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Exercise T1 (Warm-up: Normal matrices)
Let A∈ C(n,n) be normal, that is, AA+ = A+A. Show that if v is an eigenvector of A with eigenvalue λ, then it is also an

eigenvector of A+ with eigenvalue λ.
Hint: consider 〈A+v−λv, A+v−λv〉.

Solution:
Assume that Av= λv. Then

〈A+v−λv, A+v−λv〉= 〈A+v, A+v〉 − 〈A+v,λv〉 − 〈λv, A+v〉+ 〈λv,λv〉

= 〈v, AA+v〉 −λ〈v, Av〉 −λ〈v, A+v〉+λλ〈v,v〉

= 〈v, A+Av〉 −λ〈v, Av〉 −λ〈Av,v〉+λλ〈v,v〉

= λ〈v, A+v〉 −λλ〈v,v〉 −λλ〈v,v〉+λλ〈v,v〉

= λ〈Av,v〉 −λλ〈v,v〉
= 0 .

Hence, A+v−λv= 0.

Exercise T2 (Matrix groups)
(a) Show that the special orthogonal group SO(n) is the subgroup of O(n) consisting of those matrices that represent

orientation preserving orthogonal maps in Rn w.r.t. the standard orthonormal basis. (Compare Exercise 2.3.11 on
page 74 of the notes.)

(b) Prove that U(1) and SO(2) are isomorphic as groups.
[Hint: use that C\{0} is isomorphic to a certain subgroup of GL2(R).]

Solution:

a) Let A∈ O(n) be an orthogonal matrix with column vectors a1, . . . ,an. Then A represents an orientation preserving
map, iff the orthonormal basis (Ae1, . . . , Aen) is positively oriented, iff det(a1, . . . ,an) = 1, iff det(A) = 1.

b) Elements of U(1) are essentially complex numbers λ = a + bi with absolute value 1, with the group structure
being given by multiplication. Now consider the following map:

ϕ : U(1)→ SO(2) : a+ bi 7→
�

a −b
b a

�

.

This is well-defined, because det
�

a −b
b a

�

= a2+ b2 = |a+ bi|2 = 1 and furthermore it defines an injective group

homomorphism.

So what remains to be shown is that ϕ is surjective. If A ∈ O(2) has a1 =
�

a
b

�

as first column, then |a + bi| =

‖a1‖ = 1, because A is orthogonal. We claim that A = ϕ(a + bi), i.e. that the second column vector a2 of A is

uniquely determined by a1 (and therefore has to be
�

−b
a

�

). Now, a2 has to be another unit vector in R2 that
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is orthogonal to
�

a
b

�

(that leaves only two possibilities), and has to be such that (a1,a2) is positively oriented

(which determines it completely).

Exercise T3 (Orientation preserving orthogonal maps)
(a) Let ϕ : Rn→ Rn be an orientation preserving orthogonal map. Show that, for any set of vectors a1, . . . ,an ∈ Rn, we

have

det(ϕ(a1), . . . ,ϕ(an)) = det(a1, . . . ,an) .

(b) Show that any orientation preserving orthogonal map ϕ : R3→ R3 preserves the cross product.
Hint: recall from Exercise (T15.2) from Linear Algebra I that the cross product of two vectors a,b ∈ R3 is the
unique vector a× b ∈ R3 such that 〈a× b,x〉= det(a,b,x) for all x ∈ R3.

(c) Let ϕ : R3 → R3 be the orientation preserving orthogonal map with ϕ(2, 1,2) = (0, 3,0) and ϕ(0,−3, 0) =
(2,−1,−2). Determine the matrix representation of ϕ with respect to the standard basis, and interpret ϕ geo-
metrically.
Hint: use (b).

