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Exercise T1 (Warm-up)
Let V be a vector space with basis B = (b,,...,b,)

(a) Give a definition of non-degeneracy for bilinear forms on V, and show that
i. o is non-degenerate iff [0 ]® is regular,
ii. o is symmetric/hermitian iff [o]® is symmetric/self-adjoint.
(b) Check for consistency that the change-of-basis transformation for matrices for bilinear forms are such that regularity,
symmetry, self-adjointness are preserved.
(c) Let ~ be the "similarity" of real/complex matrices as representations of the same (semi-)bilinear form. Which
real/complex n X n matrices exactly are A~ equivalent to the n-dimensional unit matrix?

Solution:

a) o is non-degenerate if the condition o(v,w) = 0 for all w € V implies that v= 0.

i. Let A be a regular representation of o in some basis. Then o(v,A™'v) = v{AA~'v > 0 for all non-null vector
v. Let A be a non-regular representation of o in some basis. So A’ is also non regular, so let v # 0 be such
that A'v=0. So o(v,w) = v/Aw = 0 for all w.

ii. We do it for the symmetric case, the Hermitian case is similar. By definition, the ij-th entry of [o]® is
o(b;, bj). Since o(b;, b;) = o(b;, b;), it follows that [oT® is symmetric. Conversely, if [o]? is symmetric,
it follows that o(v,w) = (W' [o];v)" = (o(w,V))" = o(w,V).

b) For C regular, A is regular iff CTAC is regular. If A is self-adjoint, (CtAC)*t = CtATC*t = CtAC.

¢) The matrices CTC where C is regular. These matrices are exactly the symmetric/self-adjoint matrices that are
positive definite. (Cf chapter 3.2.3 in the notes for the latter.) In other words, they are exactly the matrices that
represent a scalar product!

Exercise T2 (Orthogonal complements in R®)
For each of the following subspaces U in R3, find an orthonormal basis for U, extend this to an orthonormal basis for
RR®, and then give an orthonormal basis for U+.

(@ U={(x,y,2) | x+2y +32=0}.
®) U={(x,y,2) | x+y+2z=0and x —y +2=0}.

Solution:

a) U is aplane in R%. The two vectors %(2, —1,0) and %(3, 6, —5) constitute an orthonormal basis of U. We extend
this basis with \/Lﬁ(l, 2, 3) to obtain an orthonormal basis of R3. Therefore ﬁ(l, 2, 3) forms an orthonormal basis
for U*.

b) The subspace U is a line. Its orthogonal complement will therefore be a plane. The vector %(1,0, —1) forms
an orthonormal basis for U since it satisfies the equations of both planes. We extend this basis with the vec-
tors %2(1,0, 1) and (0,1,0) to obtain an orthonormal basis of R3. Therefore \/%(1,0, 1) and (0,1,0) form an

orthonormal basis for U+,




Exercise T3 (An orthonormal basis)
Let V := Pol,(R) be the R-vector space of all polynomial functions over R of degree at most 2. On this vector space

1

(P1,p2) = f p1(x) pa(x)dx

-1

defines a scalar product, turning (V, (.,.)) into a euclidean space (see Section 2.2 on page 62 of the notes).
Determine an orthonormal basis of V.

Solution:
Obviously (py, p1, P2), where p;(x) = x! is a basis of Pol,(R). Noting that f_l ,f(x)dx =0 for all odd functions f, we see

that py L po, p5-
Using the Gram-Schmidt procedure (see Theorem 2.3.4 on page 65 of the notes) we get
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where ||p;|| = (f_lxz dx) 2= ‘{f, so Py = ‘/TEx.
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Now (py, P1,P2) is an orthonormal basis.

Exercise T4 (Dual spaces)

Recall that for any F-vector space V, the set Hom(V, F) of linear maps V — [ has again the structure of a vector space,
with vector addition and scalar multiplication being defined pointwise, turning it into what is called the dual space of V
(see Section 3.2.2 on page 87 of the notes of Linear Algebra I).

If V is a euclidean vector space, we have a map ¢y, : V — Hom(V,R) with ¢, (w) € Hom(V,R) for any w € V defined
by

py(W)(v) = (w, V), forallve V.

