Linear Algebra II Tutorial Sheet no. 7

TECHNISCHE UNIVERSITAT DARMSTADT

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

May 24, 2011

Exercise T1 (Warm up: bilinear form - examples)

Each of the following pictures shows the unit surface $\left\{v \in \mathbb{R}^{3}: \sigma(\mathbf{v}, \mathbf{v})=1\right\}$ for some bilinear form σ. Which of these forms is positive definite?
Which are non-degenerate?
For each of these bilinear forms, give an example of a matrix that represents that form.

Solution:

Picture 1 The bilinear form is non-degenerate and is not positive definite. An example of a matrix representing this form is $\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

Picture 2 The bilinear form is non-degenerate and positive definite. An example of a matrix representing this form is $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Picture 3 The bilinear form is degenerate and not positive definite. An example of a matrix representing this form is $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$.

Exercise T2 (Basis transformations for (semi-)bilinear forms)
Compare Exercise 2.1.3 on page 58 of the notes.
(a) Let σ be a bilinear form on an n-dimensional \mathbb{R}-vector space V, represented by the matrix A with respect to the basis $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$. If $B^{\prime}=\left(\mathbf{b}_{1}^{\prime}, \ldots, \mathbf{b}_{n}^{\prime}\right)$ is another basis for V, find an expression for the matrix $A^{\prime}=\llbracket \sigma \rrbracket^{B^{\prime}}$ in terms of A, the basis transformation matrices $C=\llbracket \operatorname{id}_{V} \rrbracket_{B^{\prime}}^{B}$ and $C^{-1}=\llbracket \operatorname{id}_{V} \rrbracket_{B}^{B^{\prime}}$ as well as their transposes as appropriate.
(b) Similarly for a semi-bilinear form σ of an n-dimensional \mathbb{C}-vector space V : if σ is represented by A w.r.t. a basis B, what is its representation A^{\prime} w.r.t. a basis B^{\prime} in terms of A, the basis transformations matrices, as well as their adjoints?
(c) Consider the following bilinear form $\sigma: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ on the vector space \mathbb{R}^{2} :

$$
\sigma\left(\binom{v_{1}}{v_{2}},\binom{w_{1}}{w_{2}}\right):=7 v_{1} w_{1}-5 v_{1} w_{2}-5 v_{2} w_{1}+4 v_{2} w_{2} .
$$

What is its representation with respect to the standard basis? Then compute its representation with respect to the basis $\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)=\left(\binom{1}{1},\binom{1}{2}\right)$ directly, as well as by using the formula obtained in part (a).
(d) Is the bilinear form σ in part (c) symmetric? Is it positive definite?

Solution:

a) $\sigma(\mathbf{u}, \mathbf{v})=\llbracket \mathbf{u} \rrbracket_{B}^{t} A \llbracket \mathbf{v} \rrbracket_{B}=\left(C^{-1} \llbracket \mathbf{u} \rrbracket_{B^{\prime}}\right)^{t} A C^{-1} \llbracket \mathbf{v} \rrbracket_{B^{\prime}}=\llbracket \mathbf{u} \rrbracket_{B^{\prime}}^{t}\left(C^{-1}\right)^{t} A C^{-1} \llbracket \mathbf{v} \rrbracket_{B^{\prime}}$, so $A^{\prime}=\left(C^{-1}\right)^{t} A C^{-1}$.
b) $\sigma(\mathbf{u}, \mathbf{v})=\llbracket \mathbf{u} \rrbracket_{B}^{+} A \llbracket \mathbf{v} \rrbracket_{B}=\left(C^{-1} \llbracket \mathbf{u} \rrbracket_{B^{\prime}}\right)^{+} A C^{-1} \llbracket \mathbf{v} \rrbracket_{B^{\prime}}=\llbracket \mathbf{u} \rrbracket_{B^{\prime}}^{+}\left(C^{-1}\right)^{+} A C^{-1} \llbracket \mathbf{v} \rrbracket_{B^{\prime}}$, so $A^{\prime}=\left(C^{-1}\right)^{+} A C^{-1}$.
c) Its representation with respect to the standard basis is $\left(\begin{array}{cc}7 & -5 \\ -5 & 4\end{array}\right)$, and with respect to $\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)$ is $\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$.
d) It is both: symmetry can be proved directly, or by observing that both matrix representations are symmetric. That it is positive definite follows from the second representation: if $\mathbf{v}=\lambda_{1} \mathbf{b}_{1}+\lambda_{2} \mathbf{b}_{2}$, then $\sigma(\mathbf{v}, \mathbf{v})=\lambda_{1}^{2}+3 \lambda_{2}^{2}$. So $\sigma(\mathbf{v}, \mathbf{v}) \geqslant 0$ and $\sigma(\mathbf{v}, \mathbf{v})=0$ iff $\lambda_{1}=\lambda_{2}=0$ iff $\mathbf{v}=0$.

