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Exercise T1 (Polynomials of matrices and linear maps)
In the following p,q stand for polynomials in F[X ], ϕ for an endomorphism of an n-dimensional F-vector space V ,

A,B for n× n matrices over F. Which of these claims are generally true, which are false in general (and which are plain
nonsense)?

(a) p(AB) = p(A)p(B) (?)

(b) (pq)(A) = p(A)q(A) = q(A)p(A) (?)

(c) (p(ϕ))(v) = p(ϕ(v)) (?)

(d) ¹p(ϕ)ºB
B = p(¹ϕºB

B) (?)

(e) A regular⇒ p(A) regular (?)

(f) A∼ B⇒ p(A)∼ p(B) (?)

(g) ϕ(v) = λv⇒ (p(ϕ))(v) = p(λ)v (?)

(h) p(A)q(A) = 0⇒ (p(A) = 0 ∨ q(A) = 0) (?)

(i) ϕ and p(ϕ) have the same invariant subspaces (?)

(j) U ⊆ V an invariant subspace of ϕ ⇒ U invariant under p(ϕ) (?)

(k) U ⊆ V an invariant subspace of ϕ ⇒ (p(ϕ))(v+ U) = (p(ϕ))(v) + U (?) (ϕ viewed as a map on subsets of V.)

(l) U ⊆ V an invariant subspace of ϕ′ ⇒ (p(ϕ′))(v+ U) = (p(ϕ))(v) + U (?) (ϕ′ the induced endomorphism of
V/U .)

Solution:

a) False in general, even if A and B commute.

b) True, p 7→ p(A) is a ring homomorphism.

c) Nonsense!

d) True.

e) False, for instance pA(A) = 0 is not regular.

f) True.

g) True.

h) False, consider p = q = X and A=
�

0 1
0 0

�

.

i) False, consider pϕ.

j) True.

k) False, consider ϕ = 0.
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l) True.

Exercise T2 (Eigenvectors)

Consider the matrices A :=







1 2 3
2 1 3
3 3 6






and B :=











2 1 0 0
0 2 0 0
0 0 1 1
0 0 −2 4











(a) Determine the characteristic and minimal polynomials of A and B.

(b) For the matrix B:
i. Show that v1 = (1, 0,0,0) and v2 = (0,0, 1,1) are eigenvectors with eigenvalue 2.

ii. Determine an eigenvector v4 with eigenvalue 3.
iii. Check that v3 = (0, 1,0, 0) is a solution of (B− 2E4)2x= 0 and that Bv3 = 2v3 + v1.
iv. Determine the matrix that represents ϕB w.r.t. the basis (v1,v3,v2,v4).

Solution:

a) For A we obtain pA =

�

�

�

�

�

�

1− X 2 3
2 1− X 3
3 3 6− X

�

�

�

�

�

�

=−X (X + 1)(X − 9).

Since this polynomial splits into distinct linear factors, the minimal polynomial of A is equal to −pA by Proposition
1.5.2 on page 33 of the notes. (Recall that the minimal polynomial is normalised.)

For B we obtain pB =

�

�

�

�

�

�

�

�

2− X 1 0 0
0 2− X 0 0
0 0 1− X 1
0 0 −2 4− X

�

�

�

�

�

�

�

�

=

�

�

�

�

2− X 1
0 2− X

�

�

�

�

�

�1− X 1− 2 4− X
�

�= (2− X )3(X − 3).

The minimal polynomial qB has the same linear factors as the characteristic polynomial pB. So qB has to be one of
the following: (X − 2)(X − 3), or (X − 2)2(X − 3), or pB.

As (B− 2E4)(B− 3E4) 6= 0 and (B− 2E4)2(B− 3E4) = 0, we conclude that qB = (X − 2)2(X − 3).

b) For the matrix B:

i. Since B− 2E4 =











0 1 0 0
0 0 0 0
0 0 −1 1
0 0 −2 2











we have

(B− 2E4)











1
0
0
0











= 0 and (B− 2E4)











0
0
1
1











= 0.

ii. We are looking for a non-trivial solution of the equation (B− 3E4)v4 = 0:










−1 1 0 0 0
0 −1 0 0 0
0 0 −2 1 0
0 0 −2 1 0











 











−1 0 0 0 0
0 −1 0 0 0
0 0 −2 1 0
0 0 0 0 0











So one solution is v4 = (0, 0,1, 2).

iii. We obtain (B− 2E4)2 =











0 0 0 0
0 0 0 0
0 0 −1 1
0 0 −2 2











.

