# Linear Algebra II Tutorial Sheet no. 8 

Summer term 2011

Prof. Dr. Otto<br>Dr. Le Roux<br>Dr. Linshaw

## Exercise T1 (Warm-up)

Let $V$ be a vector space with basis $B=\left(b_{1}, \ldots, \mathbf{b}_{n}\right)$
(a) Give a definition of non-degeneracy for bilinear forms on $V$, and show that
i. $\sigma$ is non-degenerate iff $\llbracket \sigma \rrbracket^{B}$ is regular,
ii. $\sigma$ is symmetric/hermitian iff $\llbracket \sigma \rrbracket^{B}$ is symmetric/self-adjoint.
(b) Check for consistency that the change-of-basis transformation for matrices for bilinear forms are such that regularity, symmetry, self-adjointness are preserved.
(c) Let $\approx$ be the "similarity" of real/complex matrices as representations of the same (semi-)bilinear form. Which real/complex $n \times n$ matrices exactly are $\approx$ equivalent to the $n$-dimensional unit matrix?

## Solution:

a) $\sigma$ is non-degenerate if the condition $\sigma(\mathbf{v}, \mathbf{w})=0$ for all $\mathbf{w} \in V$ implies that $\mathbf{v}=\mathbf{0}$.
i. Let $A$ be a regular representation of $\sigma$ in some basis. Then $\sigma\left(\mathbf{v}, A^{-1} \mathbf{v}\right)=\mathbf{v}^{t} A A^{-1} \mathbf{v}>0$ for all non-null vector $\mathbf{v}$. Let $A$ be a non-regular representation of $\sigma$ in some basis. So $A^{t}$ is also non regular, so let $\mathbf{v} \neq \mathbf{0}$ be such that $A^{t} \mathbf{v}=\mathbf{0}$. So $\sigma(\mathbf{v}, \mathbf{w})=\mathbf{v}^{t} A \mathbf{w}=\mathbf{0}$ for all $\mathbf{w}$.
ii. We do it for the symmetric case, the Hermitian case is similar. By definition, the $i j$-th entry of $\llbracket \sigma \rrbracket^{B}$ is $\sigma\left(b_{i}, b_{j}\right)$. Since $\sigma\left(b_{i}, b_{j}\right)=\sigma\left(b_{j}, b_{i}\right)$, it follows that $\llbracket \sigma \rrbracket^{B}$ is symmetric. Conversely, if $\llbracket \sigma \rrbracket^{B}$ is symmetric, it follows that $\sigma(\mathbf{v}, \mathbf{w})=\left(\mathbf{w}^{t} \llbracket \sigma \rrbracket_{B}^{t} \mathbf{v}\right)^{t}=(\sigma(\mathbf{w}, \mathbf{v}))^{t}=\sigma(\mathbf{w}, \mathbf{v})$.
b) For $C$ regular, $A$ is regular iff $C^{+} A C$ is regular. If $A$ is self-adjoint, $\left(C^{+} A C\right)^{+}=C^{+} A^{+} C^{++}=C^{+} A C$.
c) The matrices $C^{+} C$ where $C$ is regular. These matrices are exactly the symmetric/self-adjoint matrices that are positive definite. (Cf chapter 3.2.3 in the notes for the latter.) In other words, they are exactly the matrices that represent a scalar product!

Exercise T2 (Orthogonal complements in $\mathbb{R}^{3}$ )
For each of the following subspaces $U$ in $\mathbb{R}^{3}$, find an orthonormal basis for $U$, extend this to an orthonormal basis for $\mathbb{R}^{3}$, and then give an orthonormal basis for $U^{\perp}$.
(a) $U=\{(x, y, z) \mid x+2 y+3 z=0\}$.
(b) $U=\{(x, y, z) \mid x+y+z=0$ and $x-y+z=0\}$.

## Solution:

a) $U$ is a plane in $\mathbb{R}^{2}$. The two vectors $\frac{1}{\sqrt{5}}(2,-1,0)$ and $\frac{1}{\sqrt{70}}(3,6,-5)$ constitute an orthonormal basis of $U$. We extend this basis with $\frac{1}{\sqrt{14}}(1,2,3)$ to obtain an orthonormal basis of $\mathbb{R}^{3}$. Therefore $\frac{1}{\sqrt{14}}(1,2,3)$ forms an orthonormal basis for $U^{\perp}$.
b) The subspace $U$ is a line. Its orthogonal complement will therefore be a plane. The vector $\frac{1}{\sqrt{2}}(1,0,-1)$ forms an orthonormal basis for $U$ since it satisfies the equations of both planes. We extend this basis with the vectors $\frac{1}{\sqrt{2}}(1,0,1)$ and $(0,1,0)$ to obtain an orthonormal basis of $\mathbb{R}^{3}$. Therefore $\frac{1}{\sqrt{2}}(1,0,1)$ and $(0,1,0)$ form an orthonormal basis for $U^{\perp}$.

