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Exercise T1 (Geometric characterisation of linear maps by eigenvalues)
Give a geometric description of all the endomorphisms of R3 with the following sets of eigenvalues:

(a) λ1 =−1,λ2 = 0,λ3 = 1

(b) λ1 = 1,λ2 = 2,λ3 = 3

(c) λ1 =−1,λ2 = 1,λ3 = 2

Note that you cannot assume anything about the corresponding eigenvectors other than that they form a basis (why?).

Solution:
We denote the respective eigenvectors by v1,v2,v3.

a) λ1 = −1,λ2 = 0,λ3 = 1: Since λ2 = 0 all vectors are projected onto the plane spanned by v1 and v3. Within
that plane, the vectors along v3 stay fixed, the ones along v1 are inverted. Thus we have a reflection. So the map
describes a (skew) projection, followed by a (skew) reflection.

b) λ1 = 1,λ2 = 2,λ3 = 3: This map rescales vectors by factors 2 and 3 in directions v2 and v3, respectively.

c) λ1 = −1,λ2 = 1,λ3 = 2: This map sort of reflects the elements w.r.t the plane spanned by v2 and v3 along v1.
However, every vector is aditionally streched along v3. You might want to call this map a (skew) reflection w.r.t.
the plane spanned by v2 and v3 followed by a rescaling with factor 2 in the direction of v3.

Exercise T2 (Eigenvalues and eigenvectors over R and C)

Let A be the 3× 3-matrix







0 −1 4
1 0 2
0 0 1






.

(a) Determine the characteristic polynomial of the matrix A.

(b) Find all real eigenvalues of A and the corresponding eigenvectors of the map ϕ : R3→ R3 with ϕ(x) = Ax .

(c) Find all eigenvalues for the corresponding map ϕ : C3→ C3 with ϕ(x) = Ax and give a basis of each eigenspace.

Solution:

a) pA(λ) = det







−λ −1 4
1 −λ 2
0 0 1−λ






= (1−λ) · det

�

−λ −1
1 −λ

�

= (1−λ)(λ2 + 1).

b)

pA(λ) = 0⇔ 1−λ= 0 or λ2 + 1= 0

so there is only one real eigenvalue λ1 = 1 and the corresponding eigenspace is span







1
3
1






= {r







1
3
1






: r ∈ R}

c)

pA(λ) = (1−λ)(λ2 + 1) = 0⇔ 1−λ= 0 or λ+ i = 0 or λ− i = 0

So the eigenspaces are
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λ1 = 1: {r







1
3
1






: r ∈ C} with basis b1 =







1
3
1







λ2 = i: {r







i
1
0






: r ∈ C} with basis b1 =







i
1
0







λ3 =−i: {r







1
i
0






: r ∈ C} with basis b1 =







1
i
0







Exercise T3 (Diagonalisation)

Consider the matrix A=
�

2 2
1 3

�

over R.

(a) Determine all eigenvalues of A and corresponding eigenvectors.

(b) Find a regular matrix C such that D = C−1AC is a diagonal matrix.

(c) Calculate A6.

(d) Find a “positive square root” of A, i.e., find a matrix R with non-negative eigenvalues such that R2 = A

(e) Check that t 7→ etAv0 solves the differential equation d
d t

v(t) = Av(t) with initial value v(0) = v0.

Solution:

a) We have

det(A−λE) = λ2 − 5λ+ 4= (λ− 4)(λ− 1).

Thus the eigenvalues of ϕ are λ1 = 4 and λ2 = 1. In order to determine the kernels of A− λi E, we perform
Gauß-Jordan elimination:

A−λ1E =
�

−2 2
1 −1

�

 
�

1 −1
0 0

�

A−λ2E =
�

1 2
1 2

�

 
�

1 2
0 0

�

.

We may choose v1 =
�

1
1

�

with span(v1) = ker(A−λ1E) and v2 =
�

−2
1

�

with span(v2) = ker(A−λ2E).

b) Let ϕ = ϕA be the linear map represented by A w.r.t. the standard basis. Then ϕ is represented by the diagonal

matrix D =
�

4 0
0 1

�

w.r.t. the (labelled) basis B = (v1,v2) of R2.

Therefore the desired matrix C is the transition matrix from the basis B to the standard basis, i.e. C :=
�

1 −2
1 1

�

.

It is easy to verify that its inverse is C−1 = 1
3

�

1 2
−1 1

�

, so that D = C−1AC =
�

4 0
0 1

�

is indeed a diagonal matrix.

c) The conjugation map ρC : F2,2→ F2,2 given by M 7→ C−1MC is an automorphism of the ring F2,2 of 2×2 matrices,
and in particular preserves sums and products of matrices. Since ρc(A) = D we have ρc(Ak) = Dk for all 0 ≤ k.
Similarly Ak = ρ−1

C (D
k) = (C DC−1)k = C DkC−1.

A6 =
�

C DC−1�6 = C D6C−1 = 1
3

�

1 −2
1 1

��

46 0
0 1

��

1 2
−1 1

�

= 1
3

�

46 −2
46 1

��

1 2
−1 1

�

= 1
3

�

46 + 2 2 · 46 − 2
46 − 1 2 · 46 + 1

�

=
�

1366 2730
1365 2731

�

.

d) Take R= C
�

2 0
0 1

�

C−1. Since

R2 = C
�

2 0
0 1

�

C−1C
�

2 0
0 1

�

C−1 = C DC−1 = A,

R is a “positive square root” of A.
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e) Recall that the exponential function over the reals is defined by ex =
∑

0≤k
xk

k!
for all x in R. Similarly for a diagonal

matrix D = diag(d1, . . . , dn), since Dk = diag(dk
1 , . . . , dk

n), it is natural to define

eD =
∞
∑

k=0

Dk

k!
= diag(ed1 , . . . , edn).

Next, suppose that A is diagonalisable and write A= C DC−1 where D is diagonal. Since Ak = C DkC−1 for all k, we
have

eA =
∞
∑

k=0

Ak

k!
=
∞
∑

k=0

C DkC−1

k!
= C

 

∞
∑

k=0

Dk

k!

!

C−1 = CeDC−1.

Therefore etA = CetDC−1. Note also that etD =
�

e4t 0
0 et

�

, so that

d

d t
etD =

d

d t

�

e4t 0
0 et

�

=
�

4e4t 0
0 et

�

= D
�

e4t 0
0 et

�

= DetD.

Therefore:

d

d t
v(t) =

d

d t
etAv0 =

d

d t

�

CetDC−1
�

v0 = C
�

d

d t
etD
�

C−1v0

= C DetDC−1v0 =
�

C DC−1
��

CetDC−1
�

v0 = AetAv0 = Av(t).

Exercise T4 (Eigenvalues of nilpotent maps)
Let V be a vector space of dimension greater than 0, and let ϕ : V → V be a nilpotent endomorphism, that is, an

endomorphism such that ϕk = 0 for some k ∈ N.

(a) Show that 0 is the only possible eigenvalue of ϕ.

(b) Show that 0 is an eigenvalue of ϕ.

Solution:

a) If λ is some eigenvalue of ϕ, then ϕ(v) = λv for some non-null vector v ∈ V . Then 0 = ϕk(v) = λkv. Since v was
non-null, this implies that λk = 0 and therefore that λ= 0.

b) Note that 0 is an eigenvalue of ϕ if and only if ker(ϕ) is nontrivial. But ker(ϕ) = 0 implies that ϕ is regular, which
implies that ϕk is regular for all k ≥ 0. This contradicts the fact that ϕ is nilpotent.
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