Exercise T3

Let $\mathscr{F}(\mathbb{N}, \mathbb{C})$ denote the set of sequences $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ in \mathbb{C}.
(a) Show that given \mathbf{a}, \mathbf{b} in $\mathscr{F}(\mathbb{N}, \mathbb{C})$ for which $\sum_{i=0}^{\infty}\left|a_{i}\right|^{2}$ and $\sum_{i=0}^{\infty}\left|b_{i}\right|^{2}$ are convergent, $\sum_{i=0}^{\infty} \bar{a}_{i} b_{i}$ is absolutely convergent.
(b) Let $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ denote the set of sequences $\mathbf{a} \in \mathscr{F}(\mathbb{N}, \mathbb{C})$ for which $\sum_{i=0}^{\infty}\left|a_{i}\right|^{2}$ converges. Show that $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ forms a subspace of $\mathscr{F}(\mathbb{N}, \mathbb{C})$, and that the scalar product $\langle\mathbf{a}, \mathbf{b}\rangle=\sum_{i=0}^{\infty} \bar{a}_{i} b_{i}$ on $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ is unitary.
(c) Show that the "generalised standard basis vectors" consisting of sequences with a single 1 and zeroes elsewhere form an infinite family of pairwise orthogonal unit vectors in $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$, but they do not form a basis of $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$.
(d) (Cf Exercise H10.3 on the Christmas sheet LA I) Does $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ admit a countable basis?

Solution:

a) Fix $m>0$ and let $\mathbf{v} \in \mathbb{C}^{m+1}$ be the vector $\left(\left|a_{0}\right|, \ldots,\left|a_{m}\right|\right)$. Similarly, let $\mathbf{w}=\left(\left|b_{0}\right|, \ldots,\left|b_{m}\right|\right)$. By the Cauchy-Schwarz inequality in \mathbb{C}^{m+1} (Proposition 2.1.10, p. 59 of the lecture notes) we have

$$
\left(\sum_{i=0}^{m}\left|a_{i}\right|\left|b_{i}\right|\right)^{2} \leqslant \sum_{i=0}^{m}\left|a_{i}\right|^{2} \sum_{i=0}^{m}\left|b_{i}\right|^{2} .
$$

Since $\left|\bar{a}_{i} b_{i}\right|=\left|a_{i}\right|\left|b_{i}\right|$, this implies that

$$
\sum_{i=0}^{m}\left|\bar{a}_{i} b_{i}\right| \leqslant\left(\sum_{i=0}^{m}\left|a_{i}\right|^{2} \sum_{i=0}^{m}\left|b_{i}\right|^{2}\right)^{1 / 2}
$$

