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Exercise T1 (Warm-up)
Let V be a vector space with basis B = (b1, . . . ,bn)

(a) Give a definition of non-degeneracy for bilinear forms on V , and show that
i. σ is non-degenerate iff ¹σºB is regular,

ii. σ is symmetric/hermitian iff ¹σºB is symmetric/self-adjoint.

(b) Check for consistency that the change-of-basis transformation for matrices for bilinear forms are such that regularity,
symmetry, self-adjointness are preserved.

(c) Let ≈ be the "similarity" of real/complex matrices as representations of the same (semi-)bilinear form. Which
real/complex n× n matrices exactly are ≈ equivalent to the n-dimensional unit matrix?

Solution:

a) σ is non-degenerate if the condition σ(v,w) = 0 for all w ∈ V implies that v= 0.

i. Let A be a regular representation of σ in some basis. Then σ(v, A−1v) = vtAA−1v > 0 for all non-null vector
v. Let A be a non-regular representation of σ in some basis. So At is also non regular, so let v 6= 0 be such
that Atv= 0. So σ(v,w) = vtAw= 0 for all w.

ii. We do it for the symmetric case, the Hermitian case is similar. By definition, the i j-th entry of ¹σºB is
σ(bi , b j). Since σ(bi , b j) = σ(b j , bi), it follows that ¹σºB is symmetric. Conversely, if ¹σºB is symmetric,
it follows that σ(v,w) = (wt

¹σºt
Bv)t = (σ(w,v))t = σ(w,v).

b) For C regular, A is regular iff C+AC is regular. If A is self-adjoint, (C+AC)+ = C+A+C++ = C+AC .

c) The matrices C+C where C is regular. These matrices are exactly the symmetric/self-adjoint matrices that are
positive definite. (Cf chapter 3.2.3 in the notes for the latter.) In other words, they are exactly the matrices that
represent a scalar product!

Exercise T2 (Orthogonal complements in R3)
For each of the following subspaces U in R3, find an orthonormal basis for U , extend this to an orthonormal basis for
R3, and then give an orthonormal basis for U⊥.

(a) U = {(x , y, z) | x + 2y + 3z = 0}.
(b) U = {(x , y, z) | x + y + z = 0 and x − y + z = 0}.

Solution:

a) U is a plane in R2. The two vectors 1p
5
(2,−1, 0) and 1p

70
(3,6,−5) constitute an orthonormal basis of U . We extend

this basis with 1p
14
(1,2, 3) to obtain an orthonormal basis of R3. Therefore 1p

14
(1, 2,3) forms an orthonormal basis

for U⊥.

b) The subspace U is a line. Its orthogonal complement will therefore be a plane. The vector 1p
2
(1,0,−1) forms

an orthonormal basis for U since it satisfies the equations of both planes. We extend this basis with the vec-
tors 1p

2
(1, 0,1) and (0,1, 0) to obtain an orthonormal basis of R3. Therefore 1p

2
(1,0, 1) and (0,1, 0) form an

orthonormal basis for U⊥.
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Exercise T3 (An orthonormal basis)
Let V := Pol2(R) be the R-vector space of all polynomial functions over R of degree at most 2. On this vector space

〈p1, p2〉 :=

1
∫

−1

p1(x) p2(x)dx

defines a scalar product, turning (V, 〈. , . 〉) into a euclidean space (see Section 2.2 on page 62 of the notes).
Determine an orthonormal basis of V .

Solution:
Obviously (p0, p1, p2), where pi(x) = x i is a basis of Pol2(R). Noting that

∫ 1

−1
f (x)dx = 0 for all odd functions f , we see

that p1 ⊥ p0, p2.
Using the Gram-Schmidt procedure (see Theorem 2.3.4 on page 65 of the notes) we get

p̂0 =
p0

‖p0‖
,

where ‖p0‖=
�

∫ 1

−1
1dx

�
1
2 =
p

2, so p̂0 =
p

2
2

. Further,

p̂1 =
p1 − u

‖p1 − u‖
,

where u= 〈p̂0, p1〉p̂0 = 0. This gives

p̂1 =
p1

‖p1‖
,

where ‖p1‖=
�

∫ 1

−1
x2 dx

�
1
2 =

p
6

3
, so p̂1 =

p
6

2
x .

In the next step we get

p̂2 =
p2 − u

‖p2 − u‖
,

where

u= 〈p̂0, p2)p̂0 + 〈p̂1, p2〉p̂1 =









1
∫

−1

p
2

2
x2 dx









p
2

2
+ 0=

1

3
,

and

‖p2 − u‖= ‖x2 −
1

3
‖=









1
∫

−1

�

x2 −
1

3

�2

dx









1
2

=
2
p

10

15
.

Hence

p̂2 =
3
p

10

4

�

x2 −
1

3

�

.

Now (p̂0, p̂1, p̂2) is an orthonormal basis.

Exercise T4 (Dual spaces)
Recall that for any F-vector space V , the set Hom(V,F) of linear maps V → F has again the structure of a vector space,

with vector addition and scalar multiplication being defined pointwise, turning it into what is called the dual space of V
(see Section 3.2.2 on page 87 of the notes of Linear Algebra I).

