Linear Algebra II Tutorial Sheet no. 9

TECHNISCHE UNIVERSITAT DARMSTADT

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

June 6, 2011

Exercise T1 (Warm-up: Normal matrices)
Let $A \in \mathbb{C}^{(n, n)}$ be normal, that is, $A A^{+}=A^{+} A$. Show that if \mathbf{v} is an eigenvector of A with eigenvalue λ, then it is also an eigenvector of A^{+}with eigenvalue $\bar{\lambda}$.

Hint: consider $\left\langle A^{+} \mathbf{v}-\bar{\lambda} \mathbf{v}, A^{+} \mathbf{v}-\bar{\lambda} \mathbf{v}\right\rangle$.

Solution:

Assume that $A \mathbf{v}=\lambda \mathbf{v}$. Then

$$
\begin{aligned}
\left\langle A^{+} \mathbf{v}-\bar{\lambda} \mathbf{v}, A^{+} \mathbf{v}-\bar{\lambda} \mathbf{v}\right\rangle & =\left\langle A^{+} \mathbf{v}, A^{+} \mathbf{v}\right\rangle-\left\langle A^{+} \mathbf{v}, \bar{\lambda} \mathbf{v}\right\rangle-\left\langle\bar{\lambda} \mathbf{v}, A^{+} \mathbf{v}\right\rangle+\langle\bar{\lambda} \mathbf{v}, \bar{\lambda} \mathbf{v}\rangle \\
& =\left\langle\mathbf{v}, A A^{+} \mathbf{v}\right\rangle-\bar{\lambda}\langle\mathbf{v}, A \mathbf{v}\rangle-\lambda\left\langle\mathbf{v}, A^{+} \mathbf{v}\right\rangle+\bar{\lambda} \lambda\langle\mathbf{v}, \mathbf{v}\rangle \\
& =\left\langle\mathbf{v}, A^{+} A \mathbf{v}\right\rangle-\bar{\lambda}\langle\mathbf{v}, A \mathbf{v}\rangle-\lambda\langle A \mathbf{v}, \mathbf{v}\rangle+\bar{\lambda} \lambda\langle\mathbf{v}, \mathbf{v}\rangle \\
& =\lambda\left\langle\mathbf{v}, A^{+} \mathbf{v}\right\rangle-\bar{\lambda} \lambda\langle\mathbf{v}, \mathbf{v}\rangle-\lambda \bar{\lambda}\langle\mathbf{v}, \mathbf{v}\rangle+\bar{\lambda} \lambda\langle\mathbf{v}, \mathbf{v}\rangle \\
& =\lambda\langle A \mathbf{v}, \mathbf{v}\rangle-\bar{\lambda} \lambda\langle\mathbf{v}, \mathbf{v}\rangle \\
& =0 .
\end{aligned}
$$

Hence, $A^{+} \mathbf{v}-\bar{\lambda} \mathbf{v}=\mathbf{0}$.
Exercise T2 (Matrix groups)
(a) Show that the special orthogonal group $S O(n)$ is the subgroup of $O(n)$ consisting of those matrices that represent orientation preserving orthogonal maps in \mathbb{R}^{n} w.r.t. the standard orthonormal basis. (Compare Exercise 2.3.11 on page 74 of the notes.)
(b) Prove that $U(1)$ and $S O(2)$ are isomorphic as groups.
[Hint: use that $\mathbb{C} \backslash\{0\}$ is isomorphic to a certain subgroup of $\mathrm{GL}_{2}(\mathbb{R})$.]

