Linear Algebra II Tutorial Sheet no. 5

TECHNISCHE UNIVERSITÄT
DARMSTADT

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

May 6, 2011

Exercise T1 (Polynomials of matrices and linear maps)
In the following p, q stand for polynomials in $\mathbb{F}[X], \varphi$ for an endomorphism of an n-dimensional \mathbb{F}-vector space V, A, B for $n \times n$ matrices over \mathbb{F}. Which of these claims are generally true, which are false in general (and which are plain nonsense)?
(a) $p(A B)=p(A) p(B)($? $)$
(b) $(p q)(A)=p(A) q(A)=q(A) p(A)(?)$
(c) $(p(\varphi))(\mathbf{v})=p(\varphi(\mathbf{v}))(?)$
(d) $\llbracket p(\varphi) \rrbracket_{B}^{B}=p\left(\llbracket \varphi \rrbracket_{B}^{B}\right)(?)$
(e) A regular $\Rightarrow p(A)$ regular (?)
(f) $A \sim B \Rightarrow p(A) \sim p(B)$ (?)
(g) $\varphi(\mathbf{v})=\lambda \mathbf{v} \Rightarrow(p(\varphi))(\mathbf{v})=p(\lambda) \mathbf{v}(?)$
(h) $p(A) q(A)=0 \Rightarrow(p(A)=0 \vee q(A)=0)(?)$
(i) φ and $p(\varphi)$ have the same invariant subspaces (?)
(j) $U \subseteq V$ an invariant subspace of $\varphi \Rightarrow U$ invariant under $p(\varphi)$ (?)
(k) $U \subseteq V$ an invariant subspace of $\varphi \Rightarrow(p(\varphi))(\mathbf{v}+U)=(p(\varphi))(\mathbf{v})+U(?)$ (φ viewed as a map on subsets of V.)
(l) $U \subseteq V$ an invariant subspace of $\varphi^{\prime} \Rightarrow\left(p\left(\varphi^{\prime}\right)\right)(\mathbf{v}+U)=(p(\varphi))(\mathbf{v})+U$ (?) (φ^{\prime} the induced endomorphism of V / U.)

Solution:

a) False in general, even if A and B commute.
b) True, $p \mapsto p(A)$ is a ring homomorphism.
c) Nonsense!
d) True.
e) False, for instance $p_{A}(A)=0$ is not regular.
f) True.
g) True.
h) False, consider $p=q=X$ and $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
i) False, consider p_{φ}.
j) True.
k) False, consider $\varphi=0$.

1) True.

Exercise T2 (Eigenvectors)

Consider the matrices $A:=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 6\end{array}\right)$ and $B:=\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4\end{array}\right)$
(a) Determine the characteristic and minimal polynomials of A and B.
(b) For the matrix B:
i. Show that $\mathbf{v}_{1}=(1,0,0,0)$ and $\mathbf{v}_{2}=(0,0,1,1)$ are eigenvectors with eigenvalue 2 .
ii. Determine an eigenvector \mathbf{v}_{4} with eigenvalue 3 .
iii. Check that $\mathbf{v}_{3}=(0,1,0,0)$ is a solution of $\left(B-2 E_{4}\right)^{2} \mathbf{x}=\mathbf{0}$ and that $B \mathbf{v}_{3}=2 \mathbf{v}_{3}+\mathbf{v}_{1}$.
iv. Determine the matrix that represents φ_{B} w.r.t. the basis $\left(\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{2}, \mathbf{v}_{4}\right)$.

Solution:

a) For A we obtain $p_{A}=\left|\begin{array}{ccc}1-X & 2 & 3 \\ 2 & 1-X & 3 \\ 3 & 3 & 6-X\end{array}\right|=-X(X+1)(X-9)$.

Since this polynomial splits into distinct linear factors, the minimal polynomial of A is equal to $-p_{A}$ by Proposition 1.5.2 on page 33 of the notes. (Recall that the minimal polynomial is normalised.)