## Exercise T3 (An orthonormal basis)

Let $V:=\operatorname{Pol}_{2}(\mathbb{R})$ be the $\mathbb{R}$-vector space of all polynomial functions over $\mathbb{R}$ of degree at most 2 . On this vector space

$$
\left\langle p_{1}, p_{2}\right\rangle:=\int_{-1}^{1} p_{1}(x) p_{2}(x) \mathrm{d} x
$$

defines a scalar product, turning $(V,\langle.,\rangle$.$) into a euclidean space (see Section 2.2$ on page 62 of the notes).
Determine an orthonormal basis of $V$.

## Solution:

Obviously $\left(p_{0}, p_{1}, p_{2}\right)$, where $p_{i}(x)=x^{i}$ is a basis of $\operatorname{Pol}_{2}(\mathbb{R})$. Noting that $\int_{-1}^{1} f(x) \mathrm{d} x=0$ for all odd functions $f$, we see that $p_{1} \perp p_{0}, p_{2}$.

Using the Gram-Schmidt procedure (see Theorem 2.3.4 on page 65 of the notes) we get

$$
\hat{p_{0}}=\frac{p_{0}}{\left\|p_{0}\right\|}
$$

where $\left\|p_{0}\right\|=\left(\int_{-1}^{1} 1 \mathrm{~d} x\right)^{\frac{1}{2}}=\sqrt{2}$, so $\hat{p_{0}}=\frac{\sqrt{2}}{2}$. Further,

$$
\hat{p_{1}}=\frac{p_{1}-u}{\left\|p_{1}-u\right\|},
$$

where $u=\left\langle\hat{p_{0}}, p_{1}\right\rangle \hat{p_{0}}=0$. This gives

$$
\hat{p_{1}}=\frac{p_{1}}{\left\|p_{1}\right\|}
$$

where $\left\|p_{1}\right\|=\left(\int_{-1}^{1} x^{2} \mathrm{~d} x\right)^{\frac{1}{2}}=\frac{\sqrt{6}}{3}$, so $\hat{p_{1}}=\frac{\sqrt{6}}{2} x$.
In the next step we get

$$
\hat{p_{2}}=\frac{p_{2}-u}{\left\|p_{2}-u\right\|},
$$

where

$$
u=\left\langle\hat{p_{0}}, p_{2}\right) \hat{p_{0}}+\left\langle\hat{p_{1}}, p_{2}\right\rangle \hat{p_{1}}=\left(\int_{-1}^{1} \frac{\sqrt{2}}{2} x^{2} \mathrm{~d} x\right) \frac{\sqrt{2}}{2}+0=\frac{1}{3},
$$

and

$$
\left\|p_{2}-u\right\|=\left\|x^{2}-\frac{1}{3}\right\|=\left(\int_{-1}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} \mathrm{~d} x\right)^{\frac{1}{2}}=\frac{2 \sqrt{10}}{15}
$$

Hence

$$
\hat{p_{2}}=\frac{3 \sqrt{10}}{4}\left(x^{2}-\frac{1}{3}\right) .
$$

Now ( $\hat{p_{0}}, \hat{p_{1}}, \hat{p_{2}}$ ) is an orthonormal basis.

## Exercise T4 (Dual spaces)

Recall that for any $\mathbb{F}$-vector space $V$, the set $\operatorname{Hom}(V, \mathbb{F})$ of linear maps $V \rightarrow \mathbb{F}$ has again the structure of a vector space, with vector addition and scalar multiplication being defined pointwise, turning it into what is called the dual space of $V$ (see Section 3.2.2 on page 87 of the notes of Linear Algebra I).

