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Exercise T1 (Warm up: bilinear form - examples)
Each of the following pictures shows the unit surface {v ∈ R3 : σ(v,v) = 1} for some bilinear form σ.

Which of these forms is positive definite?
Which are non-degenerate?
For each of these bilinear forms, give an example of a matrix that represents that form.

Solution:

Picture 1 The bilinear form is non-degenerate and is not positive definite. An example of a matrix representing this form is






−1 0 0
0 −1 0
0 0 1






.

Picture 2 The bilinear form is non-degenerate and positive definite. An example of a matrix representing this form is






1 0 0
0 1 0
0 0 1







Picture 3 The bilinear form is degenerate and not positive definite. An example of a matrix representing this form is






1 0 0
0 1 0
0 0 0






.

Exercise T2 (Basis transformations for (semi-)bilinear forms)
Compare Exercise 2.1.3 on page 58 of the notes.

(a) Let σ be a bilinear form on an n-dimensional R-vector space V , represented by the matrix A with respect to the
basis B = (b1, . . . ,bn). If B′ = (b′1, . . . ,b′n) is another basis for V , find an expression for the matrix A′ = ¹σºB′

in terms of A, the basis transformation matrices C = ¹idVº
B
B′

and C−1 = ¹idVº
B′
B as well as their transposes as

appropriate.

(b) Similarly for a semi-bilinear form σ of an n-dimensional C-vector space V : if σ is represented by A w.r.t. a basis
B, what is its representation A′ w.r.t. a basis B′ in terms of A, the basis transformations matrices, as well as their
adjoints?
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(c) Consider the following bilinear form σ : R2 ×R2→ R on the vector space R2:

σ(
�

v1
v2

�

,
�

w1
w2

�

) := 7v1w1 − 5v1w2 − 5v2w1 + 4v2w2.

What is its representation with respect to the standard basis? Then compute its representation with respect to the

basis (b1,b2) = (
�

1
1

�

,
�

1
2

�

) directly, as well as by using the formula obtained in part (a).

(d) Is the bilinear form σ in part (c) symmetric? Is it positive definite?

Solution:

a) σ(u,v) = ¹uºt
BA¹vºB = (C−1

¹uºB′)tAC−1
¹vºB′ = ¹uºt

B′
(C−1)tAC−1

¹vºB′ , so A′ = (C−1)tAC−1.

b) σ(u,v) = ¹uº+B A¹vºB = (C−1
¹uºB′)+AC−1

¹vºB′ = ¹uº+
B′
(C−1)+AC−1

¹vºB′ , so A′ = (C−1)+AC−1.

c) Its representation with respect to the standard basis is
�

7 −5
−5 4

�

, and with respect to (b1,b2) is
�

1 0
0 3

�

.

d) It is both: symmetry can be proved directly, or by observing that both matrix representations are symmetric. That
it is positive definite follows from the second representation: if v = λ1b1 + λ2b2, then σ(v,v) = λ2

1 + 3λ2
2. So

σ(v,v)¾ 0 and σ(v,v) = 0 iff λ1 = λ2 = 0 iff v= 0.

Exercise T3
Let F (N,C) denote the set of sequences a= (a0, a1, a2, . . . ) in C.

(a) Show that given a,b in F (N,C) for which
∑∞

i=0 |ai |2 and
∑∞

i=0 |bi |2 are convergent,
∑∞

i=0 āi bi is absolutely conver-
gent.

(b) Let F (N,C)2 denote the set of sequences a ∈ F (N,C) for which
∑∞

i=0 |ai |2 converges. Show that F (N,C)2 forms
a subspace of F (N,C), and that the scalar product 〈a,b〉=

∑∞
i=0 āi bi on F (N,C)2 is unitary.

(c) Show that the “generalised standard basis vectors" consisting of sequences with a single 1 and zeroes elsewhere
form an infinite family of pairwise orthogonal unit vectors in F (N,C)2, but they do not form a basis of F (N,C)2.

(d) (Cf Exercise H10.3 on the Christmas sheet LA I) Does F (N,C)2 admit a countable basis?

Solution:

a) Fix m> 0 and let v ∈ Cm+1 be the vector (|a0|, . . . , |am|). Similarly, let w= (|b0|, . . . , |bm|). By the Cauchy-Schwarz
inequality in Cm+1 (Proposition 2.1.10, p. 59 of the lecture notes) we have

(
m
∑

i=0

|ai ||bi |)2 ¶
m
∑

i=0

|ai |2
m
∑

i=0

|bi |2.

Since |āi bi |= |ai ||bi |, this implies that

m
∑

i=0

|āi bi |¶
� m
∑

i=0

|ai |2
m
∑

i=0

|bi |2
�1/2

.