For B we obtain $p_{B}=\left|\begin{array}{cccc}2-X & 1 & 0 & 0 \\ 0 & 2-X & 0 & 0 \\ 0 & 0 & 1-X & 1 \\ 0 & 0 & -2 & 4-X\end{array}\right|=\left|\begin{array}{cc}2-X & 1 \\ 0 & 2-X\end{array}\right|\left|\begin{array}{ccc}1-X & 1-2 & 4-X\end{array}\right|=(2-X)^{3}(X-3)$.
The minimal polynomial q_{B} has the same linear factors as the characteristic polynomial p_{B}. So q_{B} has to be one of the following: $(X-2)(X-3)$, or $(X-2)^{2}(X-3)$, or p_{B}.
As $\left(B-2 E_{4}\right)\left(B-3 E_{4}\right) \neq 0$ and $\left(B-2 E_{4}\right)^{2}\left(B-3 E_{4}\right)=0$, we conclude that $q_{B}=(X-2)^{2}(X-3)$.
b) For the matrix B:
i. Since $B-2 E_{4}=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -2 & 2\end{array}\right)$ we have

$$
\left(B-2 E_{4}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\mathbf{0} \text { and }\left(B-2 E_{4}\right)\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)=\mathbf{0} .
$$

ii. We are looking for a non-trivial solution of the equation $\left(B-3 E_{4}\right) \mathbf{v}_{4}=0$:

$$
\left(\begin{array}{cccc|c}
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -2 & 1 & 0 \\
0 & 0 & -2 & 1 & 0
\end{array}\right) \rightsquigarrow\left(\begin{array}{cccc|c}
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

So one solution is $\mathbf{v}_{4}=(0,0,1,2)$.
iii. We obtain $\left(B-2 E_{4}\right)^{2}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -2 & 2\end{array}\right)$.

Hence $\left(B-2 E_{4}\right)^{2}\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)=\mathbf{0}$. Furthermore $B \mathbf{v}_{3}=\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right)=2 \mathbf{v}_{3}+\mathbf{v}_{1}$.
iv. We obtain $\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right)$

Exercise T3 (Complexification)

For $A \in \mathbb{R}^{(2,2)}$ consider the associated endomorphisms $\varphi_{A}^{\mathbb{R}}$ and $\varphi_{A}^{\mathbb{C}}$, which are represented by A w.r.t. the standard bases of \mathbb{R}^{2} and of \mathbb{C}^{2}, respectively.
Let the characteristic polynomial p_{A} be irreducible in $\mathbb{R}[X]$.
(a) Show that p_{A} has a pair of complex conjugate zeroes. (Recall that the complex conjugate of $z=\alpha+i \beta$ is $\bar{z}=\alpha-i \beta$.)
(b) Show that \mathbb{C}^{2} has a basis $B=(\mathbf{v}, \overline{\mathbf{v}})$ of eigenvectors of φ_{A} consisting of a vector \mathbf{v} with eigenvalue λ, and its complex conjugate $\overline{\mathbf{v}}$, which has eigenvalue $\bar{\lambda}$.
(c) Let $\mathbf{b}_{1}=\frac{1}{2}(\mathbf{v}+\overline{\mathbf{v}})$ and $\mathbf{b}_{2}=\frac{1}{2 i}(\mathbf{v}-\overline{\mathbf{v}})$, which lie in \mathbb{R}^{2}.
i. Show that $B^{\prime}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ is a basis for \mathbb{R}^{2}.
ii. Determine the matrix representation of $\varphi_{A}^{\mathbb{R}}$ w.r.t. basis B^{\prime} and discuss the similarity of A with a matrix that would suggest the interpretation as "rotation followed by dilation"

