Linear Algebra II Tutorial Sheet no. 4

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

May 2, 2011

Exercise T1 (Algebraic and geometric multiplicity)

Let φ be an endomorphism on a finite dimensional \mathbb{F}-vector space V and $\lambda \in \mathbb{F}$ an eigenvalue of φ with geometric multiplicity d and algebraic multiplicity s. Show that $d \leq s$.

Hint: Choose a basis B of V that contains d eigenvectors of φ with eigenvalue λ.

Solution:

We choose a basis $\mathbf{v}_{1}, \cdots, \mathbf{v}_{d}$ for the eigenspace V_{λ} and extend it to a basis $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ for V, where n is the dimension of V. The matrix of φ with respect to this basis is a block upper tringular matrix of the form

$$
A=\llbracket \varphi \rrbracket_{B}^{B}=\left(\begin{array}{c|c}
\lambda E_{d} & B \\
\hline 0 & C
\end{array}\right),
$$

where E_{d} is the $d \times d$-unity matrix, $B \in \mathbb{F}^{(d, n-d)}$ and $C \in \mathbb{F}^{(n-d, n-d)}$. By successive expansion w.r.t. first, second, .. d-th column we find $p_{\varphi}=(\lambda-x)^{d} \operatorname{det}(C-x E)=(\lambda-x)^{d} p_{C}$. Indeed

$$
A-x E_{n}=\left(\begin{array}{ccc|c}
\lambda-x & & 0 & \\
& \ddots & & B \\
0 & & \lambda-x & \\
\hline & 0 & & C-x E
\end{array}\right)
$$

Hence, $(\lambda-x)^{d}$ is a divisor of the characteristic polynomial p_{φ} and we conclude that $s \geq d$, where s is the algebraic multiplicity of the eigenvalue λ.

Exercise T2 (Upper triangle shape)

Find a real upper triangular matrix similar to

$$
A=\left(\begin{array}{ccc}
3 & 0 & -2 \\
-2 & 0 & 1 \\
2 & 1 & 0
\end{array}\right)
$$

Solution:

Consider $A_{1}=A$ as the representation of a linear endomorphism φ_{1} of \mathbb{R}^{3} with respect to the standard basis $B_{1}=$ $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$. The corresponding characteristic equation

$$
p_{\varphi_{1}}=p_{A_{1}}=\operatorname{det}\left(\begin{array}{ccc}
3-\lambda & 0 & -2 \\
-2 & -\lambda & 1 \\
2 & 1 & -\lambda
\end{array}\right)=-\lambda^{3}+3 \lambda^{2}-3 \lambda+1=(1-\lambda)^{3}=0,
$$

has $\lambda_{1}=1$ as only solution. A corresponding eigenvector can be found by solving the homogeneous system of equations $\left(A_{1}-E_{3}\right) \mathbf{v}=0$. A possible result is

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

We extend \mathbf{v}_{1} to a new basis, for example $B_{2}=\left(\mathbf{v}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$. The transition matrix and its inverse are given by

$$
S_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \quad \text { and } \quad S_{1}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)
$$

We obtain

$$
A_{2}=S_{1}^{-1} A_{1} S_{1}=\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 0 & -1 \\
0 & 1 & 2
\end{array}\right)
$$

as the representation of φ_{1} with respect to the new basis B_{2}. Our next step is to consider the endomorphism φ_{2} of the subspace of \mathbb{R}^{3} spanned by $\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right)$ represented by the submatrix

$$
A_{2}^{\prime}=\left(\begin{array}{cc}
0 & -1 \\
1 & 2
\end{array}\right)
$$

with respect to that basis. From the characteristic equation $p_{\varphi_{2}}=p_{A_{2}^{\prime}}=\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}=0$, we get $\lambda_{2}=1$. From the homogeneous system $\left(A_{2}-E_{2}\right) \mathbf{v}_{2}=0$ we obtain

$$
\mathbf{v}_{2}=\binom{1}{-1}
$$

After extending ($\left.\mathbf{v}_{1}, \mathbf{v}_{2}=\mathbf{e}_{2}-\mathbf{e}_{3}\right)$ to a new basis, for example: $B_{3}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{e}_{3}\right)$, we compute the transition matrix and its inverse:

$$
S_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right) \quad \text { and } \quad S_{2}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

We derive

$$
A_{3}=S_{2}^{-1} A_{1} S_{2}=\left(\begin{array}{ccc}
1 & 2 & -2 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

where A_{3} has the desired upper triangle form.

