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Exercise T1 (Warm-up)
Decide whether the following statements are true or false.

(a) Every orthogonal matrix is regular.

(b) Every regular matrix in R(n,n) is similar to an orthogonal matrix.

(c) O(n)⊆ R(n,n) forms a linear subspace.

(d) Orthogonal projections are orthogonal maps.

(e) Permutations matrices are orthogonal.

(f) For the orthogonal projections onto a subspace U and onto its orthogonal complement U⊥ in a finite-dimensional
euclidean/unitary space: πU⊥ = idV −πU .

(g) All matrix representations of orthogonal projections of Rn onto k-dimensional subspaces of the euclidean space Rn

are similar.

(h) All matrix representations of projections of Rn onto k-dimensional subspaces of Rn are similar via an orthogonal
transformation matrix.

Solution:

a) True, since its determinant is ±1.

b) False. The determinant is invariant under similarity transformations, but not every regular matrix has determinant
±1.

c) False. The null matrix is not orthogonal!

d) False, since (nontrivial) orthogonal projections are not regular.

e) True, since the set of columns of an n × n permutation matrix is precisely the standard basis for Rn, suitably
permuted.

f) True. This is clear from the definition of orthogonal projection.

g) True. Every (orthogonal) projection of rank k is represented by a diagonal matrix with k ones and n− k zeroes
on the diagonal (w.r.t. any basis obtained from bases of the image and the kernel, which in case of an orthogonal
projection can even be chosen to form an onb).

h) False. A non-orthogonal projection π, for which image(π) 6= (ker(π))⊥ cannot be isometrically related to an
orthogonal projection.

Exercise T2 (Self-adjoint maps and orthogonal projections)
Let (V, 〈, 〉) be a finite dimensional euclidean or unitary vector space. An endomorphism π : V → V is called self-adjoint

if 〈π(v),w〉 = 〈v,π(w)〉 for all v,w ∈ V (cf. Definition 2.4.1 in the notes). Suppose that π is a projection, i.e., π ◦π = π.
Show that π is self-adjoint if and only if π is an orthogonal projection.

Solution:
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(⇒) Assume that π is self-adjoint. Let v ∈ ker(π) and w ∈ Im(π). Then π(w) =w. Hence,

〈v,w〉= 〈v,π(w)〉= 〈π(v),w〉= 〈0,w〉= 0.

Therefore ker(π)⊥ Im(π) and π is an orthogonal projection, by exercise (E8.4)
(⇐)When π is an orthogonal projection, then it is the orthogonal projection onto U := Im(π). Decomposing v,w ∈ V

as v= v0 + v1 and w=w0 +w1 where v0,w0 ∈ U , v1,w1 ∈ U⊥, we have π(v) = v0 and π(w) =w0. Therefore

〈π(v),w〉= 〈v0,w0 +w1〉= 〈v0,w0〉= 〈v0 + v1,w0〉= 〈v,π(w)〉 .

Exercise T3 (Orthogonal maps)
(a) Show that an orthogonal map in R2 is either the identity, the reflection in the origin, a reflection in a line or

a rotation (the first two being special cases of the fourth). Conclude that every orthogonal map in R2 is the
composition of at most two reflections in a line.

(b) Show that an orthogonal map in R3 is either the identity, a reflection in a plane, a reflection in a line, the reflection
in the origin, a rotation about an axis or a rotation about an axis followed by a reflection in the plane orthogonal
to the axis (the first four being special cases of the last two). Conclude that every orthogonal map in R3 is the
composition of at most three reflections in a plane.
Extra: how about orthogonal maps in Rn?

[Hint: Take a look at Corollary 2.3.18 in the notes.]

Solution:

a) Corollary 2.3.18 gives the following matrix representations for an orthogonal map of R2 w.r.t. a suitably chosen
orthonormal basis:

�

1 0
0 1

�

,
�

−1 0
0 −1

�

,
�

1 0
0 −1

�

,
�

cosα − sinα
sinα cosα

�

.

So it is either the identity, the reflection in the origin, a reflection in a line or a rotation. Every rotation is the
composition of two reflections in a line (the rotation through an angle α is the composition of the reflection in
x-axis, followed by the reflection in the line that makes an angle 1

2
α with the x-axis). This implies that every

orthogonal map in R2 is the composition of at most two reflections in a line.

b) In the same manner, we obtain the following matrix representations for an orthogonal map of R3 w.r.t. a suitably
chosen orthonormal basis:







1 0 0
0 1 0
0 0 1






,







1 0 0
0 1 0
0 0 −1






,







1 0 0
0 −1 0
0 0 −1






,







−1 0 0
0 −1 0
0 0 −1






,







1 0 0
0 cosα − sinα
0 sinα cosα






,







−1 0 0
0 cosα − sinα
0 sinα cosα






.

So an orthogonal map of R3 is either the identity, a reflection in a plane, a reflection in a line, the reflection in the
origin, a rotation about an axis or a rotation about an axis followed by a reflection in the plane orthogonal to the
axis.

We see that every orthogonal map in R3 is the composition of at most three reflections in a plane. In general, any
orthogonal map in Rn is the composition of at most n reflections in (n− 1)-dimensional hyperplanes.

Exercise T4 (Orthogonal maps)
Set

A :=
�

1 2
2 1

�

.

Determine an orthogonal matrix P, for which P tAP is diagonal and compute P tAP.

Solution:
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The characteristic polynomial is pA = (1− λ)2 − 4 = λ2 − 2λ− 3 = (λ+ 1)(λ− 3), so the eigenvalues are λ1 = −1 and

λ2 = 3. As corresponding eigenvectors we find v1 =
�

1
−1

�

for λ1 and v2 =
�

1
1

�

for λ2. They are already orthogonal, so

we only need to normalise them to obtain the onb B = (v̂1, v̂2) = (
1p
2

�

1
−1

�

, 1p
2

�

1
1

�

). Then, writing S for the standard

basis S = (e1,e2), we get

P = ¹idºB
S =

1
p

2

�

1 1
−1 1

�

, P t = P−1 = ¹idºS
B =

1
p

2

�

1 −1
1 1

�

, P tAP =
�

−1 0
0 3

�

.
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