Linear Algebra II Tutorial Sheet no. 5

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011 May 6, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise T1 (Polynomials of matrices and linear maps)

In the following p,q stand for polynomials in $\mathbb{F}[X]$, φ for an endomorphism of an *n*-dimensional \mathbb{F} -vector space *V*, *A*,*B* for $n \times n$ matrices over \mathbb{F} . Which of these claims are generally true, which are false in general (and which are plain nonsense)?

- (a) p(AB) = p(A)p(B) (?)
- (b) (pq)(A) = p(A)q(A) = q(A)p(A) (?)
- (c) $(p(\varphi))(\mathbf{v}) = p(\varphi(\mathbf{v}))$ (?)
- (d) $\llbracket p(\varphi) \rrbracket_B^B = p(\llbracket \varphi \rrbracket_B^B)$ (?)
- (e) $A \operatorname{regular} \Rightarrow p(A) \operatorname{regular} (?)$
- (f) $A \sim B \Rightarrow p(A) \sim p(B)$ (?)
- (g) $\varphi(\mathbf{v}) = \lambda \mathbf{v} \Rightarrow (p(\varphi))(\mathbf{v}) = p(\lambda)\mathbf{v}$ (?)
- (h) $p(A)q(A) = 0 \Rightarrow (p(A) = 0 \lor q(A) = 0)$ (?)
- (i) φ and $p(\varphi)$ have the same invariant subspaces (?)
- (j) $U \subseteq V$ an invariant subspace of $\varphi \Rightarrow U$ invariant under $p(\varphi)$ (?)
- (k) $U \subseteq V$ an invariant subspace of $\varphi \Rightarrow (p(\varphi))(\mathbf{v} + U) = (p(\varphi))(\mathbf{v}) + U$ (?) (φ viewed as a map on subsets of V.)
- (1) $U \subseteq V$ an invariant subspace of $\varphi' \Rightarrow (p(\varphi'))(\mathbf{v} + U) = (p(\varphi))(\mathbf{v}) + U$ (?) (φ' the induced endomorphism of V/U.)

Solution:

- a) False in general, even if A and B commute.
- b) True, $p \mapsto p(A)$ is a ring homomorphism.
- c) Nonsense!
- d) True.
- e) False, for instance $p_A(A) = 0$ is not regular.
- f) True.
- g) True.
- h) False, consider p = q = X and $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- i) False, consider p_{φ} .
- j) True.
- k) False, consider $\varphi = 0$.

l) True.

Exercise T2 (Eigenvectors)

Consider the matrices
$$A := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 6 \end{pmatrix}$$
 and $B := \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4 \end{pmatrix}$

- (a) Determine the characteristic and minimal polynomials of *A* and *B*.
- (b) For the matrix B:
 - i. Show that $\mathbf{v}_1 = (1, 0, 0, 0)$ and $\mathbf{v}_2 = (0, 0, 1, 1)$ are eigenvectors with eigenvalue 2.
 - ii. Determine an eigenvector \mathbf{v}_4 with eigenvalue 3.
 - iii. Check that $\mathbf{v}_3 = (0, 1, 0, 0)$ is a solution of $(B 2E_4)^2 \mathbf{x} = \mathbf{0}$ and that $B\mathbf{v}_3 = 2\mathbf{v}_3 + \mathbf{v}_1$.
 - iv. Determine the matrix that represents φ_B w.r.t. the basis $(\mathbf{v}_1, \mathbf{v}_3, \mathbf{v}_2, \mathbf{v}_4)$.

Solution:

a) For A we obtain
$$p_A = \begin{vmatrix} 1-X & 2 & 3 \\ 2 & 1-X & 3 \\ 3 & 3 & 6-X \end{vmatrix} = -X(X+1)(X-9)$$

Since this polynomial splits into distinct linear factors, the minimal polynomial of *A* is equal to $-p_A$ by Proposition 1.5.2 on page 33 of the notes. (Recall that the minimal polynomial is normalised.)

For *B* we obtain
$$p_B = \begin{vmatrix} 2-X & 1 & 0 & 0 \\ 0 & 2-X & 0 & 0 \\ 0 & 0 & 1-X & 1 \\ 0 & 0 & -2 & 4-X \end{vmatrix} = \begin{vmatrix} 2-X & 1 \\ 0 & 2-X \end{vmatrix} \begin{vmatrix} 1-X & 1-2 & 4-X \end{vmatrix} = (2-X)^3(X-3).$$

The minimal polynomial q_B has the same linear factors as the characteristic polynomial p_B . So q_B has to be one of the following: (X - 2)(X - 3), or $(X - 2)^2(X - 3)$, or p_B .

As
$$(B - 2E_4)(B - 3E_4) \neq 0$$
 and $(B - 2E_4)^2(B - 3E_4) = 0$, we conclude that $q_B = (X - 2)^2(X - 3)$

b) For the matrix B:

i. Since
$$B - 2E_4 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -2 & 2 \end{pmatrix}$$
 we have
 $(B - 2E_4) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \mathbf{0} \text{ and } (B - 2E_4) \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \mathbf{0}.$

ii. We are looking for a non-trivial solution of the equation $(B - 3E_4)\mathbf{v}_4 = 0$:

So one solution is $v_4 = (0, 0, 1, 2)$.

iv. We obtain
$$\begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

Exercise T3 (Complexification)

For $A \in \mathbb{R}^{(2,2)}$ consider the associated endomorphisms $\varphi_A^{\mathbb{R}}$ and $\varphi_A^{\mathbb{C}}$, which are represented by A w.r.t. the standard bases of \mathbb{R}^2 and of \mathbb{C}^2 , respectively.

Let the characteristic polynomial p_A be irreducible in $\mathbb{R}[X]$.

