Linear Algebra II Tutorial Sheet no. 7

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011 May 24, 2011

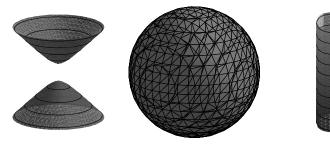
Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise T1 (Warm up: bilinear form - examples)

Each of the following pictures shows the unit surface $\{v \in \mathbb{R}^3 : \sigma(\mathbf{v}, \mathbf{v}) = 1\}$ for some bilinear form σ . Which of these forms is positive definite?

Which are non-degenerate?

For each of these bilinear forms, give an example of a matrix that represents that form.



Solution:

- Picture 1 The bilinear form is non-degenerate and is not positive definite. An example of a matrix representing this form is
 - $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

Picture 2 The bilinear form is non-degenerate and positive definite. An example of a matrix representing this form is (1, 0, 0)

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Picture 3 The bilinear form is degenerate and not positive definite. An example of a matrix representing this form is $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Exercise T2 (Basis transformations for (semi-)bilinear forms)

Compare Exercise 2.1.3 on page 58 of the notes.

- (a) Let σ be a bilinear form on an *n*-dimensional \mathbb{R} -vector space *V*, represented by the matrix *A* with respect to the basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$. If $B' = (\mathbf{b}'_1, \dots, \mathbf{b}'_n)$ is another basis for *V*, find an expression for the matrix $A' = \llbracket \sigma \rrbracket^{B'}$ in terms of *A*, the basis transformation matrices $C = \llbracket \operatorname{id}_V \rrbracket^B_{B'}$ and $C^{-1} = \llbracket \operatorname{id}_V \rrbracket^{B'}_B$ as well as their transposes as appropriate.
- (b) Similarly for a semi-bilinear form σ of an *n*-dimensional \mathbb{C} -vector space *V*: if σ is represented by *A* w.r.t. a basis *B*, what is its representation *A'* w.r.t. a basis *B'* in terms of *A*, the basis transformations matrices, as well as their adjoints?

(c) Consider the following bilinear form $\sigma : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ on the vector space \mathbb{R}^2 :

$$\sigma(\binom{v_1}{v_2}, \binom{w_1}{w_2}) := 7v_1w_1 - 5v_1w_2 - 5v_2w_1 + 4v_2w_2.$$

What is its representation with respect to the standard basis? Then compute its representation with respect to the basis $(\mathbf{b}_1, \mathbf{b}_2) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ directly, as well as by using the formula obtained in part (a).

(d) Is the bilinear form σ in part (c) symmetric? Is it positive definite?

Solution:

- a) $\sigma(\mathbf{u}, \mathbf{v}) = \llbracket \mathbf{u} \rrbracket_{B}^{t} A \llbracket \mathbf{v} \rrbracket_{B} = (C^{-1} \llbracket \mathbf{u} \rrbracket_{B'})^{t} A C^{-1} \llbracket \mathbf{v} \rrbracket_{B'} = \llbracket \mathbf{u} \rrbracket_{B'}^{t} (C^{-1})^{t} A C^{-1} \llbracket \mathbf{v} \rrbracket_{B'}, \text{ so } A' = (C^{-1})^{t} A C^{-1}.$
- b) $\sigma(\mathbf{u}, \mathbf{v}) = \llbracket \mathbf{u} \rrbracket_{B}^{+} A \llbracket \mathbf{v} \rrbracket_{B} = (C^{-1} \llbracket \mathbf{u} \rrbracket_{B'})^{+} A C^{-1} \llbracket \mathbf{v} \rrbracket_{B'} = \llbracket \mathbf{u} \rrbracket_{B'}^{+} (C^{-1})^{+} A C^{-1} \llbracket \mathbf{v} \rrbracket_{B'}, \text{ so } A' = (C^{-1})^{+} A C^{-1}.$
- c) Its representation with respect to the standard basis is $\begin{pmatrix} 7 & -5 \\ -5 & 4 \end{pmatrix}$, and with respect to $(\mathbf{b}_1, \mathbf{b}_2)$ is $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$.
- d) It is both: symmetry can be proved directly, or by observing that both matrix representations are symmetric. That it is positive definite follows from the second representation: if **v** = λ₁**b**₁ + λ₂**b**₂, then σ(**v**, **v**) = λ₁² + 3λ₂². So σ(**v**, **v**) ≥ 0 and σ(**v**, **v**) = 0 iff λ₁ = λ₂ = 0 iff **v** = 0.

Exercise T3

Let $\mathscr{F}(\mathbb{N}, \mathbb{C})$ denote the set of sequences $\mathbf{a} = (a_0, a_1, a_2, ...)$ in \mathbb{C} .

