Linear Algebra II Tutorial Sheet no. 9

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011 June 6, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise T1 (Warm-up: Normal matrices)

Let $A \in \mathbb{C}^{(n,n)}$ be normal, that is, $AA^+ = A^+A$. Show that if **v** is an eigenvector of *A* with eigenvalue λ , then it is also an eigenvector of A^+ with eigenvalue $\overline{\lambda}$.

Hint: consider $\langle A^+ \mathbf{v} - \overline{\lambda} \mathbf{v}, A^+ \mathbf{v} - \overline{\lambda} \mathbf{v} \rangle$.

Solution:

Assume that $A\mathbf{v} = \lambda \mathbf{v}$. Then

$$\begin{split} \langle A^{+}\mathbf{v} - \overline{\lambda}\mathbf{v}, A^{+}\mathbf{v} - \overline{\lambda}\mathbf{v} \rangle &= \langle A^{+}\mathbf{v}, A^{+}\mathbf{v} \rangle - \langle A^{+}\mathbf{v}, \overline{\lambda}\mathbf{v} \rangle - \langle \overline{\lambda}\mathbf{v}, A^{+}\mathbf{v} \rangle + \langle \overline{\lambda}\mathbf{v}, \overline{\lambda}\mathbf{v} \rangle \\ &= \langle \mathbf{v}, AA^{+}\mathbf{v} \rangle - \overline{\lambda} \langle \mathbf{v}, A\mathbf{v} \rangle - \lambda \langle \mathbf{v}, A^{+}\mathbf{v} \rangle + \overline{\lambda}\lambda \langle \mathbf{v}, \mathbf{v} \rangle \\ &= \langle \mathbf{v}, A^{+}A\mathbf{v} \rangle - \overline{\lambda} \langle \mathbf{v}, A\mathbf{v} \rangle - \lambda \langle A\mathbf{v}, \mathbf{v} \rangle + \overline{\lambda}\lambda \langle \mathbf{v}, \mathbf{v} \rangle \\ &= \lambda \langle \mathbf{v}, A^{+}\mathbf{v} \rangle - \overline{\lambda}\lambda \langle \mathbf{v}, \mathbf{v} \rangle - \lambda \overline{\lambda} \langle \mathbf{v}, \mathbf{v} \rangle + \overline{\lambda}\lambda \langle \mathbf{v}, \mathbf{v} \rangle \\ &= \lambda \langle A\mathbf{v}, \mathbf{v} \rangle - \overline{\lambda}\lambda \langle \mathbf{v}, \mathbf{v} \rangle \\ &= 0. \end{split}$$

Hence, $A^+\mathbf{v} - \overline{\lambda}\mathbf{v} = \mathbf{0}$.

Exercise T2 (Matrix groups)

(a) Show that the special orthogonal group SO(n) is the subgroup of O(n) consisting of those matrices that represent orientation preserving orthogonal maps in \mathbb{R}^n w.r.t. the standard orthonormal basis. (Compare Exercise 2.3.11 on page 74 of the notes.)

(b) Prove that U(1) and SO(2) are isomorphic as groups.
[Hint: use that C\{0} is isomorphic to a certain subgroup of GL₂(ℝ).]

Solution:

- a) Let $A \in O(n)$ be an orthogonal matrix with column vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$. Then A represents an orientation preserving map, iff the orthonormal basis $(A\mathbf{e}_1, \dots, A\mathbf{e}_n)$ is positively oriented, iff $\det(\mathbf{a}_1, \dots, \mathbf{a}_n) = 1$, iff $\det(A) = 1$.
- b) Elements of U(1) are essentially complex numbers $\lambda = a + bi$ with absolute value 1, with the group structure being given by multiplication. Now consider the following map:

$$\varphi: U(1) \to SO(2): a + bi \mapsto \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

This is well-defined, because det $\begin{pmatrix} a & -b \\ b & a \end{pmatrix} = a^2 + b^2 = |a + bi|^2 = 1$ and furthermore it defines an injective group homomorphism.

So what remains to be shown is that φ is surjective. If $A \in O(2)$ has $\mathbf{a}_1 = \begin{pmatrix} a \\ b \end{pmatrix}$ as first column, then $|a + bi| = ||\mathbf{a}_1|| = 1$, because *A* is orthogonal. We claim that $A = \varphi(a + bi)$, i.e. that the second column vector \mathbf{a}_2 of *A* is uniquely determined by \mathbf{a}_1 (and therefore has to be $\begin{pmatrix} -b \\ a \end{pmatrix}$). Now, \mathbf{a}_2 has to be another unit vector in \mathbb{R}^2 that

is orthogonal to $\begin{pmatrix} a \\ b \end{pmatrix}$ (that leaves only two possibilities), and has to be such that $(\mathbf{a}_1, \mathbf{a}_2)$ is positively oriented (which determines it completely).

Exercise T3 (Orientation preserving orthogonal maps)

(a) Let $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ be an orientation preserving orthogonal map. Show that, for any set of vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathbb{R}^n$, we have

$$\det(\varphi(\mathbf{a}_1),\ldots,\varphi(\mathbf{a}_n)) = \det(\mathbf{a}_1,\ldots,\mathbf{a}_n).$$

- (b) Show that any orientation preserving orthogonal map φ : ℝ³ → ℝ³ preserves the cross product. *Hint:* recall from Exercise (T15.2) from Linear Algebra I that the cross product of two vectors a, b ∈ ℝ³ is the unique vector a × b ∈ ℝ³ such that ⟨a × b, x⟩ = det(a, b, x) for all x ∈ ℝ³.
- (c) Let φ : ℝ³ → ℝ³ be the orientation preserving orthogonal map with φ(2,1,2) = (0,3,0) and φ(0,-3,0) = (2,-1,-2). Determine the matrix representation of φ with respect to the standard basis, and interpret φ geometrically.
 - Hint: use (b).