Taking the limit as m approaches∞ yields the absolute convergence of
∑∞

i=0 āi bi .

b) Let a,b ∈ F (N,C)2. Clearly λa lies in F (N,C)2 for any λ ∈ C. To see that a+ b ∈ F (N,C)2 as well, note that

∞
∑

i=0

|ai + bi |2 =
∞
∑

i=0

|ai |2 +
∞
∑

i=0

|bi |2 +
∞
∑

i=0

āi bi +
∞
∑

i=0

b̄iai .

By Part (a) above, both
∑∞

i=0 āi bi and
∑∞

i=0 b̄iai are absolutely convergent, so this sum converges. It follows that
a+ b ∈ F (N,C)2. Unitarity is clear from the fact that

〈b,a〉=
∞
∑

i=0

b̄iai =
∞
∑

i=0

āi bi = 〈a,b〉.
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c) Let ei denote the sequence for which ai = 1 and a j = 0 for all j 6= i. The vector spaces spanned by {ei : i ¾ 0}
consists of all sequences which possess only finitely many non-zero terms. (These are precisely the C-linear
combinations of the basis vectors). Clearly for i 6= j, we have 〈ei ,e j〉= 0, so these vectors are pairwise orthogonal.
To see that they do not form basis, note that F (N,C)2 contains elements a which contain infinitely many nonzero
elements. An example is the sequence a defined by ai =

1
2i .

d) We claim that F (N,C)2 does not admit a countable basis. Let (v0,v1, . . . ) be any subset of F (N,C)2 indexed
by the natural numbers. Using a procedure similar to Cantor’s diagonalization, we will construct an element
u ∈ F (N,C)2 which cannot be expressed as a linear combination of the elements (v0,v1, . . . ). This shows that this
collection does not span F (N,C)2, and therefore is not a basis.

First, we define a partition of N consisting of sets

Xn := {n2, n2 + 1, . . . , (n+ 1)2 − 1}, n¾ 0.

Clearly Xn contains 2n+1 elements, and ∪n∈NXn = N and X i∩X j = ; for i 6= j. Given u= (u0, u1, . . . ) inF (N,C)2,
we denote by Rn(u) the restriction of u to the subset Xn ⊆ N. For restriction to make sense, we are regarding our
sequence u as a function from N→ C, and Rn(u) consists of the finite ordered set (un2 , un2+1, . . . , u(n+1)2−1). Since
{Xn : n ∈ N} is a partition of N, a sequence u ∈ F (N,C)2 is specified by its restrictions {Rn(u) : n ∈ N}. Conversely,
a family of finite sequences ũn = (un2 , un2+1, . . . , u(n+1)2−1) specifies an infinite sequence u= (u0, u1, . . . ), such that
Rn(u) = ũn. If furthermore, we choose ui so that |ui |<

1
2i for all i, the sequence u will lie in F (N,C)2.

For each n ∈ N, the collection (Rn(v1), . . . , Rn(vn)) spans a vector space of dimension at most n. Since the set of all
sequences of the form ũn = (un2 , un2+1, . . . , u(n+1)2−1) has dimension 2n+1, we can choose some ũn which does not
lie in the span of (Rn(v1), . . . , Rn(vn)). Moreover, by rescaling ũn if necessary, we may assume that each |ui | <

1
2i .

Let u = (u0, u1 . . . ) be the sequence such that Rn(u) = ũn, which clearly lies in F (N,C)2. Finally, suppose that u
lies in the span of (v0,v1, . . . ), so that u =

∑k
i=0λiv

i for some k. But this is impossible because ũk = Rk(u) does
not lie in the span of (Rk(v1), . . . , Rk(vk)), by construction.

Exercise T4
In R3, let ρ be the rotation through an angle of π

4
about the vector (1, 1,1). In this problem we will find the matrix

representing ρ w.r.t. the standard basis of R3.

(a) Find an orthonormal basis B = (b1,b2,b3) of R3 such that b1 is a positive scalar multiple of (1,1, 1) and ¹idºB
S is

an orthogonal matrix of determinant 1.

(b) Write down the matrix representing ρ w.r.t. the basis B.

(c) Express the matrix representing ρ using ¹ρºB
B and ¹idºB

S .

Solution:

a) We can take b1 =
1p
3
(1,1, 1), b2 =

1p
6
(−1, 2,−1), b3 =

1p
2
(−1,0, 1) and

¹idºB
S =







1/
p

3 −1/
p

6 −1
p

2
1/
p

3 2/
p

6 0
1/
p

3 −1/
p

6 1
p

2






.

b)

¹ρºB
B =







1 0 0
0
p

2/2 −
p

2/2
0
p

2/2
p

2/2






.

c) ¹ρºS
S = ¹idºB

S¹ρº
B
B¹idºS

B.
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