- (a) Show that given **a**, **b** in $\mathscr{F}(\mathbb{N}, \mathbb{C})$ for which $\sum_{i=0}^{\infty} |a_i|^2$ and $\sum_{i=0}^{\infty} |b_i|^2$ are convergent, $\sum_{i=0}^{\infty} \bar{a}_i b_i$ is absolutely convergent.
- (b) Let $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$ denote the set of sequences $\mathbf{a} \in \mathscr{F}(\mathbb{N}, \mathbb{C})$ for which $\sum_{i=0}^{\infty} |a_i|^2$ converges. Show that $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$ forms a subspace of $\mathscr{F}(\mathbb{N}, \mathbb{C})$, and that the scalar product $\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i=0}^{\infty} \bar{a}_i b_i$ on $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$ is unitary.
- (c) Show that the "generalised standard basis vectors" consisting of sequences with a single 1 and zeroes elsewhere form an infinite family of pairwise orthogonal unit vectors in $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$, but they do not form a basis of $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$.
- (d) (Cf Exercise H10.3 on the Christmas sheet LA I) Does $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$ admit a countable basis?

Solution:

a) Fix m > 0 and let $\mathbf{v} \in \mathbb{C}^{m+1}$ be the vector $(|a_0|, ..., |a_m|)$. Similarly, let $\mathbf{w} = (|b_0|, ..., |b_m|)$. By the Cauchy-Schwarz inequality in \mathbb{C}^{m+1} (Proposition 2.1.10, p. 59 of the lecture notes) we have

$$\sum_{i=0}^{m} |a_i| |b_i|)^2 \leq \sum_{i=0}^{m} |a_i|^2 \sum_{i=0}^{m} |b_i|^2.$$

Since $|\bar{a}_i b_i| = |a_i||b_i|$, this implies that

$$\sum_{i=0}^{m} |\bar{a}_i b_i| \leq \left(\sum_{i=0}^{m} |a_i|^2 \sum_{i=0}^{m} |b_i|^2\right)^{1/2}.$$

Taking the limit as *m* approaches ∞ yields the absolute convergence of $\sum_{i=0}^{\infty} \bar{a}_i b_i$.

b) Let $\mathbf{a}, \mathbf{b} \in \mathscr{F}(\mathbb{N}, \mathbb{C})_2$. Clearly $\lambda \mathbf{a}$ lies in $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$ for any $\lambda \in \mathbb{C}$. To see that $\mathbf{a} + \mathbf{b} \in \mathscr{F}(\mathbb{N}, \mathbb{C})_2$ as well, note that

$$\sum_{i=0}^{\infty} |a_i + b_i|^2 = \sum_{i=0}^{\infty} |a_i|^2 + \sum_{i=0}^{\infty} |b_i|^2 + \sum_{i=0}^{\infty} \bar{a}_i b_i + \sum_{i=0}^{\infty} \bar{b}_i a_i.$$

By Part (a) above, both $\sum_{i=0}^{\infty} \bar{a}_i b_i$ and $\sum_{i=0}^{\infty} \bar{b}_i a_i$ are absolutely convergent, so this sum converges. It follows that $\mathbf{a} + \mathbf{b} \in \mathscr{F}(\mathbb{N}, \mathbb{C})_2$. Unitarity is clear from the fact that

$$\langle \mathbf{b}, \mathbf{a} \rangle = \sum_{i=0}^{\infty} \bar{b}_i a_i = \overline{\sum_{i=0}^{\infty} \bar{a}_i b_i} = \overline{\langle \mathbf{a}, \mathbf{b} \rangle}$$

- c) Let e_i denote the sequence for which a_i = 1 and a_j = 0 for all j ≠ i. The vector spaces spanned by {e_i : i ≥ 0} consists of all sequences which possess only finitely many non-zero terms. (These are precisely the C-linear combinations of the basis vectors). Clearly for i ≠ j, we have ⟨e_i, e_j⟩ = 0, so these vectors are pairwise orthogonal. To see that they do not form basis, note that 𝔅(N, C)₂ contains elements a which contain infinitely many nonzero elements. An example is the sequence a defined by a_i = 1/2i.
- d) We claim that 𝔅(𝔅, 𝔅)₂ does *not* admit a countable basis. Let (**v**⁰, **v**¹,...) be any subset of 𝔅(𝔅, 𝔅)₂ indexed by the natural numbers. Using a procedure similar to Cantor's diagonalization, we will construct an element **u** ∈ 𝔅(𝔅, 𝔅)₂ which cannot be expressed as a linear combination of the elements (**v**⁰, **v**¹,...). This shows that this collection does not span 𝔅(𝔅, 𝔅)₂, and therefore is not a basis.