If $V$ is a euclidean vector space, we have a map $\varphi_{V}: V \rightarrow \operatorname{Hom}(V, \mathbb{R})$ with $\varphi_{V}(\mathbf{w}) \in \operatorname{Hom}(V, \mathbb{R})$ for any $\mathbf{w} \in V$ defined by

$$
\varphi_{V}(\mathbf{w})(\mathbf{v})=\langle\mathbf{w}, \mathbf{v}\rangle, \text { for all } \mathbf{v} \in V .
$$

The aim of this exercise is to show that $\varphi_{V}$ is an isomorphism if $V$ is finite dimensional, but not necessarily if $V$ is infinite dimensional.
(a) Show that $\varphi_{V}$ is an injective linear map.
(b) Show that $\varphi_{V}$ is an isomorphism if $V$ is finite dimensional.

From now on, we consider the sequence space $\mathscr{F}(\mathbb{N}, \mathbb{R})$ and define

$$
V=\{f \in \mathscr{F}(\mathbb{N}, \mathbb{R}): f(n)=0 \text { for all but finitely many } n\}
$$

(c) Show that $\langle f, g\rangle=\sum_{n \in \mathbb{N}} f(n) g(n)$ defines a scalar product on the subspace $V$ of $\mathscr{F}(\mathbb{N}, \mathbb{R})$, turning $(V,\langle.,\rangle$.$) into a$ euclidean space. Check that $\langle f, g\rangle$ is defined if $f \in \mathscr{F}(\mathbb{N}, \mathbb{R})$ and $g \in V$, but not necessarily if $f$ and $g$ both belong to $\mathscr{F}(\mathbb{N}, \mathbb{R})$.
(d) Show that the map $\psi: \mathscr{F}(\mathbb{N}, \mathbb{R}) \rightarrow \operatorname{Hom}(V, \mathbb{R})$ with $\psi(f) \in \operatorname{Hom}(V, \mathbb{R})$ for any $f \in \mathscr{F}(\mathbb{N}, \mathbb{R})$ defined by $\psi(f)(g)=$ $\langle f, g\rangle$ is an isomorphism of vector spaces. Conclude from this that $\varphi_{V}$, which is $\psi$ restricted to $V$, is not.

Hint: use that the functions $\mathbf{b}_{n} \in V(n \in \mathbb{N})$ defined by $\mathbf{b}_{n}(i)=1$ if $n=i$ and 0 otherwise, form an orthonormal basis for $V$.

## Solution:

a) That $\varphi_{V}$ is linear follows from linearity of the scalar product in the first component in the euclidean case. If $\varphi_{V}(\mathbf{w})=\varphi_{V}\left(\mathbf{w}^{\prime}\right)$, then $\varphi_{V}(\mathbf{w})\left(\mathbf{w}-\mathbf{w}^{\prime}\right)=\varphi_{V}\left(\mathbf{w}^{\prime}\right)\left(\mathbf{w}-\mathbf{w}^{\prime}\right)$, i.e. $\left\langle\mathbf{w}, \mathbf{w}-\mathbf{w}^{\prime}\right\rangle=\left\langle\mathbf{w}^{\prime}, \mathbf{w}-\mathbf{w}^{\prime}\right\rangle$. From this it follows that $\left\langle\mathbf{w}-\mathbf{w}^{\prime}, \mathbf{w}-\mathbf{w}^{\prime}\right\rangle=0$ and hence $\mathbf{w}=\mathbf{w}^{\prime}$ by positive definiteness of the scalar product.
b) We only need to show that $\varphi_{V}$ is surjective in case $V$ is finite dimensional. Let $\gamma \in \operatorname{Hom}(V, \mathbb{F})$ and $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ be an orthonormal basis for $V$. We claim $\gamma=\varphi_{V}(\mathbf{w})$ for $\mathbf{w}=\gamma\left(\mathbf{v}_{1}\right) \mathbf{v}_{1}+\gamma\left(\mathbf{v}_{2}\right) \mathbf{v}_{2}+\ldots+\gamma\left(\mathbf{v}_{n}\right) \mathbf{v}_{n}$. Actually, this is an immediate consequence of orthonormality of the basis $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ :

$$
\begin{aligned}
\left\langle\mathbf{w}, \mathbf{v}_{i}\right\rangle & =\left\langle\gamma\left(\mathbf{v}_{1}\right) \mathbf{v}_{1}+\gamma\left(\mathbf{v}_{2}\right) \mathbf{v}_{2}+\ldots+\gamma\left(\mathbf{v}_{n}\right) \mathbf{v}_{n}, \mathbf{v}_{i}\right\rangle \\
& =\gamma\left(\mathbf{v}_{1}\right)\left\langle\mathbf{v}_{1}, \mathbf{v}_{i}\right\rangle+\gamma\left(\mathbf{v}_{2}\right)\left\langle\mathbf{v}_{2}, \mathbf{v}_{i}\right\rangle+\ldots+\gamma\left(\mathbf{v}_{n}\right)\left\langle\mathbf{v}_{n}, \mathbf{v}_{i}\right\rangle \\
& =\gamma\left(\mathbf{v}_{i}\right),
\end{aligned}
$$

