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Exercise T1 (Polynomials of matrices and linear maps)

In the following p,q stand for polynomials in F[X], ¢ for an endomorphism of an n-dimensional F-vector space V,
A,B for n x n matrices over F. Which of these claims are generally true, which are false in general (and which are plain
nonsense)?

(@) p(AB) =p(A)p(B) (?)

(®) (pq)(A) = p(A)q(A) = q(A)p(A) ()

© (p(e)(v) =plp(v) @)

(@ [p(p)I; =p(LeI}) @

(e) Aregular = p(A) regular (?)

(H A~B=p(A)~p(B) ()

®) p(v)=2Av=(p(¢))v)=pA)v (?)

(h) p(A)q(A)=0=(p(A) =0V q(A)=0) (?)
G

(j) U €V an invariant subspace of ¢ = U invariant under p(¢) (?)

—

) ¢ and p(y) have the same invariant subspaces (?)

(k) U CV aninvariant subspace of ¢ = (p(p))(v+U)=(p(p))(v)+ U (?) (p viewed as a map on subsets of V)

(I) U CV an invariant subspace of ¢/ = (p(¢")v+U) = (p(¢))(v)+U (?) (¢’ the induced endomorphism of
V/U)

Solution:
a) False in general, even if A and B commute.
b) True, p — p(A) is a ring homomorphism.
¢) Nonsense!
d) True.
e) False, for instance p,(A) = 0 is not regular.
f) True.

g) True.

h) False, consider p=q=X andA= (8 (1)) :

i) False, consider Po-
j) True.

k) False, consider ¢ = 0.




) True.

Exercise T2 (Eigenvectors)

123 o2 0 o
Consider the matricesA:= [ 2 1 3 | and B:= 00 1 1

336 0 0 -2 4
(a) Determine the characteristic and minimal polynomials of A and B.

(b) For the matrix B:

i
ii.
iii.

Show that v; =(1,0,0,0) and v, = (0,0, 1, 1) are eigenvectors with eigenvalue 2.
Determine an eigenvector v, with eigenvalue 3.
Check that v5 = (0, 1,0,0) is a solution of (B — 2E,)?x = 0 and that Bv; = 2v; + v;.

iv. Determine the matrix that represents ¢, w.r.t. the basis (v, Vs, vy, V,).

Solution:

1-X
2
3

2
1-X
3

3
3
6—-X

a) For A we obtain p, = =-XX+1DX-9).

Since this polynomial splits into distinct linear factors, the minimal polynomial of A is equal to —p, by Proposition
1.5.2 on page 33 of the notes. (Recall that the minimal polynomial is normalised.)

2—X 1 0 0
For B we obtain py = 8 ZEX 1E)X (1) :‘Z_OX ZEX‘|1_X 1-2 4—X|=(2—X)3(X—3).
0 0 -2 4-X

The minimal polynomial g has the same linear factors as the characteristic polynomial pg. So g has to be one of
the following: (X —2)(X —3), or (X — 2)?(X — 3), or p.

As (B — 2E,)(B — 3E,) # 0 and (B — 2E,)?*(B — 3E,) = 0, we conclude that q; = (X — 2)*(X — 3).

b) For the matrix B:

01 0 O
s 0 0 0 O
i. Since B—2E, = 0 0 —1 1/|We have
0 0 -2 2
1 0
0 0
0 1

ii. We are looking for a non-trivial solution of the equation (B — 3E,)v, = 0:

-1 1 0O 010 -1 0 0 00
0O -1 0 0]O0 - 0O -1 0 0]O0
0 0O -2 1|0 0 0O -2 110
0 0O -2 110 0 0 0O 00
So one solution is v, = (0,0, 1, 2).
00 O O
00 O O
. _ 2 _
iii. We obtain (B —2E,)* = 00 -1 1
0O 0 -2 2
0 1
,|1 2
Hence (B — 2E,) ol = 0. Furthermore Bv; = ol = 2vy +v;.
0 0




iv. We obtain

O N OO
w o o o

O O ON
SO N

Exercise T3 (Complexification)

For A € R®? consider the associated endomorphisms ¢, and wf, which are represented by A w.r.t. the standard bases
of R? and of C2, respectively.

Let the characteristic polynomial p, be irreducible in R[X].

(a) Show that p, has a pair of complex conjugate zeroes. (Recall that the complex conjugate of z = a+iff isz = a—if3.)

(b) Show that C? has a basis B = (v, V) of eigenvectors of ¢, consisting of a vector v with eigenvalue A, and its complex
conjugate v, which has eigenvalue A.

(c) Letb; = %(v+\7) and b, = %(v— V), which lie in R2.
i. Show that B’ = {b;,b,} is a basis for R2.

ii. Determine the matrix representation of wf w.r.t. basis B’ and discuss the similarity of A with a matrix that
would suggest the interpretation as "rotation followed by dilation"

Solution:

a) The characteristic polynomial is a quadratic of the form x2 + tx + d, where t = tr(A) and d = det(A). By the

. _ 2_ . . o -
quadratic formula, x = V4 gince pa(x) is irreducible in R[X] we must have t2 — 4d < 0, so it is clear that

the roots are distinct and occur as a complex conjugate pair.

b) Let A and A be the eigenvalues of ,, and let v be an eigenvector of ¢, with eigenvalue A, so that Av = Av. Taking
complex conjugates of both sides and noting that A = A since A is real, we have AV = A¥. Hence ¥ is eigenvector
of ¢, with eigenvalue A. Finally, let B = {v,¥}. The fact that B is a basis for C? is clear from the fact that the
corresponding eigenvalues A and A are distinct.

o) i. First we regard b, and b, as elements of C2. It is clear that they form a basis of C? because they are related
to v and v via the invertible matrix
11
/ 5 5
gy - (i ).
2 2i

Since b; and b, are linearly independent over C, they must be linearly independent over R as well. Hence if
we regard them as elements of R?, they form a basis of R?.

ii. We have [[(pA]]g: = [id] 7, o [pal3 o [[id]]g/. Also, note that [@,]b = (g ?L) and [[id]%, = ([[id:l]g/)_1 =

(1 _11) We therefore obtain
_ cos(B) sin(60)

Re(A) Im(A)
)_r(—sin(e) cos(Q))’

B _
Lely = (—Im()\) Re(1)
where A = re?.
Exercise T4 (Simultaneous diagonalisation and polynomials)
Let A € R™™ be a matrix with n distinct real eigenvalues, and let B € R"™™ be an abitrary matrix such that A and B

are simultaneously diagonalisable. Show that there exists a polynomial p € R[X] such that B = p(A).
Hint. Recall that, last semester in Linear Algebra I, we have shown in exercise (E14.2) that, given n distinct real

numbers a;,...,a, € R and n arbitrary real numbers b,..., b, € R, there exists a polynomial p of degree n — 1 such that
p(a;) = b; for all i.
Solution:
By assumption, there exists a matrix C such that D := C"AC and H := C~!'BC are both diagonal matrices. Suppose that
A 1231
D= and H =
A U

Note that A,,..., A, are the eigenvalues of A. Since these are all distinct, we can use the hint to find a polynomial
p such that p(1;) = u; . It follows that p(D) = H. Since (CDC~')k = CD*C™! it follows that p(A) = p(CDC™') =
Cp(D)C™'=CHC!'=B.