If V is a euclidean vector space, we have a map ϕV : V → Hom(V,R) with ϕV (w) ∈ Hom(V,R) for any w ∈ V defined
by

ϕV (w)(v) = 〈w,v〉, for all v ∈ V.

The aim of this exercise is to show that ϕV is an isomorphism if V is finite dimensional, but not necessarily if V is infinite
dimensional.
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(a) Show that ϕV is an injective linear map.

(b) Show that ϕV is an isomorphism if V is finite dimensional.

From now on, we consider the sequence space F (N,R) and define

V = { f ∈ F (N,R) : f (n) = 0 for all but finitely many n}.

(c) Show that 〈 f , g〉 =
∑

n∈N f (n)g(n) defines a scalar product on the subspace V of F (N,R), turning (V, 〈. , . 〉) into a
euclidean space. Check that 〈 f , g〉 is defined if f ∈ F (N,R) and g ∈ V , but not necessarily if f and g both belong
to F (N,R).

(d) Show that the map ψ :F (N,R)→ Hom(V,R) with ψ( f ) ∈ Hom(V,R) for any f ∈ F (N,R) defined by ψ( f )(g) =
〈 f , g〉 is an isomorphism of vector spaces. Conclude from this that ϕV , which is ψ restricted to V , is not.

Hint: use that the functions bn ∈ V (n ∈ N) defined by bn(i) = 1 if n = i and 0 otherwise, form an orthonormal
basis for V .

Solution:

a) That ϕV is linear follows from linearity of the scalar product in the first component in the euclidean case. If
ϕV (w) = ϕV (w′), then ϕV (w)(w−w′) = ϕV (w′)(w−w′), i.e. 〈w,w−w′〉= 〈w′,w−w′〉. From this it follows that
〈w−w′,w−w′〉= 0 and hence w=w′ by positive definiteness of the scalar product.

b) We only need to show that ϕV is surjective in case V is finite dimensional. Let γ ∈ Hom(V,F) and (v1, . . . ,vn) be
an orthonormal basis for V . We claim γ = ϕV (w) for w = γ(v1)v1 + γ(v2)v2 + . . .+ γ(vn)vn. Actually, this is an
immediate consequence of orthonormality of the basis (v1, . . . ,vn):

〈w,vi〉 = 〈γ(v1)v1 + γ(v2)v2 + . . .+ γ(vn)vn,vi〉
= γ(v1)〈v1,vi〉+ γ(v2)〈v2,vi〉+ . . .+ γ(vn)〈vn,vi〉
= γ(vi),

so ϕV (w)(vi) = γ(vi) for every basis vector vi , and therefore γV (w) = γ.

c) For simplicity, let us denote W :=F (N,R). For any f ∈W , let

S( f ) = {n ∈ N : f (n) 6= 0}

be the support of f . Then

V = { f ∈W : S( f ) is finite}.

Since S(0) = ;, S(λ f )⊆ S( f ) and S( f + g)⊆ S( f )∪ S(g), it is easy to see that V is a subspace of W .

In general, 〈 f , g〉 =
∑

n∈N f (n)g(n) does not converge for f , g ∈W (for example, if f and g are both constant 1),
but in case g ∈ V , we get that

∑

n∈N
f (n)g(n) =

∑

n∈S(g)

f (n)g(n)<∞, as S(g) is finite.

That 〈. , . 〉 defines a scalar product on V is then clear: it is linear in both components, symmetric and positive
definite.

d) Linearity of ψ is clear. It remains to show that it is bijective. Let us define for every n ∈ N,

bn : N→ R, bn(i) =

(

1 if n= i
0 otherwise.

Then bn is a unit vector in V for all n and it is easy to see that the bn are pairwise orthogonal, hence linearly
independent. Moreover, they span V , since

f =
∑

n∈S( f )

f (n)bn for any f ∈ V.
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Thus, B = (bn)n∈N is an orthonormal basis of V .

Let us define now χ : Hom(V,R)→W by

χ(γ)(n) = γ(bn) for all γ ∈ Hom(V,R), n ∈ N.

Then for any g ∈W , we get that

(χ ◦ψ)(g)(n) = χ(ψ(g))(n) =ψ(g)(bn) = 〈g,bn〉= g(n), so χ ◦ψ= idW .

Furthermore, for any γ ∈ Hom(V,R),

(ψ ◦χ)(γ)(bn) =ψ(χ(γ))(bn) = 〈χ(γ),bn〉= χ(γ)(n) = γ(bn) for all n ∈ N.

Since B = (bn)n∈N is a basis of V , we conclude that (ψ◦χ)(γ) = γ for all γ ∈ Hom(V,R), thereforeψ◦χ = idHom(V,R).

Thus, ψ : W → Hom(V,R) is an isomorphism of vector spaces. Since ϕV is the restriction of ψ to V and V is a
proper subspace of W , it follows that ϕV cannot be surjective.
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