so $\varphi_{V}(\mathbf{w})\left(\mathbf{v}_{i}\right)=\gamma\left(\mathbf{v}_{i}\right)$ for every basis vector $\mathbf{v}_{i}$, and therefore $\gamma_{V}(\mathbf{w})=\gamma$.
c) For simplicity, let us denote $W:=\mathscr{F}(\mathbb{N}, \mathbb{R})$. For any $f \in W$, let

$$
S(f)=\{n \in \mathbb{N}: f(n) \neq 0\}
$$

be the support of $f$. Then

$$
V=\{f \in W: S(f) \text { is finite }\}
$$

Since $S(0)=\emptyset, S(\lambda f) \subseteq S(f)$ and $S(f+g) \subseteq S(f) \cup S(g)$, it is easy to see that $V$ is a subspace of $W$.
In general, $\langle f, g\rangle=\sum_{n \in \mathbb{N}} f(n) g(n)$ does not converge for $f, g \in W$ (for example, if $f$ and $g$ are both constant 1 ), but in case $g \in V$, we get that

$$
\sum_{n \in \mathbb{N}} f(n) g(n)=\sum_{n \in S(g)} f(n) g(n)<\infty, \quad \text { as } S(g) \text { is finite. }
$$

That $\langle.,$.$\rangle defines a scalar product on V$ is then clear: it is linear in both components, symmetric and positive definite.
d) Linearity of $\psi$ is clear. It remains to show that it is bijective. Let us define for every $n \in \mathbb{N}$,

$$
\mathbf{b}_{n}: \mathbb{N} \rightarrow \mathbb{R}, \quad \mathbf{b}_{n}(i)= \begin{cases}1 & \text { if } n=i \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathbf{b}_{n}$ is a unit vector in $V$ for all $n$ and it is easy to see that the $\mathbf{b}_{n}$ are pairwise orthogonal, hence linearly independent. Moreover, they span $V$, since

$$
f=\sum_{n \in S(f)} f(n) \mathbf{b}_{n} \quad \text { for any } f \in V
$$

Thus, $B=\left(\mathbf{b}_{n}\right)_{n \in \mathbb{N}}$ is an orthonormal basis of $V$.
Let us define now $\chi: \operatorname{Hom}(V, \mathbb{R}) \rightarrow W$ by

$$
\chi(\gamma)(n)=\gamma\left(\mathbf{b}_{n}\right) \quad \text { for all } \gamma \in \operatorname{Hom}(V, \mathbb{R}), n \in \mathbb{N}
$$

Then for any $g \in W$, we get that

$$
(\chi \circ \psi)(g)(n)=\chi(\psi(g))(n)=\psi(g)\left(\mathbf{b}_{n}\right)=\left\langle g, \mathbf{b}_{n}\right\rangle=g(n), \quad \text { so } \chi \circ \psi=\mathrm{id}_{W} .
$$

Furthermore, for any $\gamma \in \operatorname{Hom}(V, \mathbb{R})$,

$$
(\psi \circ \chi)(\gamma)\left(\mathbf{b}_{n}\right)=\psi(\chi(\gamma))\left(\mathbf{b}_{n}\right)=\left\langle\chi(\gamma), \mathbf{b}_{n}\right\rangle=\chi(\gamma)(n)=\gamma\left(\mathbf{b}_{n}\right) \text { for all } n \in \mathbb{N} .
$$

Since $B=\left(\mathbf{b}_{n}\right)_{n \in \mathbb{N}}$ is a basis of $V$, we conclude that $(\psi \circ \chi)(\gamma)=\gamma$ for all $\gamma \in \operatorname{Hom}(V, \mathbb{R})$, therefore $\psi \circ \chi=\operatorname{id}_{\operatorname{Hom}(V, \mathbb{R})}$. Thus, $\psi: W \rightarrow \operatorname{Hom}(V, \mathbb{R})$ is an isomorphism of vector spaces. Since $\varphi_{V}$ is the restriction of $\psi$ to $V$ and $V$ is a proper subspace of $W$, it follows that $\varphi_{V}$ cannot be surjective.