- (a) Show that p_A has a pair of complex conjugate zeroes. (Recall that the complex conjugate of $z = \alpha + i\beta$ is $\overline{z} = \alpha i\beta$.)
- (b) Show that \mathbb{C}^2 has a basis $B = (\mathbf{v}, \bar{\mathbf{v}})$ of eigenvectors of φ_A consisting of a vector \mathbf{v} with eigenvalue λ , and its complex conjugate $\bar{\mathbf{v}}$, which has eigenvalue $\bar{\lambda}$.
- (c) Let $\mathbf{b}_1 = \frac{1}{2}(\mathbf{v} + \bar{\mathbf{v}})$ and $\mathbf{b}_2 = \frac{1}{2i}(\mathbf{v} \bar{\mathbf{v}})$, which lie in \mathbb{R}^2 .
 - i. Show that $B' = {\mathbf{b}_1, \mathbf{b}_2}$ is a basis for \mathbb{R}^2 .
 - ii. Determine the matrix representation of $\varphi_A^{\mathbb{R}}$ w.r.t. basis B' and discuss the similarity of A with a matrix that would suggest the interpretation as "rotation followed by dilation"

Solution:

- a) The characteristic polynomial is a quadratic of the form $x^2 + tx + d$, where t = tr(A) and d = det(A). By the quadratic formula, $x = \frac{-t \pm \sqrt{t^2 4d}}{2}$. Since $p_A(x)$ is irreducible in $\mathbb{R}[X]$ we must have $t^2 4d < 0$, so it is clear that the roots are distinct and occur as a complex conjugate pair.
- b) Let λ and $\overline{\lambda}$ be the eigenvalues of φ_A , and let \mathbf{v} be an eigenvector of φ_A with eigenvalue λ , so that $A\mathbf{v} = \lambda \mathbf{v}$. Taking complex conjugates of both sides and noting that $\overline{A} = A$ since A is real, we have $A\overline{\mathbf{v}} = \overline{\lambda}\overline{\mathbf{v}}$. Hence $\overline{\mathbf{v}}$ is eigenvector of φ_A with eigenvalue $\overline{\lambda}$. Finally, let $B = {\mathbf{v}, \overline{\mathbf{v}}}$. The fact that B is a basis for \mathbb{C}^2 is clear from the fact that the corresponding eigenvalues λ and $\overline{\lambda}$ are distinct.
- c) i. First we regard \mathbf{b}_1 and \mathbf{b}_2 as elements of \mathbb{C}^2 . It is clear that they form a basis of \mathbb{C}^2 because they are related to \mathbf{v} and $\bar{\mathbf{v}}$ via the invertible matrix

$$\llbracket \operatorname{id} \rrbracket_B^{B'} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2i} \\ \frac{1}{2} & -\frac{1}{2i} \end{pmatrix}.$$

Since \mathbf{b}_1 and \mathbf{b}_2 are linearly independent over \mathbb{C} , they must be linearly independent over \mathbb{R} as well. Hence if we regard them as elements of \mathbb{R}^2 , they form a basis of \mathbb{R}^2 .

ii. We have $\llbracket \varphi_A \rrbracket_{B'}^{B'} = \llbracket \mathrm{id} \rrbracket_{B'}^{B} \circ \llbracket \varphi_A \rrbracket_{B}^{B} \circ \llbracket \mathrm{id} \rrbracket_{B'}^{B'}$. Also, note that $\llbracket \varphi_A \rrbracket_{B}^{B} = \begin{pmatrix} \lambda & 0 \\ 0 & \bar{\lambda} \end{pmatrix}$ and $\llbracket \mathrm{id} \rrbracket_{B'}^{B} = (\llbracket \mathrm{id} \rrbracket_{B'}^{B'})^{-1} = \begin{pmatrix} 1 & 1 \end{pmatrix}$

$$\begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$$
. We therefore obtain

$$\llbracket \varphi \rrbracket_{B'}^{B'} = \begin{pmatrix} \operatorname{Re}(\lambda) & \operatorname{Im}(\lambda) \\ -\operatorname{Im}(\lambda) & \operatorname{Re}(\lambda) \end{pmatrix} = r \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix},$$

where $\lambda = re^{i\theta}$.

Exercise T4 (Simultaneous diagonalisation and polynomials)

Let $A \in \mathbb{R}^{(n,n)}$ be a matrix with *n* distinct real eigenvalues, and let $B \in \mathbb{R}^{(n,n)}$ be an abitrary matrix such that *A* and *B* are simultaneously diagonalisable. Show that there exists a polynomial $p \in \mathbb{R}[X]$ such that B = p(A).

Hint. Recall that, last semester in Linear Algebra I, we have shown in exercise (E14.2) that, given *n* distinct real numbers $a_1, \ldots, a_n \in \mathbb{R}$ and *n* arbitrary real numbers $b_1, \ldots, b_n \in \mathbb{R}$, there exists a polynomial *p* of degree n - 1 such that $p(a_i) = b_i$ for all *i*.

Solution:

By assumption, there exists a matrix *C* such that $D := C^{-1}AC$ and $H := C^{-1}BC$ are both diagonal matrices. Suppose that $\begin{pmatrix} \lambda_1 \\ \mu_1 \end{pmatrix}$

$$D = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \text{ and } H = \begin{pmatrix} \mu_1 & & \\ & \ddots & \\ & & \mu_n \end{pmatrix}.$$

Note that $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of *A*. Since these are all distinct, we can use the hint to find a polynomial *p* such that $p(\lambda_i) = \mu_i$. It follows that p(D) = H. Since $(CDC^{-1})^k = CD^kC^{-1}$ it follows that $p(A) = p(CDC^{-1}) = Cp(D)C^{-1} = CHC^{-1} = B$.