Exercise T3 (Ideals)

Recall that a non-empty subset I of a commutative ring R is called an ideal, if it is closed under addition and under multiplication with arbitrary ring elements. The principal ideal I_{a} generated by a fixed element $a \in R$ is defined by

$$
I_{a}=\{r a: r \in R\}
$$

as the set of all multiples of a (see Definition 1.2.16 on page 22 of the notes).
(a) Verify that I_{a} is the smallest (\subseteq-minimal) ideal containing a.
(b) Let I and J be two ideals in a commutative ring R. Prove that

$$
I+J=\{i+j: i \in I, j \in J\}
$$

is again an ideal, in fact, the smallest ideal containing both I and J.
(c) Prove that every ideal over \mathbb{Z} is principal. Is the same true in the rings $\mathbb{Z}_{n}(n \in \mathbb{Z})$? (As already discussed in H3.3 from LA I 2010/11.)
(d) For two elements $m, n \in \mathbb{Z}$, the set $I_{m}+I_{n}$ is an ideal over \mathbb{Z}, hence principal. This means that $I_{m}+I_{n}=I_{k}$ for some element $k \in \mathbb{Z}$. Express k in terms of m and n.
(e) For any two ideals I and J in a commutative ring R, find an expression for $I \wedge J$, the largest ideal contained in both I and J. Over the ring \mathbb{Z}, how does one determine for any pair $m, n \in \mathbb{Z}$ the $k \in \mathbb{Z}$ such that $I_{m} \wedge I_{n}=I_{k}$?

Solution:

a) $a \in I_{a}, r a+s a=(r+s) a$ and $s(r a)=(s r) a$, so I_{a} is an ideal. Since ideals have to be closed under multiplication by arbitrary ring elements, $I_{a} \subseteq I$ for any ideal I containing a.
b) $I+J$ is non-empty, since both I and J are, and therefore $I+J$ is an ideal by the equalities $(i+j)+\left(i^{\prime}+j^{\prime}\right)=$ $\left(i+i^{\prime}\right)+\left(j+j^{\prime}\right)$ and $s(i+j)=s i+s j$. Since ideals are closed under addition, $I+J \subseteq K$ for any ideal K containing both I and J.
c) Let I be a ideal over \mathbb{Z} containing elements other than 0 . Since $i \in I$ implies $-i \in I$, let a be the least positive element of I, and let $j \in I$. By the division algorithm, there exist integers k, l such that $j=k a+l$ with $0 \leq l<a$. Since $l=j-k a \in I$ and by definition of a, we have $l=0$.

Also for every ideal I in \mathbb{Z}_{n}, define

$$
J:=\{k \in \mathbb{Z}: k \bmod n \in I\} .
$$

J is easily seen to be an ideal in \mathbb{Z}, so it is generated by some $a \in \mathbb{Z}$. Therefore I is generated by $a \bmod n$.
d) From a previous OWO lecture or Exercise H3.3 from LA I 2010/11, it should be known that $I_{m}+I_{n}=\{a m+b n$: $a, b \in \mathbb{Z}\}$ is precisely the set of all multiples of the greatest common divisor of m and n.
e) For any two ideals I and J in a commutative ring, their intersection $I \cap J$ is again an ideal, which is then clearly the largest contained in both.
For $m, n \in \mathbb{Z}$, let I_{m} and I_{n} be the corresponding ideals. Recall that the least common multiple $\operatorname{lcm}(m, n)$ is an integer k characterized by the following properties:

1. $m \mid k$ and $n \mid k$.
2. If a is any integer for which $m \mid a$ and $n \mid a$, then $k \mid a$.

We claim that $I_{m} \wedge I_{n}=I_{k}$, where $k=\operatorname{lcm}(m, n)$. Clearly $I_{m} \wedge I_{n}=I_{k}$ for some k, and we have $m \mid k$ and $n \mid k$ since $I_{k} \subseteq I_{m}$ and $I_{k} \subseteq I_{n}$. Suppose that $n \mid a$ and $m \mid a$ for some integer a. Then $a \in I_{n} \cap I_{m}$, so $a \in I_{k}$ by definition, and hence $k \mid a$. It follows that $k=\operatorname{lcm}(m, n)$.