Solution:

a) Let $A \in O(n)$ be an orthogonal matrix with column vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. Then A represents an orientation preserving map, iff the orthonormal basis $\left(A \mathbf{e}_{1}, \ldots, A \mathbf{e}_{n}\right)$ is positively oriented, iff $\operatorname{det}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)=1$, iff $\operatorname{det}(A)=1$.
b) Elements of $U(1)$ are essentially complex numbers $\lambda=a+b i$ with absolute value 1 , with the group structure being given by multiplication. Now consider the following map:

$$
\varphi: U(1) \rightarrow S O(2): a+b i \mapsto\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

This is well-defined, because $\operatorname{det}\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)=a^{2}+b^{2}=|a+b i|^{2}=1$ and furthermore it defines an injective group homomorphism.
So what remains to be shown is that φ is surjective. If $A \in O(2)$ has $\mathbf{a}_{1}=\binom{a}{b}$ as first column, then $|a+b i|=$ $\left\|\mathbf{a}_{1}\right\|=1$, because A is orthogonal. We claim that $A=\varphi(a+b i)$, i.e. that the second column vector \mathbf{a}_{2} of A is uniquely determined by \mathbf{a}_{1} (and therefore has to be $\binom{-b}{a}$). Now, \mathbf{a}_{2} has to be another unit vector in \mathbb{R}^{2} that
is orthogonal to $\binom{a}{b}$ (that leaves only two possibilities), and has to be such that ($\mathbf{a}_{1}, \mathbf{a}_{2}$) is positively oriented (which determines it completely).

Exercise T3 (Orientation preserving orthogonal maps)
(a) Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an orientation preserving orthogonal map. Show that, for any set of vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{n}$, we have

$$
\operatorname{det}\left(\varphi\left(\mathbf{a}_{1}\right), \ldots, \varphi\left(\mathbf{a}_{n}\right)\right)=\operatorname{det}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)
$$

(b) Show that any orientation preserving orthogonal map $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ preserves the cross product.

Hint: recall from Exercise (T15.2) from Linear Algebra I that the cross product of two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$ is the unique vector $\mathbf{a} \times \mathbf{b} \in \mathbb{R}^{3}$ such that $\langle\mathbf{a} \times \mathbf{b}, \mathbf{x}\rangle=\operatorname{det}(\mathbf{a}, \mathbf{b}, \mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{3}$.
(c) Let $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the orientation preserving orthogonal map with $\varphi(2,1,2)=(0,3,0)$ and $\varphi(0,-3,0)=$ $(2,-1,-2)$. Determine the matrix representation of φ with respect to the standard basis, and interpret φ geometrically.
Hint: use (b).

Solution:

a) Since φ is an orientation preserving orthogonal map, $\operatorname{det}(\varphi)=1$. Now let $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the unique map such that $\psi\left(\mathbf{e}_{i}\right)=\mathbf{a}_{i}$. We get that

$$
\begin{aligned}
\operatorname{det}\left(\varphi\left(\mathbf{a}_{1}\right), \ldots, \varphi\left(\mathbf{a}_{n}\right)\right) & =\operatorname{det}\left((\varphi \circ \psi)\left(\mathbf{e}_{1}\right), \ldots,(\varphi \circ \psi)\left(\mathbf{e}_{n}\right)\right) \\
& =\operatorname{det}(\varphi \circ \psi) \\
& =\operatorname{det}(\varphi) \operatorname{det}(\psi) \\
& =\operatorname{det}(\psi) \\
& =\operatorname{det}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right) .
\end{aligned}
$$

b) Since φ is an orientation preserving orthogonal map, we see that

$$
\begin{aligned}
\langle\varphi(\mathbf{a} \times \mathbf{b}), \varphi(\mathbf{x})\rangle=\langle\mathbf{a} \times \mathbf{b}, \mathbf{x}\rangle & =\operatorname{det}(\mathbf{a}, \mathbf{b}, \mathbf{x}) \\
& =\operatorname{det}(\varphi(\mathbf{a}), \varphi(\mathbf{b}), \varphi(\mathbf{x}))=\langle\varphi(\mathbf{a}) \times \varphi(\mathbf{b}), \varphi(\mathbf{x})\rangle
\end{aligned}
$$

