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Exercise T1 (Warm-up)
Let ϕ be an endomorphism of an n-dimensional F-vector space V . Assume that ϕ is represented in the basis B =

(b1, . . . ,bn) by the matrix in block upper triangle form M =
�

A D
0 C

�

where A∈ F(k,k), C ∈ F(n−k,n−k), and D ∈ F(k,n−k).

Discuss what this implies about

(a) the existence of invariant subspaces for ϕ.

(b) the characteristic polynomial of ϕ.

(c) the minimal polynomial of ϕ.

Consider examples of various situations of this kind.

Solution:

a) The subspace of V spanned by (b1, . . . ,bk) is clearly invariant under ϕ.

b) As already done in T13.3 LA I, let us prove that |M | = |A||C |, from which it is clear that, in the same way,
pM = |M − λEn| = |A− λEk||C − λEn−k| = pApC . We use the following explicit formula for the determinant of
M = (mi j):

|M |=
∑

σ∈Sn

sign(σ)mσ(1)1mσ(2)2 · · ·mσ(n)n

(see Proposition 4.1.9 on page 121 of the lectures notes for Linear Algebra I). Because of the specific form of the
matrix, the only non-zero contributions can come fromσ ∈ Sn that permutes {1, . . . , k}. Becauseσ is a permutation
(and therefore a bijection) of {1, . . . , n} it follows that σ also permutes {k+ 1, . . . , n}. So:

|M | =
∑

σ∈Sk ,σ′∈Sn−k

sign(σ)sign(σ′)mσ(1)1 · · ·mσ(k)kmk+σ′(1),k+1 · · ·mk+σ′(n−k),n

=





∑

σ∈Sk

sign(σ)aσ(1)1 · · · aσ(k)k











∑

σ′∈Sn−k

sign(σ′)cσ′(1)1 · · · cσ′(n−k),n−k







= |A||C |.

c) The same equality does not hold for the minimal polynomials, because for a matrix of the form M =
�

A D
0 C

�

,

the content of the matrix D is important for determining the minimal polynomial of M ; compare the minimal

polynomials of
�

1 0
0 1

�

and
�

1 1
0 1

�

. What one can say is that qM is a common multiple of qA and qC , but

nothing more (in case D = 0 it is the least common multiple, see E6.2 in LA II this week). In this respect the
minimal polynomial is a finer measure than the characteristic polynomial.

Exercise T2 (Jordan normal form)
Write down matrices Ai ∈ R(4,4) in Jordan normal form with the following properties:

(a) A1 has eigenvalues 2 and 4, with 2 having algebraic multiplicity 3 and geometric multiplicity 1.
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(b) A2 has the eigenvalue 5 with algebraic multiplicity 4 and geometric multiplicity 3.

(c) A3 has the eigenvalue 7 with algebraic multiplicity 2 and geometric multiplicity 2 and the eigenvalue −3 with
algebraic multiplicity 2 and geometric multiplicity 1.

(d) The matrices A4 and A5 both have the eigenvalue 1 with algebraic multiplicity 4 and geometric multiplicity 2 and
have no other eigenvalues. Furthermore, A4 and A5 are not similar.

(e) Find two matrices that have the same characteristic and minimal polynomial, yet are not similar.

Solution:
Possible solutions are:

a) A1 =











2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 4











.

b) A2 =











5 1 0 0
0 5 0 0
0 0 5 0
0 0 0 5











.

c) A3 =











7 0 0 0
0 7 0 0
0 0 −3 1
0 0 0 −3











.

d) A4 =











1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1











and A5 =











1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1











.

e)











0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0











and











0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0











don’t have the same rank so they are not similar. Yet they have the same

characteristic polynomial X 4 and the same minimal polynomial X 2.

Exercise T3 (Jordan normal form and transpose)
(a) Show that if the A, B ∈ F(n,n) are similar, then so are At and B t .

(b) Let A ∈ F(n,n) be a matrix in Jordan normal form. Show that A is similar to At . Deduce that over C every square
matrix is similar to its transpose.

Solution:

a) Note first that if S is regular, then so is S t , with (S t)−1 = (S−1)t : if SS−1 = En, then (S−1)tS t = En. So if A= SBS−1

for some regular S, then At = (S−1)t B tS t = (S t)−1B tS t .

b) Suppose an endomorphism of an n-dimensional vector space ϕ : V → V is represented with respect to a basis
(b1, . . . ,bn) by a matrix A consisting of a single Jordan block, as in

A=















λ 1 0

λ
. . .
. . . 1

0 λ















At =













λ 0
1 λ

. . .
. . .

0 1 λ













.

Then the endomorphism ψ : V → V represented by At with respect to the basis (b1, . . . ,bn), is represented by
A with respect to the basis (bn, . . . ,b1) (the same vectors in reverse order). This idea generalises to matrices in
Jordan normal form (by reversing the order of the basis vectors for every Jordan block), proving that every matrix
in Jordan normal form is similar to its transpose.

As over C every matrix is similar to one in Jordan normal form, this shows that every square matrix over C is
similar to its transpose.
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Exercise T4 (Square roots)
Consider the set of all 4× 4 complex matrices A with characteristic polynomial pA(x) = X 4. We wish to determine

exactly which such matrices admit a square root, that is, some matrix S such that S2 = A.

(a) Suppose that A and B are similar matrices. Show that A has a square root if and only if B has a square root.
Conclude that it is enough to consider matrices that are in Jordan normal form.

(b) Show that neither of the matrices











0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0











,











0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0











admits a square root.

(c) Show that the matrices











0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0











,











0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0











,











0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0











admit square roots. Conclude that the set of 4×4 matrices with characteristic polynomial X 4 which admit a square
root are precisely the ones which are similar to one of these Jordan forms.

Solution:

a) Suppose that S2 = A and that B = C−1AC for some C . Then (C−1SC)2 = C−1S2C = C−1AC = B, so B has a square
root. The situation is clearly symmetric in A and B, so the converse follows immediately. Since every matrix is
similar to a matrix in Jordan form, it suffices to determine which matrices in Jordan form admit square roots.

b) The first matrix A=











0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0











is nilpotent of index 4, that is, A4 = 0 but A3 6= 0. Suppose that S2 = A. Then

S8 = A4 = 0, so S is nilpotent, but S6 = A3 6= 0, so S must be nilpotent of index at least 7. This is impossible since

a nilpotent 4×4 matrix has index at most 4. Similarly, B =











0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0











satisfies B2 6= 0 but B3 = 0. If S2 = B,

we must have S nilpotent and S4 = B2 6= 0, which is impossible.

c) The zero matrix obviously admits a square root, namely itself. Note that











0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0











2

=











0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0











,

which is easily seen to be similar to











0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0











. Therefore it follows from part (a) that











0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0











admits a square root.

Similarly,











0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0











2

=











0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0











, which is Jordan equivalent to











0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0











.
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