Taking the limit as m approaches ∞ yields the absolute convergence of $\sum_{i=0}^{\infty} \bar{a}_{i} b_{i}$.
b) Let $\mathbf{a}, \mathbf{b} \in \mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$. Clearly $\lambda \mathbf{a}$ lies in $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ for any $\lambda \in \mathbb{C}$. To see that $\mathbf{a}+\mathbf{b} \in \mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ as well, note that

$$
\sum_{i=0}^{\infty}\left|a_{i}+b_{i}\right|^{2}=\sum_{i=0}^{\infty}\left|a_{i}\right|^{2}+\sum_{i=0}^{\infty}\left|b_{i}\right|^{2}+\sum_{i=0}^{\infty} \bar{a}_{i} b_{i}+\sum_{i=0}^{\infty} \bar{b}_{i} a_{i}
$$

By Part (a) above, both $\sum_{i=0}^{\infty} \bar{a}_{i} b_{i}$ and $\sum_{i=0}^{\infty} \bar{b}_{i} a_{i}$ are absolutely convergent, so this sum converges. It follows that $\mathbf{a}+\mathbf{b} \in \mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$. Unitarity is clear from the fact that

$$
\langle\mathbf{b}, \mathbf{a}\rangle=\sum_{i=0}^{\infty} \bar{b}_{i} a_{i}=\overline{\sum_{i=0}^{\infty} \bar{a}_{i} b_{i}}=\overline{\langle\mathbf{a}, \mathbf{b}\rangle} .
$$

c) Let \mathbf{e}_{i} denote the sequence for which $a_{i}=1$ and $a_{j}=0$ for all $j \neq i$. The vector spaces spanned by $\left\{\mathbf{e}_{i}: i \geqslant 0\right\}$ consists of all sequences which possess only finitely many non-zero terms. (These are precisely the \mathbb{C}-linear combinations of the basis vectors). Clearly for $i \neq j$, we have $\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle=0$, so these vectors are pairwise orthogonal. To see that they do not form basis, note that $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ contains elements a which contain infinitely many nonzero elements. An example is the sequence a defined by $a_{i}=\frac{1}{2^{i}}$.
d) We claim that $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ does not admit a countable basis. Let $\left(\mathbf{v}^{0}, \mathbf{v}^{1}, \ldots\right)$ be any subset of $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ indexed by the natural numbers. Using a procedure similar to Cantor's diagonalization, we will construct an element $\mathbf{u} \in \mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ which cannot be expressed as a linear combination of the elements $\left(\mathbf{v}^{0}, \mathbf{v}^{1}, \ldots\right)$. This shows that this collection does not span $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$, and therefore is not a basis.

First, we define a partition of \mathbb{N} consisting of sets

$$
X_{n}:=\left\{n^{2}, n^{2}+1, \ldots,(n+1)^{2}-1\right\}, \quad n \geqslant 0 .
$$

