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Exercise T1 (Algebraic and geometric multiplicity)
Let ϕ be an endomorphism on a finite dimensional F-vector space V and λ ∈ F an eigenvalue of ϕ with geometric

multiplicity d and algebraic multiplicity s. Show that d ≤ s.
Hint: Choose a basis B of V that contains d eigenvectors of ϕ with eigenvalue λ.

Solution:
We choose a basis v1, · · · ,vd for the eigenspace Vλ and extend it to a basis v1, · · · ,vn for V , where n is the dimension of
V . The matrix of ϕ with respect to this basis is a block upper tringular matrix of the form

A= ¹ϕºB
B =

�

λEd B
0 C

�

,

where Ed is the d × d-unity matrix, B ∈ F(d,n−d) and C ∈ F(n−d,n−d). By successive expansion w.r.t. first, second, .. d-th
column we find pϕ = (λ− x)ddet(C − x E) = (λ− x)d pC . Indeed

A− x En =













λ− x 0
. . . B

0 λ− x
0 C − x E













Hence, (λ− x)d is a divisor of the characteristic polynomial pϕ and we conclude that s ≥ d, where s is the algebraic
multiplicity of the eigenvalue λ.

Exercise T2 (Upper triangle shape)
Find a real upper triangular matrix similar to

A=







3 0 −2
−2 0 1
2 1 0






.

Solution:
Consider A1 = A as the representation of a linear endomorphism ϕ1 of R3 with respect to the standard basis B1 =
(e1,e2,e3). The corresponding characteristic equation

pϕ1
= pA1

= det







3−λ 0 −2
−2 −λ 1
2 1 −λ






=−λ3 + 3λ2 − 3λ+ 1= (1−λ)3 = 0,

has λ1 = 1 as only solution. A corresponding eigenvector can be found by solving the homogeneous system of equations
(A1 − E3)v= 0. A possible result is

v1 =







1
−1
1






.
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We extend v1 to a new basis, for example B2 = (v1,e2,e3). The transition matrix and its inverse are given by

S1 =







1 0 0
−1 1 0
1 0 1






and S−1

1 =







1 0 0
1 1 0
−1 0 1






.

We obtain

A2 = S−1
1 A1S1 =







1 0 −2
0 0 −1
0 1 2






,

as the representation of ϕ1 with respect to the new basis B2. Our next step is to consider the endomorphism ϕ2 of the
subspace of R3 spanned by (e2,e3) represented by the submatrix

A′2 =
�

0 −1
1 2

�

with respect to that basis. From the characteristic equation pϕ2
= pA′2

= λ2−2λ+1= (λ−1)2 = 0, we get λ2 = 1. From
the homogeneous system (A2 − E2)v2 = 0 we obtain

v2 =
�

1
−1

�

.

After extending (v1,v2 = e2− e3) to a new basis, for example: B3 = (v1,v2,e3), we compute the transition matrix and its
inverse:

S2 =







1 0 0
−1 1 0
1 −1 1






and S−1

2 =







1 0 0
1 1 0
0 1 1






.

We derive

A3 = S−1
2 A1S2 =







1 2 −2
0 1 −1
0 0 1






,

where A3 has the desired upper triangle form.

Exercise T3 (Ideals)
Recall that a non-empty subset I of a commutative ring R is called an ideal, if it is closed under addition and under

multiplication with arbitrary ring elements. The principal ideal Ia generated by a fixed element a ∈ R is defined by

Ia = {ra : r ∈ R}

as the set of all multiples of a (see Definition 1.2.16 on page 22 of the notes).

(a) Verify that Ia is the smallest (⊆-minimal) ideal containing a.

(b) Let I and J be two ideals in a commutative ring R. Prove that

I + J = {i+ j : i ∈ I , j ∈ J}

is again an ideal, in fact, the smallest ideal containing both I and J .

(c) Prove that every ideal over Z is principal. Is the same true in the rings Zn (n ∈ Z)? (As already discussed in H3.3
from LA I 2010/11.)

(d) For two elements m, n ∈ Z, the set Im+ In is an ideal over Z, hence principal. This means that Im+ In = Ik for some
element k ∈ Z. Express k in terms of m and n.

(e) For any two ideals I and J in a commutative ring R, find an expression for I ∧ J , the largest ideal contained in both
I and J . Over the ring Z, how does one determine for any pair m, n ∈ Z the k ∈ Z such that Im ∧ In = Ik?

Solution:
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a) a ∈ Ia, ra+ sa = (r + s)a and s(ra) = (sr)a, so Ia is an ideal. Since ideals have to be closed under multiplication
by arbitrary ring elements, Ia ⊆ I for any ideal I containing a.

b) I + J is non-empty, since both I and J are, and therefore I + J is an ideal by the equalities (i + j) + (i′ + j′) =
(i+ i′)+( j+ j′) and s(i+ j) = si+ s j. Since ideals are closed under addition, I + J ⊆ K for any ideal K containing
both I and J .

c) Let I be a ideal over Z containing elements other than 0. Since i ∈ I implies −i ∈ I , let a be the least positive
element of I , and let j ∈ I . By the division algorithm, there exist integers k, l such that j = ka+ l with 0 ≤ l < a.
Since l = j− ka ∈ I and by definition of a, we have l = 0.

Also for every ideal I in Zn, define

J := {k ∈ Z : k mod n ∈ I}.

J is easily seen to be an ideal in Z, so it is generated by some a ∈ Z. Therefore I is generated by a mod n.

d) From a previous OWO lecture or Exercise H3.3 from LA I 2010/11, it should be known that Im + In = {am+ bn :
a, b ∈ Z} is precisely the set of all multiples of the greatest common divisor of m and n.

e) For any two ideals I and J in a commutative ring, their intersection I ∩ J is again an ideal, which is then clearly
the largest contained in both.

For m, n ∈ Z, let Im and In be the corresponding ideals. Recall that the least common multiple lcm(m, n) is an
integer k characterized by the following properties:

1. m|k and n|k.

2. If a is any integer for which m|a and n|a, then k|a.

We claim that Im ∧ In = Ik, where k = lcm(m, n). Clearly Im ∧ In = Ik for some k, and we have m|k and n|k since
Ik ⊆ Im and Ik ⊆ In. Suppose that n|a and m|a for some integer a. Then a ∈ In ∩ Im, so a ∈ Ik by definition, and
hence k|a. It follows that k = lcm(m, n).
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