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Exercise T1 (Algebraic and geometric multiplicity)

Let ¢ be an endomorphism on a finite dimensional F-vector space V and A € F an eigenvalue of ¢ with geometric
multiplicity d and algebraic multiplicity s. Show thatd <s.

Hint: Choose a basis B of V that contains d eigenvectors of ¢ with eigenvalue A.

Solution:
We choose a basis vy, - -+, v, for the eigenspace V, and extend it to a basis v;, -+ ,v, for V, where n is the dimension of
V. The matrix of ¢ with respect to this basis is a block upper tringular matrix of the form

A=[[<,01]§=( Agd g)

where E, is the d x d-unity matrix, B € F{@"~9 and ¢ € F(*-4"~d_ By successive expansion w.r.t. first, second, .. d-th
column we find p, = (A — x)%det(C — xE) = (A — x)%p.. Indeed

A—x 0

A—xE, = B
0 A—x

0 |C—xE

Hence, (A — x)? is a divisor of the characteristic polynomial p, and we conclude that s > d, where s is the algebraic
multiplicity of the eigenvalue A.

Exercise T2 (Upper triangle shape)
Find a real upper triangular matrix similar to

3 0 -2
A=|-2 0 1
2 1 0

Solution:
Consider A; = A as the representation of a linear endomorphism ¢, of R® with respect to the standard basis B, =
(eq,€5,e3). The corresponding characteristic equation

3-2 0 -2
p‘PlszIZdet -2 _l 1 2_2‘3*‘32,2_3},‘}‘1:(1_)\/)3:0;
2 1 -2

has A; =1 as only solution. A corresponding eigenvector can be found by solving the homogeneous system of equations
(A; — E5)v=0. A possible result is

vp=| -1




We extend v; to a new basis, for example B, = (v;, e,, €;5). The transition matrix and its inverse are given by

1 00 1 00
S$5=|-1 1 0| and S;'=| 1 1 0
1 01 -1 0 1
We obtain
1 0 -2
Ay=S7'A;8, =0 0 -1,
01 2

as the representation of (; with respect to the new basis B,. Our next step is to consider the endomorphism ¢, of the
subspace of R® spanned by (e,, e;) represented by the submatrix

, (0 -1
4= (1 2
with respect to that basis. From the characteristic equation p,, = Pa, = A2—21+1=(A—-1)>=0, we get A, = 1. From
the homogeneous system (A, — E,)v, = O we obtain
1
VZ = _1 .

After extending (v;,Vv, = e, — e3) to a new basis, for example: By = (v;,V,, €5), we compute the transition matrix and its
inverse:

1 0 0 100
S;=|-1 1 0| and S;'=|1 1 0
1 -1 1 011
We derive
1 2 -2
Ay =S;'A1S, =0 1 -1],
0 0 1

where A5 has the desired upper triangle form.

Exercise T3 (Ideals)
Recall that a non-empty subset I of a commutative ring R is called an ideal, if it is closed under addition and under
multiplication with arbitrary ring elements. The principal ideal I, generated by a fixed element a € R is defined by

I,={ra:reR}

as the set of all multiples of a (see Definition 1.2.16 on page 22 of the notes).
(a) Verify that I, is the smallest (C-minimal) ideal containing a.

(b) LetI and J be two ideals in a commutative ring R. Prove that
I+J={i+j:iel,jeJ}

is again an ideal, in fact, the smallest ideal containing both I and J.

(c) Prove that every ideal over Z is principal. Is the same true in the rings Z, (n € Z)? (As already discussed in H3.3
from LA12010/11.)

(d) For two elements m,n € Z, the set I,, +I,, is an ideal over Z, hence principal. This means that I,, + I, = I; for some
element k € Z. Express k in terms of m and n.

(e) For any two ideals I and J in a commutative ring R, find an expression for I AJ, the largest ideal contained in both
I and J. Over the ring Z, how does one determine for any pair m,n € Z the k € Z such that I, AT, = I;.?

Solution:




a)

b)

c)

d)

e)

a€l,ra+sa=(r+s)aands(ra) = (sr)a, so I, is an ideal. Since ideals have to be closed under multiplication
by arbitrary ring elements, I, C I for any ideal I containing a.

I +J is non-empty, since both I and J are, and therefore I + J is an ideal by the equalities (i + j) + (i’ +j') =
(i4+i)+(+j") and s(i+j) =si+sj. Since ideals are closed under addition, I +J € K for any ideal K containing
both I and J.

Let I be a ideal over Z containing elements other than 0. Since i € I implies —i € I, let a be the least positive
element of I, and let j € I. By the division algorithm, there exist integers k,l such that j = ka+1 with 0 <[ < a.
Since [ = j — ka €I and by definition of a, we have [ = 0.

Also for every ideal I in Z,, define

J:={ke€Z:kmodnel}.

J is easily seen to be an ideal in Z, so it is generated by some a € Z. Therefore I is generated by a mod n.

From a previous OWO lecture or Exercise H3.3 from LA [ 2010/11, it should be known that I,, + I, = {am + bn :
a, b € Z} is precisely the set of all multiples of the greatest common divisor of m and n.

For any two ideals I and J in a commutative ring, their intersection I NJ is again an ideal, which is then clearly
the largest contained in both.

For m,n € Z, let I,, and I,, be the corresponding ideals. Recall that the least common multiple lem(m, n) is an
integer k characterized by the following properties:

1. m|k and nlk.
2. If a is any integer for which m|a and n|a, then k|a.

We claim that I, A I,, = I, where k = lem(m, n). Clearly I,, A I, = I for some k, and we have m|k and n|k since
I, €1, and I € I,. Suppose that n|a and m|a for some integer a. Then a € I, N I,,, so a € I; by definition, and
hence k|a. It follows that k = lem(m, n).