Solution:

a) Since φ is an orientation preserving orthogonal map, $\det(\varphi) = 1$. Now let $\psi : \mathbb{R}^n \to \mathbb{R}^n$ be the unique map such that $\psi(\mathbf{e}_i) = \mathbf{a}_i$. We get that

$$det(\varphi(\mathbf{a}_1), \dots, \varphi(\mathbf{a}_n)) = det((\varphi \circ \psi)(\mathbf{e}_1), \dots, (\varphi \circ \psi)(\mathbf{e}_n))$$
$$= det(\varphi \circ \psi)$$
$$= det(\varphi) det(\psi)$$
$$= det(\psi)$$
$$= det(\mathbf{a}_1, \dots, \mathbf{a}_n).$$

b) Since φ is an orientation preserving orthogonal map, we see that

$$\langle \varphi(\mathbf{a} \times \mathbf{b}), \varphi(\mathbf{x}) \rangle = \langle \mathbf{a} \times \mathbf{b}, \mathbf{x} \rangle = \det(\mathbf{a}, \mathbf{b}, \mathbf{x})$$

= det(\varphi(\mathbf{a}), \varphi(\mathbf{b}), \varphi(\mathbf{x})) = \langle \varphi(\mathbf{a}) \times \varphi(\mathbf{b}), \varphi(\mathbf{x}) \rangle,

for any $\mathbf{x} \in \mathbb{R}^3$. By surjectivity of φ and the fact that scalar products are non-degenerate, it follows that $\varphi(\mathbf{a} \times \mathbf{b}) = \varphi(\mathbf{a}) \times \varphi(\mathbf{b})$.

c) Notice that the length of the two vectors **b**₁ = (2,1,2) and **b**₂ = (0,-3,0) as well as their scalar product is preserved by φ. This is necessary for φ to be orthogonal. We also know from (b) that φ maps **b**₃ = **b**₁ × **b**₂ = (6,0,-6) to φ(**b**₁) × φ(**b**₂) = (-6,0,-6).

Note that $B = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ is a labelled basis for \mathbb{R}^3 . If we write $E = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ for the standard basis of \mathbb{R}^3 (as usual), we get

$$\llbracket \varphi \rrbracket_{E}^{B} = \begin{pmatrix} 0 & 2 & -6 \\ 3 & -1 & 0 \\ 0 & -2 & -6 \end{pmatrix}, \qquad \llbracket \mathrm{id} \rrbracket_{E}^{B} = \begin{pmatrix} 2 & 0 & 6 \\ 1 & -3 & 0 \\ 2 & 0 & -6 \end{pmatrix},$$
$$\llbracket \mathrm{id} \rrbracket_{E}^{E} = (\llbracket \mathrm{id} \rrbracket_{E}^{B})^{-1} = \frac{1}{12} \begin{pmatrix} 3 & 0 & 3 \\ 1 & -4 & 1 \\ 1 & 0 & -1 \end{pmatrix} \quad \text{and} \quad \llbracket \varphi \rrbracket_{E}^{E} = \frac{1}{3} \begin{pmatrix} -1 & -2 & 2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{pmatrix}.$$

The characteristic polynomial of φ is $(\lambda - 1)(-\lambda^2 - \frac{2}{3}\lambda - 1)$, which means that the eigenvalues are 1 and $\frac{1}{3}(-1 \pm 2\sqrt{2}i)$. Therefore φ is a rotation about an axis in \mathbb{R}^3 .

Exercise T4 (Orthogonal maps)

- (a) Show that an orthogonal map in \mathbb{R}^2 is either the identity, the reflection in the origin, a reflection in a line or a rotation (the first two being special cases of the fourth). Conclude that every orthogonal map in \mathbb{R}^2 is the composition of at most two reflections in a line.
- (b) Show that an orthogonal map in ℝ³ is either the identity, a reflection in a plane, a reflection in a line, the reflection in the origin, a rotation about an axis or a rotation about an axis followed by a reflection in the plane orthogonal to the axis (the first four being special cases of the last two). Conclude that every orthogonal map in ℝ³ is the composition of at most three reflections in a plane. Extra: how about orthogonal maps in ℝⁿ?

[Hint: Take a look at Corollary 2.3.18 in the notes.]

Solution:

a) Corollary 2.3.18 gives the following matrix representations for an orthogonal map of \mathbb{R}^2 w.r.t. a suitably chosen orthonormal basis:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.$$

So it is either the identity, the reflection in the origin, a reflection in a line or a rotation. Every rotation is the composition of two reflections in a line (the rotation through an angle α is the composition of the reflection in *x*-axis, followed by the reflection in the line that makes an angle $\frac{1}{2}\alpha$ with the *x*-axis). This implies that every orthogonal map in \mathbb{R}^2 is the composition of at most two reflections in a line.

b) In the same manner, we obtain the following matrix representations for an orthogonal map of \mathbb{R}^3 w.r.t. a suitably chosen orthonormal basis:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}.$$

So an orthogonal map of \mathbb{R}^3 is either the identity, a reflection in a plane, a reflection in a line, the reflection in the origin, a rotation about an axis or a rotation about an axis followed by a reflection in the plane orthogonal to the axis.

We see that every orthogonal map in \mathbb{R}^3 is the composition of at most three reflections in a plane. In general, any orthogonal map in \mathbb{R}^n is the composition of at most *n* reflections in (n-1)-dimensional hyperplanes.