Clearly X_{n} contains $2 n+1$ elements, and $\cup_{n \in \mathbb{N}} X_{n}=\mathbb{N}$ and $X_{i} \cap X_{j}=\emptyset$ for $i \neq j$. Given $\mathbf{u}=\left(u_{0}, u_{1}, \ldots\right)$ in $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$, we denote by $R_{n}(\mathbf{u})$ the restriction of \mathbf{u} to the subset $X_{n} \subseteq \mathbb{N}$. For restriction to make sense, we are regarding our sequence \mathbf{u} as a function from $\mathbb{N} \rightarrow \mathbb{C}$, and $R_{n}(\mathbf{u})$ consists of the finite ordered set $\left(u_{n^{2}}, u_{n^{2}+1}, \ldots, u_{(n+1)^{2}-1}\right)$. Since $\left\{X_{n}: n \in \mathbb{N}\right\}$ is a partition of \mathbb{N}, a sequence $\mathbf{u} \in \mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$ is specified by its restrictions $\left\{R_{n}(\mathbf{u}): n \in \mathbb{N}\right\}$. Conversely, a family of finite sequences $\tilde{u}_{n}=\left(u_{n^{2}}, u_{n^{2}+1}, \ldots, u_{(n+1)^{2}-1}\right)$ specifies an infinite sequence $\mathbf{u}=\left(u_{0}, u_{1}, \ldots\right)$, such that $R_{n}(\mathbf{u})=\tilde{u}_{n}$. If furthermore, we choose u_{i} so that $\left|u_{i}\right|<\frac{1}{2^{i}}$ for all i, the sequence \mathbf{u} will lie in $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$.
For each $n \in \mathbb{N}$, the collection $\left(R_{n}\left(\mathbf{v}^{1}\right), \ldots, R_{n}\left(\mathbf{v}^{n}\right)\right)$ spans a vector space of dimension at most n. Since the set of all sequences of the form $\tilde{u}_{n}=\left(u_{n^{2}}, u_{n^{2}+1}, \ldots, u_{(n+1)^{2}-1}\right)$ has dimension $2 n+1$, we can choose some \tilde{u}_{n} which does not lie in the span of $\left(R_{n}\left(\mathbf{v}^{1}\right), \ldots, R_{n}\left(\mathbf{v}^{n}\right)\right)$. Moreover, by rescaling \tilde{u}_{n} if necessary, we may assume that each $\left|u_{i}\right|<\frac{1}{2^{i}}$. Let $\mathbf{u}=\left(u_{0}, u_{1} \ldots\right)$ be the sequence such that $R_{n}(\mathbf{u})=\tilde{u}_{n}$, which clearly lies in $\mathscr{F}(\mathbb{N}, \mathbb{C})_{2}$. Finally, suppose that \mathbf{u} lies in the span of $\left(\mathbf{v}^{0}, \mathbf{v}^{1}, \ldots\right)$, so that $\mathbf{u}=\sum_{i=0}^{k} \lambda_{i} \mathbf{v}^{i}$ for some k. But this is impossible because $\tilde{u}_{k}=R_{k}(\mathbf{u})$ does not lie in the span of $\left(R_{k}\left(\mathbf{v}^{1}\right), \ldots, R_{k}\left(\mathbf{v}^{k}\right)\right)$, by construction.

Exercise T4

In \mathbb{R}^{3}, let ρ be the rotation through an angle of $\frac{\pi}{4}$ about the vector $(1,1,1)$. In this problem we will find the matrix representing ρ w.r.t. the standard basis of \mathbb{R}^{3}.
(a) Find an orthonormal basis $B=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right)$ of \mathbb{R}^{3} such that \mathbf{b}_{1} is a positive scalar multiple of $(1,1,1)$ and $\llbracket i d \rrbracket \rrbracket_{S}^{B}$ is an orthogonal matrix of determinant 1 .
(b) Write down the matrix representing ρ w.r.t. the basis B.
(c) Express the matrix representing ρ using $\llbracket \rho \rrbracket_{B}^{B}$ and $\llbracket \mathrm{id} \rrbracket_{S}^{B}$.

Solution:

a) We can take $\mathbf{b}_{1}=\frac{1}{\sqrt{3}}(1,1,1), \mathbf{b}_{2}=\frac{1}{\sqrt{6}}(-1,2,-1), \mathbf{b}_{3}=\frac{1}{\sqrt{2}}(-1,0,1)$ and

$$
\llbracket i d \rrbracket_{S}^{B}=\left(\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{6} & -1 \sqrt{2} \\
1 / \sqrt{3} & 2 / \sqrt{6} & 0 \\
1 / \sqrt{3} & -1 / \sqrt{6} & 1 \sqrt{2}
\end{array}\right) .
$$

b)

$$
\llbracket \rho \rrbracket_{B}^{B}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \sqrt{2} / 2 & -\sqrt{2} / 2 \\
0 & \sqrt{2} / 2 & \sqrt{2} / 2
\end{array}\right)
$$

c) $\llbracket \rho \rrbracket_{S}^{S}=\llbracket \mathrm{id} \rrbracket_{S}^{B} \llbracket \rho \rrbracket_{B}^{B} \llbracket \mathrm{id} \rrbracket_{B}^{S}$.