Solution:

a) Since ϕ is an orientation preserving orthogonal map, det(ϕ) = 1. Now let ψ : Rn → Rn be the unique map such
that ψ(ei) = ai . We get that

det(ϕ(a1), . . . ,ϕ(an)) = det((ϕ ◦ψ)(e1), . . . , (ϕ ◦ψ)(en))

= det(ϕ ◦ψ)
= det(ϕ) det(ψ)

= det(ψ)

= det(a1, . . . ,an) .

b) Since ϕ is an orientation preserving orthogonal map, we see that

〈ϕ(a× b),ϕ(x)〉= 〈a× b,x〉= det(a,b,x)

= det(ϕ(a),ϕ(b),ϕ(x)) = 〈ϕ(a)×ϕ(b),ϕ(x)〉 ,

for any x ∈ R3. By surjectivity of ϕ and the fact that scalar products are non-degenerate, it follows that ϕ(a×b) =
ϕ(a)×ϕ(b).

c) Notice that the length of the two vectors b1 = (2,1, 2) and b2 = (0,−3, 0) as well as their scalar product is
preserved by ϕ. This is necessary for ϕ to be orthogonal. We also know from (b) that ϕ maps b3 = b1 × b2 =
(6, 0,−6) to ϕ(b1)×ϕ(b2) = (−6,0,−6).

Note that B = (b1,b2,b3) is a labelled basis for R3. If we write E = (e1,e2,e3) for the standard basis of R3 (as
usual), we get

¹ϕºB
E =







0 2 −6
3 −1 0
0 −2 −6






, ¹idºB

E =







2 0 6
1 −3 0
2 0 −6






,

¹idºE
B = (¹idºB

E)
−1 =

1

12







3 0 3
1 −4 1
1 0 −1






and ¹ϕºE

E =
1

3







−1 −2 2
2 1 2
−2 2 1






.

The characteristic polynomial of ϕ is (λ− 1)(−λ2− 2
3
λ− 1), which means that the eigenvalues are 1 and 1

3
(−1±

2
p

2i). Therefore ϕ is a rotation about an axis in R3.
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Exercise T4 (Orthogonal maps)
(a) Show that an orthogonal map in R2 is either the identity, the reflection in the origin, a reflection in a line or

a rotation (the first two being special cases of the fourth). Conclude that every orthogonal map in R2 is the
composition of at most two reflections in a line.

(b) Show that an orthogonal map in R3 is either the identity, a reflection in a plane, a reflection in a line, the reflection
in the origin, a rotation about an axis or a rotation about an axis followed by a reflection in the plane orthogonal
to the axis (the first four being special cases of the last two). Conclude that every orthogonal map in R3 is the
composition of at most three reflections in a plane.
Extra: how about orthogonal maps in Rn?

[Hint: Take a look at Corollary 2.3.18 in the notes.]

Solution:

a) Corollary 2.3.18 gives the following matrix representations for an orthogonal map of R2 w.r.t. a suitably chosen
orthonormal basis:

�

1 0
0 1

�

,
�

−1 0
0 −1

�

,
�

1 0
0 −1

�

,
�

cosα − sinα
sinα cosα

�

.

So it is either the identity, the reflection in the origin, a reflection in a line or a rotation. Every rotation is the
composition of two reflections in a line (the rotation through an angle α is the composition of the reflection in
x-axis, followed by the reflection in the line that makes an angle 1

2
α with the x-axis). This implies that every

orthogonal map in R2 is the composition of at most two reflections in a line.

b) In the same manner, we obtain the following matrix representations for an orthogonal map of R3 w.r.t. a suitably
chosen orthonormal basis:







1 0 0
0 1 0
0 0 1






,







1 0 0
0 1 0
0 0 −1






,







1 0 0
0 −1 0
0 0 −1






,







−1 0 0
0 −1 0
0 0 −1






,







1 0 0
0 cosα − sinα
0 sinα cosα






,







−1 0 0
0 cosα − sinα
0 sinα cosα






.

So an orthogonal map of R3 is either the identity, a reflection in a plane, a reflection in a line, the reflection in the
origin, a rotation about an axis or a rotation about an axis followed by a reflection in the plane orthogonal to the
axis.

We see that every orthogonal map in R3 is the composition of at most three reflections in a plane. In general, any
orthogonal map in Rn is the composition of at most n reflections in (n− 1)-dimensional hyperplanes.
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