Linear Algebra II Tutorial Sheet no. 2

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011

Prof. Dr. Otto
 Dr. Le Roux
 Dr. Linshaw

April 18, 2011

Exercise T1 (Geometric characterisation of linear maps by eigenvalues)
Give a geometric description of all the endomorphisms of \mathbb{R}^{3} with the following sets of eigenvalues:
(a) $\lambda_{1}=-1, \lambda_{2}=0, \lambda_{3}=1$
(b) $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3$
(c) $\lambda_{1}=-1, \lambda_{2}=1, \lambda_{3}=2$

Note that you cannot assume anything about the corresponding eigenvectors other than that they form a basis (why?).

Solution:

We denote the respective eigenvectors by $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
a) $\lambda_{1}=-1, \lambda_{2}=0, \lambda_{3}=1$: Since $\lambda_{2}=0$ all vectors are projected onto the plane spanned by \mathbf{v}_{1} and \mathbf{v}_{3}. Within that plane, the vectors along \mathbf{v}_{3} stay fixed, the ones along \mathbf{v}_{1} are inverted. Thus we have a reflection. So the map describes a (skew) projection, followed by a (skew) reflection.
b) $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3$: This map rescales vectors by factors 2 and 3 in directions \mathbf{v}_{2} and \mathbf{v}_{3}, respectively.
c) $\lambda_{1}=-1, \lambda_{2}=1, \lambda_{3}=2$: This map sort of reflects the elements w.r.t the plane spanned by \mathbf{v}_{2} and \mathbf{v}_{3} along \mathbf{v}_{1}. However, every vector is aditionally streched along \mathbf{v}_{3}. You might want to call this map a (skew) reflection w.r.t. the plane spanned by \mathbf{v}_{2} and \mathbf{v}_{3} followed by a rescaling with factor 2 in the direction of \mathbf{v}_{3}.

Exercise T2 (Eigenvalues and eigenvectors over \mathbb{R} and \mathbb{C})
Let A be the 3×3-matrix $\left(\begin{array}{ccc}0 & -1 & 4 \\ 1 & 0 & 2 \\ 0 & 0 & 1\end{array}\right)$.
(a) Determine the characteristic polynomial of the matrix A.
(b) Find all real eigenvalues of A and the corresponding eigenvectors of the map $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $\varphi(x)=A x$.
(c) Find all eigenvalues for the corresponding map $\varphi: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ with $\varphi(x)=A x$ and give a basis of each eigenspace.

Solution:

a) $p_{A}(\lambda)=\operatorname{det}\left(\begin{array}{ccc}-\lambda & -1 & 4 \\ 1 & -\lambda & 2 \\ 0 & 0 & 1-\lambda\end{array}\right)=(1-\lambda) \cdot \operatorname{det}\left(\begin{array}{cc}-\lambda & -1 \\ 1 & -\lambda\end{array}\right)=(1-\lambda)\left(\lambda^{2}+1\right)$.
b)

$$
p_{A}(\lambda)=0 \Leftrightarrow 1-\lambda=0 \text { or } \lambda^{2}+1=0
$$

so there is only one real eigenvalue $\lambda_{1}=1$ and the corresponding eigenspace is span $\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)=\left\{r\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right): r \in \mathbb{R}\right\}$
c)

$$
p_{A}(\lambda)=(1-\lambda)\left(\lambda^{2}+1\right)=0 \Leftrightarrow 1-\lambda=0 \text { or } \lambda+i=0 \text { or } \lambda-i=0
$$

So the eigenspaces are
$\lambda_{1}=1:\left\{r\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right): r \in \mathbb{C}\right\}$ with basis $b_{1}=\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$
$\lambda_{2}=i:\left\{r\left(\begin{array}{l}i \\ 1 \\ 0\end{array}\right): r \in \mathbb{C}\right\}$ with basis $b_{1}=\left(\begin{array}{l}i \\ 1 \\ 0\end{array}\right)$
$\lambda_{3}=-i:\left\{r\left(\begin{array}{l}1 \\ i \\ 0\end{array}\right): r \in \mathbb{C}\right\}$ with basis $b_{1}=\left(\begin{array}{l}1 \\ i \\ 0\end{array}\right)$

Exercise T3 (Diagonalisation)

Consider the matrix $A=\left(\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right)$ over \mathbb{R}.
(a) Determine all eigenvalues of A and corresponding eigenvectors.
(b) Find a regular matrix C such that $D=C^{-1} A C$ is a diagonal matrix.
(c) Calculate A^{6}.
(d) Find a "positive square root" of A, i.e., find a matrix R with non-negative eigenvalues such that $R^{2}=A$
(e) Check that $t \mapsto e^{t A} \mathbf{v}_{0}$ solves the differential equation $\frac{d}{d t} \mathbf{v}(t)=A \mathbf{v}(t)$ with initial value $\mathbf{v}(0)=\mathbf{v}_{0}$.