Solution:

a) The characteristic polynomial is a quadratic of the form $x^{2}+t x+d$, where $t=\operatorname{tr}(A)$ and $d=\operatorname{det}(A)$. By the quadratic formula, $x=\frac{-t \pm \sqrt{t^{2}-4 d}}{2}$. Since $p_{A}(x)$ is irreducible in $\mathbb{R}[X]$ we must have $t^{2}-4 d<0$, so it is clear that the roots are distinct and occur as a complex conjugate pair.
b) Let λ and $\bar{\lambda}$ be the eigenvalues of φ_{A}, and let \mathbf{v} be an eigenvector of φ_{A} with eigenvalue λ, so that $A \mathbf{v}=\lambda \mathbf{v}$. Taking complex conjugates of both sides and noting that $\bar{A}=A$ since A is real, we have $A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}$. Hence $\overline{\mathbf{v}}$ is eigenvector of φ_{A} with eigenvalue $\bar{\lambda}$. Finally, let $B=\{\mathbf{v}, \overline{\mathbf{v}}\}$. The fact that B is a basis for \mathbb{C}^{2} is clear from the fact that the corresponding eigenvalues λ and $\bar{\lambda}$ are distinct.
c) i. First we regard \mathbf{b}_{1} and \mathbf{b}_{2} as elements of \mathbb{C}^{2}. It is clear that they form a basis of \mathbb{C}^{2} because they are related to \mathbf{v} and $\overline{\mathbf{v}}$ via the invertible matrix

$$
\llbracket i d \rrbracket_{B}^{B^{\prime}}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2 i} \\
\frac{1}{2} & -\frac{1}{2 i}
\end{array}\right)
$$

Since \mathbf{b}_{1} and \mathbf{b}_{2} are linearly independent over \mathbb{C}, they must be linearly independent over \mathbb{R} as well. Hence if we regard them as elements of \mathbb{R}^{2}, they form a basis of \mathbb{R}^{2}.
ii. We have $\llbracket \varphi_{A} \rrbracket_{B^{\prime}}^{B^{\prime}}=\llbracket \mathrm{id} \rrbracket_{B^{\prime}}^{B} \circ \llbracket \varphi_{A} \rrbracket_{B}^{B} \circ \llbracket \mathrm{id} \rrbracket_{B}^{B^{\prime}}$. Also, note that $\llbracket \varphi_{A} \rrbracket_{B}^{B}=\left(\begin{array}{ll}\lambda & 0 \\ 0 & \bar{\lambda}\end{array}\right)$ and $\llbracket \mathrm{id} \rrbracket_{B^{\prime}}^{B}=\left(\llbracket \mathrm{id} \rrbracket_{B}^{B^{\prime}}\right)^{-1}=$ $\left(\begin{array}{cc}1 & 1 \\ i & -i\end{array}\right)$. We therefore obtain

$$
\llbracket \varphi \rrbracket_{B^{\prime}}^{B^{\prime}}=\left(\begin{array}{cc}
\operatorname{Re}(\lambda) & \operatorname{Im}(\lambda) \\
-\operatorname{Im}(\lambda) & \operatorname{Re}(\lambda)
\end{array}\right)=r\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right),
$$

where $\lambda=r e^{i \theta}$.
Exercise T4 (Simultaneous diagonalisation and polynomials)
Let $A \in \mathbb{R}^{(n, n)}$ be a matrix with n distinct real eigenvalues, and let $B \in \mathbb{R}^{(n, n)}$ be an abitrary matrix such that A and B are simultaneously diagonalisable. Show that there exists a polynomial $p \in \mathbb{R}[X]$ such that $B=p(A)$.

Hint. Recall that, last semester in Linear Algebra I, we have shown in exercise (E14.2) that, given n distinct real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and n arbitrary real numbers $b_{1}, \ldots, b_{n} \in \mathbb{R}$, there exists a polynomial p of degree $n-1$ such that $p\left(a_{i}\right)=b_{i}$ for all i.

Solution:

By assumption, there exists a matrix C such that $D:=C^{-1} A C$ and $H:=C^{-1} B C$ are both diagonal matrices. Suppose that

$$
D=\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right) \text { and } H=\left(\begin{array}{lll}
\mu_{1} & & \\
& \ddots & \\
& & \mu_{n}
\end{array}\right)
$$

Note that $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A. Since these are all distinct, we can use the hint to find a polynomial p such that $p\left(\lambda_{i}\right)=\mu_{i}$. It follows that $p(D)=H$. Since $\left(C D C^{-1}\right)^{k}=C D^{k} C^{-1}$ it follows that $p(A)=p\left(C D C^{-1}\right)=$ $C p(D) C^{-1}=C H C^{-1}=B$.