for any $\mathbf{x} \in \mathbb{R}^{3}$. By surjectivity of φ and the fact that scalar products are non-degenerate, it follows that $\varphi(\mathbf{a} \times \mathbf{b})=$ $\varphi(\mathbf{a}) \times \varphi(\mathbf{b})$.
c) Notice that the length of the two vectors $\mathbf{b}_{1}=(2,1,2)$ and $\mathbf{b}_{2}=(0,-3,0)$ as well as their scalar product is preserved by φ. This is necessary for φ to be orthogonal. We also know from (b) that φ maps $\mathbf{b}_{3}=\mathbf{b}_{1} \times \mathbf{b}_{2}=$ $(6,0,-6)$ to $\varphi\left(\mathbf{b}_{1}\right) \times \varphi\left(\mathbf{b}_{2}\right)=(-6,0,-6)$.
Note that $B=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right)$ is a labelled basis for \mathbb{R}^{3}. If we write $E=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ for the standard basis of \mathbb{R}^{3} (as usual), we get

$$
\begin{array}{ll}
\llbracket \varphi \rrbracket_{E}^{B}=\left(\begin{array}{ccc}
0 & 2 & -6 \\
3 & -1 & 0 \\
0 & -2 & -6
\end{array}\right), & \llbracket i d \rrbracket_{E}^{B}=\left(\begin{array}{ccc}
2 & 0 & 6 \\
1 & -3 & 0 \\
2 & 0 & -6
\end{array}\right), \\
\llbracket i d \rrbracket_{B}^{E}=\left(\llbracket \mathrm{id} \rrbracket_{E}^{B}\right)^{-1}=\frac{1}{12}\left(\begin{array}{ccc}
3 & 0 & 3 \\
1 & -4 & 1 \\
1 & 0 & -1
\end{array}\right) \quad \text { and } \llbracket \varphi \rrbracket_{E}^{E}=\frac{1}{3}\left(\begin{array}{ccc}
-1 & -2 & 2 \\
2 & 1 & 2 \\
-2 & 2 & 1
\end{array}\right) .
\end{array}
$$

The characteristic polynomial of φ is $(\lambda-1)\left(-\lambda^{2}-\frac{2}{3} \lambda-1\right)$, which means that the eigenvalues are 1 and $\frac{1}{3}(-1 \pm$ $2 \sqrt{2} i$). Therefore φ is a rotation about an axis in \mathbb{R}^{3}.

Exercise T4 (Orthogonal maps)

(a) Show that an orthogonal map in \mathbb{R}^{2} is either the identity, the reflection in the origin, a reflection in a line or a rotation (the first two being special cases of the fourth). Conclude that every orthogonal map in \mathbb{R}^{2} is the composition of at most two reflections in a line.
(b) Show that an orthogonal map in \mathbb{R}^{3} is either the identity, a reflection in a plane, a reflection in a line, the reflection in the origin, a rotation about an axis or a rotation about an axis followed by a reflection in the plane orthogonal to the axis (the first four being special cases of the last two). Conclude that every orthogonal map in \mathbb{R}^{3} is the composition of at most three reflections in a plane.
Extra: how about orthogonal maps in \mathbb{R}^{n} ?
[Hint: Take a look at Corollary 2.3.18 in the notes.]

Solution:

a) Corollary 2.3 .18 gives the following matrix representations for an orthogonal map of \mathbb{R}^{2} w.r.t. a suitably chosen orthonormal basis:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
$$

So it is either the identity, the reflection in the origin, a reflection in a line or a rotation. Every rotation is the composition of two reflections in a line (the rotation through an angle α is the composition of the reflection in x-axis, followed by the reflection in the line that makes an angle $\frac{1}{2} \alpha$ with the x-axis). This implies that every orthogonal map in \mathbb{R}^{2} is the composition of at most two reflections in a line.
b) In the same manner, we obtain the following matrix representations for an orthogonal map of \mathbb{R}^{3} w.r.t. a suitably chosen orthonormal basis:

$$
\begin{array}{ccc}
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), & \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right), \quad\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right) .
\end{array}
$$

So an orthogonal map of \mathbb{R}^{3} is either the identity, a reflection in a plane, a reflection in a line, the reflection in the origin, a rotation about an axis or a rotation about an axis followed by a reflection in the plane orthogonal to the axis.
We see that every orthogonal map in \mathbb{R}^{3} is the composition of at most three reflections in a plane. In general, any orthogonal map in \mathbb{R}^{n} is the composition of at most n reflections in $(n-1)$-dimensional hyperplanes.