Solution:

a) We have

$$
\operatorname{det}(A-\lambda E)=\lambda^{2}-5 \lambda+4=(\lambda-4)(\lambda-1)
$$

Thus the eigenvalues of φ are $\lambda_{1}=4$ and $\lambda_{2}=1$. In order to determine the kernels of $A-\lambda_{i} E$, we perform Gauß-Jordan elimination:

$$
\begin{aligned}
& A-\lambda_{1} E=\left(\begin{array}{cc}
-2 & 2 \\
1 & -1
\end{array}\right) \rightsquigarrow\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right) \\
& A-\lambda_{2} E=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right) \rightsquigarrow\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

We may choose $\mathbf{v}_{1}=\binom{1}{1}$ with $\operatorname{span}\left(\mathbf{v}_{1}\right)=\operatorname{ker}\left(A-\lambda_{1} E\right)$ and $\mathbf{v}_{2}=\binom{-2}{1}$ with $\operatorname{span}\left(\mathbf{v}_{2}\right)=\operatorname{ker}\left(A-\lambda_{2} E\right)$.
b) Let $\varphi=\varphi_{A}$ be the linear map represented by A w.r.t. the standard basis. Then φ is represented by the diagonal matrix $D=\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right)$ w.r.t. the (labelled) basis $B=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ of \mathbb{R}^{2}.
Therefore the desired matrix C is the transition matrix from the basis B to the standard basis, i.e. $C:=\left(\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right)$. It is easy to verify that its inverse is $C^{-1}=\frac{1}{3}\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right)$, so that $D=C^{-1} A C=\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right)$ is indeed a diagonal matrix.
c) The conjugation map $\rho_{C}: \mathbb{F}^{2,2} \rightarrow \mathbb{F}^{2,2}$ given by $M \mapsto C^{-1} M C$ is an automorphism of the ring $\mathbb{F}^{2,2}$ of 2×2 matrices, and in particular preserves sums and products of matrices. Since $\rho_{c}(A)=D$ we have $\rho_{c}\left(A^{k}\right)=D^{k}$ for all $0 \leq k$. Similarly $A^{k}=\rho_{C}^{-1}\left(D^{k}\right)=\left(C D C^{-1}\right)^{k}=C D^{k} C^{-1}$.

$$
\begin{aligned}
A^{6} & =\left(C D C^{-1}\right)^{6}=C D^{6} C^{-1}=\frac{1}{3}\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
4^{6} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{cc}
4^{6} & -2 \\
4^{6} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right)=\frac{1}{3}\left(\begin{array}{cc}
4^{6}+2 & 2 \cdot 4^{6}-2 \\
4^{6}-1 & 2 \cdot 4^{6}+1
\end{array}\right)=\left(\begin{array}{cc}
1366 & 2730 \\
1365 & 2731
\end{array}\right)
\end{aligned}
$$

d) Take $R=C\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right) C^{-1}$. Since

$$
R^{2}=C\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) C^{-1} C\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) C^{-1}=C D C^{-1}=A
$$

R is a "positive square root" of A.
e) Recall that the exponential function over the reals is defined by $e^{x}=\sum_{0 \leq k} \frac{x^{k}}{k!}$ for all x in \mathbb{R}. Similarly for a diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$, since $D^{k}=\operatorname{diag}\left(d_{1}^{k}, \ldots, d_{n}^{k}\right)$, it is natural to define

$$
e^{D}=\sum_{k=0}^{\infty} \frac{D^{k}}{k!}=\operatorname{diag}\left(e^{d_{1}}, \ldots, e^{d_{n}}\right)
$$

Next, suppose that A is diagonalisable and write $A=C D C^{-1}$ where D is diagonal. Since $A^{k}=C D^{k} C^{-1}$ for all k, we have

$$
e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}=\sum_{k=0}^{\infty} \frac{C D^{k} C^{-1}}{k!}=C\left(\sum_{k=0}^{\infty} \frac{D^{k}}{k!}\right) C^{-1}=C e^{D} C^{-1} .
$$

Therefore $e^{t A}=C e^{t D} C^{-1}$. Note also that $e^{t D}=\left(\begin{array}{cc}e^{4 t} & 0 \\ 0 & e^{t}\end{array}\right)$, so that

$$
\frac{d}{d t} e^{t D}=\frac{d}{d t}\left(\begin{array}{cc}
e^{4 t} & 0 \\
0 & e^{t}
\end{array}\right)=\left(\begin{array}{cc}
4 e^{4 t} & 0 \\
0 & e^{t}
\end{array}\right)=D\left(\begin{array}{cc}
e^{4 t} & 0 \\
0 & e^{t}
\end{array}\right)=D e^{t D}
$$

Therefore:

$$
\begin{aligned}
\frac{d}{d t} \mathbf{v}(t) & =\frac{d}{d t} e^{t A} \mathbf{v}_{0}=\frac{d}{d t}\left(C e^{t D} C^{-1}\right) \mathbf{v}_{0}=C\left(\frac{d}{d t} e^{t D}\right) C^{-1} \mathbf{v}_{0} \\
& =C D e^{t D} C^{-1} \mathbf{v}_{0}=\left(C D C^{-1}\right)\left(C e^{t D} C^{-1}\right) \mathbf{v}_{0}=A e^{t A} \mathbf{v}_{0}=A \mathbf{v}(t)
\end{aligned}
$$

Exercise T4 (Eigenvalues of nilpotent maps)

Let V be a vector space of dimension greater than 0 , and let $\varphi: V \rightarrow V$ be a nilpotent endomorphism, that is, an endomorphism such that $\varphi^{k}=\mathbf{0}$ for some $k \in \mathbb{N}$.
(a) Show that 0 is the only possible eigenvalue of φ.
(b) Show that 0 is an eigenvalue of φ.

Solution:

a) If λ is some eigenvalue of φ, then $\varphi(\mathbf{v})=\lambda \mathbf{v}$ for some non-null vector $\mathbf{v} \in V$. Then $\mathbf{0}=\varphi^{k}(\mathbf{v})=\lambda^{k} \mathbf{v}$. Since \mathbf{v} was non-null, this implies that $\lambda^{k}=0$ and therefore that $\lambda=0$.
b) Note that $\mathbf{0}$ is an eigenvalue of φ if and only if $\operatorname{ker}(\varphi)$ is nontrivial. But $\operatorname{ker}(\varphi)=\mathbf{0}$ implies that φ is regular, which implies that φ^{k} is regular for all $k \geq 0$. This contradicts the fact that φ is nilpotent.

