:

The matrix A is real symmetric, and therefore is similar to a diagonal matrix using an orthogonal transformation matrix C (Corollary 2.4.6 on page 77 of the notes).

To compute *C*, we first note that the characteristic polynomial is $p_A = (X - 1)^2(X - 4)$. Thus the eigenvalues of *A* are 1 (with multiplicity 2) and 4.

For the eigenvalue
$$\lambda = 4$$
, we get the eigenspace: ker $\begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$.
For the eigenvalue $\lambda = 1$, we get the eigenspace: ker $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \operatorname{span}\left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}$

Since we look for an orthogonal transformation matrix *C*, we have to use Gram-Schmidt on the latter eigenspace:

$$\begin{pmatrix} -1\\0\\1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1\\1\\0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1\\-1\\2 \end{pmatrix}$$

After normalising the vectors, we obtain the following matrix *C*:

$$C = \begin{pmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{pmatrix},$$

and $C^{t}AC = C^{-1}AC = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.