The aim of this exercise is to show that ¢y, is an isomorphism if V is finite dimensional, but not necessarily if V is infinite
dimensional.




(a)
(b)

Show that ¢y, is an injective linear map.

Show that ¢y, is an isomorphism if V is finite dimensional.

From now on, we consider the sequence space Z (N, R) and define

(0

@

V={f e Z(N,R): f(n)=0 for all but finitely many n}.

Show that (f, g) = ZnéNf(n)g(n) defines a scalar product on the subspace V of & (N, R), turning (V,{.,.)) into a
euclidean space. Check that (f, g) is defined if f € Z(N,R) and g € V, but not necessarily if f and g both belong
to Z(N,R).

Show that the map v : Z(N,R) — Hom(V,R) with 1(f) € Hom(V,R) for any f € Z(N,R) defined by y)(f)(g) =
(f, g) is an isomorphism of vector spaces. Conclude from this that ¢, which is 1) restricted to V, is not.

Hint: use that the functions b, € V (n € N) defined by b,(i) = 1 if n = i and 0 otherwise, form an orthonormal
basis for V.

Solution:

a)

b)

c)

d)

That ¢y, is linear follows from linearity of the scalar product in the first component in the euclidean case. If
oy (W) = py (W), then gy, (W)(w—w") = o, (W)(w—w), i.e. (w,w—w) = (W,w—w). From this it follows that
(w—w,w—w) =0 and hence w = w’ by positive definiteness of the scalar product.

We only need to show that ¢, is surjective in case V is finite dimensional. Let y € Hom(V,F) and (v4,...,V,) be
an orthonormal basis for V. We claim y = ¢, (w) for w = y(v{)v; + v(vy)vy + ... + y(v,)v,. Actually, this is an
immediate consequence of orthonormality of the basis (v;,...,v,):

(w,vi) = (r(vvi +7(Vo v + ..+ 7(v,)V,, V)
= Y(levlrvi) + Y(VZ)(V21V1‘> +...+ Y(Vn)(vn>vi>
= r(v),

so @y (w)(v;) = y(v;) for every basis vector v;, and therefore v, (w) = y.

For simplicity, let us denote W := (N, R). For any f € W, let
S(f)={neN: f(n)#0}

be the support of f. Then
V ={f e W :S(f) is finite}.
Since S(0) =0, S(Af) S S(f) and S(f + g) € S(f)US(g), it is easy to see that V is a subspace of W.

In general, (f,g) = ZneNf(n)g(n) does not converge for f,g € W (for example, if f and g are both constant 1),
but in case g € V, we get that

Zf(n)g(n) = Z f(n)g(n) < oo, asS(g)is finite.

neN nes(g)

That (.,.) defines a scalar product on V is then clear: it is linear in both components, symmetric and positive
definite.

Linearity of ¢ is clear. It remains to show that it is bijective. Let us define for every n € N,

1 ifn=1i

b,:N—-R, b,(i)= .
" O {O otherwise.

Then b, is a unit vector in V for all n and it is easy to see that the b, are pairwise orthogonal, hence linearly
independent. Moreover, they span V, since

f= Z f(n)b, foranyf eV.
nesS(f)




Thus, B = (b,,),.cy is an orthonormal basis of V.

Let us define now y : Hom(V,R) — W by
x(y)(n)=7v(b,) forall y€Hom(V,R),ne€N.
Then for any g € W, we get that
(o)) = x@(g)n)=4(g)b,)=(g,b,) =g(n), soyoy=idy.
Furthermore, for any y € Hom(V,R),

(Y o x)(y)(b,) = (x(¥)(b,) = (x(y),b,) = x(y)(n) =y(b,) foralln €N.

Since B = (b,,),cy is a basis of V, we conclude that (1o )(y) = y for all y € Hom(V, R), therefore yo y = idgom(vg)-

Thus, ¢ : W — Hom(V,R) is an isomorphism of vector spaces. Since ¢y is the restriction of 1 to V and V is a
proper subspace of W, it follows that ¢, cannot be surjective.