First, we define a partition of \mathbb{N} consisting of sets

$$X_n := \{n^2, n^2 + 1, \dots, (n+1)^2 - 1\}, \quad n \ge 0.$$

Clearly X_n contains 2n + 1 elements, and $\bigcup_{n \in \mathbb{N}} X_n = \mathbb{N}$ and $X_i \cap X_j = \emptyset$ for $i \neq j$. Given $\mathbf{u} = (u_0, u_1, ...)$ in $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$, we denote by $R_n(\mathbf{u})$ the restriction of \mathbf{u} to the subset $X_n \subseteq \mathbb{N}$. For restriction to make sense, we are regarding our sequence \mathbf{u} as a function from $\mathbb{N} \to \mathbb{C}$, and $R_n(\mathbf{u})$ consists of the finite ordered set $(u_{n^2}, u_{n^2+1}, ..., u_{(n+1)^2-1})$. Since $\{X_n : n \in \mathbb{N}\}$ is a partition of \mathbb{N} , a sequence $\mathbf{u} \in \mathscr{F}(\mathbb{N}, \mathbb{C})_2$ is specified by its restrictions $\{R_n(\mathbf{u}) : n \in \mathbb{N}\}$. Conversely, a family of finite sequences $\tilde{u}_n = (u_{n^2}, u_{n^2+1}, ..., u_{(n+1)^2-1})$ specifies an infinite sequence $\mathbf{u} = (u_0, u_1, ...)$, such that $R_n(\mathbf{u}) = \tilde{u}_n$. If furthermore, we choose u_i so that $|u_i| < \frac{1}{2^i}$ for all i, the sequence \mathbf{u} will lie in $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$.

For each $n \in \mathbb{N}$, the collection $(R_n(\mathbf{v}^1), \dots, R_n(\mathbf{v}^n))$ spans a vector space of dimension at most n. Since the set of all sequences of the form $\tilde{u}_n = (u_{n^2}, u_{n^2+1}, \dots, u_{(n+1)^2-1})$ has dimension 2n+1, we can choose some \tilde{u}_n which does *not* lie in the span of $(R_n(\mathbf{v}^1), \dots, R_n(\mathbf{v}^n))$. Moreover, by rescaling \tilde{u}_n if necessary, we may assume that each $|u_i| < \frac{1}{2^i}$. Let $\mathbf{u} = (u_0, u_1 \dots)$ be the sequence such that $R_n(\mathbf{u}) = \tilde{u}_n$, which clearly lies in $\mathscr{F}(\mathbb{N}, \mathbb{C})_2$. Finally, suppose that \mathbf{u} lies in the span of $(\mathbf{v}^0, \mathbf{v}^1, \dots)$, so that $\mathbf{u} = \sum_{i=0}^k \lambda_i \mathbf{v}^i$ for some k. But this is impossible because $\tilde{u}_k = R_k(\mathbf{u})$ does not lie in the span of $(R_k(\mathbf{v}^1), \dots, R_k(\mathbf{v}^k))$, by construction.

Exercise T4

In \mathbb{R}^3 , let ρ be the rotation through an angle of $\frac{\pi}{4}$ about the vector (1, 1, 1). In this problem we will find the matrix representing ρ w.r.t. the standard basis of \mathbb{R}^3 .

- (a) Find an orthonormal basis $B = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ of \mathbb{R}^3 such that \mathbf{b}_1 is a positive scalar multiple of (1, 1, 1) and $\llbracket \text{id} \rrbracket_S^B$ is an orthogonal matrix of determinant 1.
- (b) Write down the matrix representing ρ w.r.t. the basis *B*.
- (c) Express the matrix representing ρ using $[\![\rho]\!]_B^B$ and $[\![id]\!]_S^B$.

Solution:

a) We can take $\mathbf{b}_1 = \frac{1}{\sqrt{3}}(1,1,1), \mathbf{b}_2 = \frac{1}{\sqrt{6}}(-1,2,-1), \mathbf{b}_3 = \frac{1}{\sqrt{2}}(-1,0,1)$ and

$$\llbracket \mathrm{id} \rrbracket_S^B = \begin{pmatrix} 1/\sqrt{3} & -1/\sqrt{6} & -1\sqrt{2} \\ 1/\sqrt{3} & 2/\sqrt{6} & 0 \\ 1/\sqrt{3} & -1/\sqrt{6} & 1\sqrt{2} \end{pmatrix}.$$

b)

$$\llbracket \rho \rrbracket_B^B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{2}/2 & -\sqrt{2}/2 \\ 0 & \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix}.$$

c) $\llbracket \rho \rrbracket_{S}^{S} = \llbracket \operatorname{id} \rrbracket_{S}^{B} \llbracket \rho \rrbracket_{B}^{B} \llbracket \operatorname{id} \rrbracket_{S}^{S}.$