Hence (B− 2E4)2











0
1
0
0











= 0. Furthermore Bv3 =











1
2
0
0











= 2v3 + v1.
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iv. We obtain











2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 3











Exercise T3 (Complexification)
For A∈ R(2,2) consider the associated endomorphisms ϕRA and ϕCA , which are represented by A w.r.t. the standard bases

of R2 and of C2, respectively.
Let the characteristic polynomial pA be irreducible in R[X ].

(a) Show that pA has a pair of complex conjugate zeroes. (Recall that the complex conjugate of z = α+iβ is z̄ = α−iβ .)

(b) Show that C2 has a basis B = (v, v̄) of eigenvectors of ϕA consisting of a vector v with eigenvalue λ, and its complex
conjugate v̄, which has eigenvalue λ̄.

(c) Let b1 =
1
2
(v+ v̄) and b2 =

1
2i
(v− v̄), which lie in R2.

i. Show that B′ = {b1,b2} is a basis for R2.
ii. Determine the matrix representation of ϕRA w.r.t. basis B′ and discuss the similarity of A with a matrix that

would suggest the interpretation as "rotation followed by dilation"

Solution:

a) The characteristic polynomial is a quadratic of the form x2 + t x + d, where t = tr(A) and d = det(A). By the

quadratic formula, x = −t±
p

t2−4d
2

. Since pA(x) is irreducible in R[X ] we must have t2− 4d < 0, so it is clear that
the roots are distinct and occur as a complex conjugate pair.

b) Let λ and λ̄ be the eigenvalues of ϕA, and let v be an eigenvector of ϕA with eigenvalue λ, so that Av= λv. Taking
complex conjugates of both sides and noting that Ā= A since A is real, we have Av̄ = λ̄v̄. Hence v̄ is eigenvector
of ϕA with eigenvalue λ̄. Finally, let B = {v, v̄}. The fact that B is a basis for C2 is clear from the fact that the
corresponding eigenvalues λ and λ̄ are distinct.

c) i. First we regard b1 and b2 as elements of C2. It is clear that they form a basis of C2 because they are related
to v and v̄ via the invertible matrix

¹idºB′
B =

�

1
2

1
2i

1
2
− 1

2i

�

.

Since b1 and b2 are linearly independent over C, they must be linearly independent over R as well. Hence if
we regard them as elements of R2, they form a basis of R2.

ii. We have ¹ϕAº
B′

B′
= ¹idºB

B′
◦¹ϕAº

B
B ◦¹idºB′

B . Also, note that ¹ϕAº
B
B =

�

λ 0
0 λ̄

�

and ¹idºB
B′
= (¹idºB′

B )
−1 =

�

1 1
i −i

�

. We therefore obtain

¹ϕºB′

B′ =
�

Re(λ) Im(λ)
−Im(λ) Re(λ)

�

= r
�

cos(θ) sin(θ)
− sin(θ) cos(θ)

�

,

where λ= reiθ .

Exercise T4 (Simultaneous diagonalisation and polynomials)
Let A ∈ R(n,n) be a matrix with n distinct real eigenvalues, and let B ∈ R(n,n) be an abitrary matrix such that A and B

are simultaneously diagonalisable. Show that there exists a polynomial p ∈ R[X ] such that B = p(A).
Hint. Recall that, last semester in Linear Algebra I, we have shown in exercise (E14.2) that, given n distinct real

numbers a1, . . . , an ∈ R and n arbitrary real numbers b1, . . . , bn ∈ R, there exists a polynomial p of degree n−1 such that
p(ai) = bi for all i.

Solution:
By assumption, there exists a matrix C such that D := C−1AC and H := C−1BC are both diagonal matrices. Suppose that

D =









λ1
. . .

λn









and H =









µ1
. . .

µn









.

Note that λ1, . . . ,λn are the eigenvalues of A. Since these are all distinct, we can use the hint to find a polynomial
p such that p(λi) = µi . It follows that p(D) = H. Since (C DC−1)k = C DkC−1 it follows that p(A) = p(C DC−1) =
C p(D)C−1 = CHC−1 = B .
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