Linear Algebra II Tutorial Sheet no. 1

Summer term 2011

Prof. Dr. Otto
 Dr. Le Roux
 Dr. Linshaw

April 13, 2011

Discuss and compare as many different solution strategies as possible for the following two questions from your exam.

Exercise T1 (Exam problem 2)

Let $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ be an ordered basis of an n-dimensional \mathbb{F}-vector space V.
(a) Let B^{\prime} be obtained by replacing \mathbf{b}_{i} by $\mathbf{b}_{i}^{\prime}=\sum_{j=1}^{i} \mathbf{b}_{j}$ for $1 \leq i \leq n$:

$$
B^{\prime}:=\left(\mathbf{b}_{1}, \mathbf{b}_{1}+\mathbf{b}_{2}, \mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{3}, \ldots, \mathbf{b}_{1}+\cdots+\mathbf{b}_{n}\right) .
$$

Determine whether B^{\prime} always also forms a basis of V.
(b) For $\mathbf{v} \in V$ let

$$
B-\mathbf{v}:=\left(\mathbf{b}_{1}-\mathbf{v}, \mathbf{b}_{2}-\mathbf{v}, \ldots, \mathbf{b}_{n}-\mathbf{v}\right) .
$$

Show that the set of those $\mathbf{v} \in V$ for which $B-\mathbf{v}$ is not a basis of V forms an affine subspace of dimension $n-1$ (which contains, and is therefore spanned by, the \mathbf{b}_{i}).

Hint: turn the condition that $B-\mathbf{v}$ admits a non-trivial linear combination of $\mathbf{0}$ into a vector equation for \mathbf{v}.

Solution:

a) Let $\varphi: V \rightarrow V$ be the map $\varphi\left(\mathbf{b}_{i}\right)=\mathbf{b}_{i}^{\prime}$. It is easy to check that the matrix $\llbracket \varphi \rrbracket_{B}^{B}$ of φ has 1 's on and above the diagonal, and zeroes below the diagonal. The determinant of this matrix is 1 , so φ is invertible and B^{\prime} also forms a basis of V.
b) Suppose that $B-\mathrm{v}$ is not a basis of V. Then there are constants $\lambda_{1}, \ldots, \lambda_{n}$, not all zero, such that

$$
\lambda_{1}\left(\mathbf{b}_{1}-\mathbf{v}\right)+\cdots+\lambda_{n}\left(\mathbf{b}_{n}-\mathbf{v}\right)=0 .
$$

Then

$$
\lambda_{1} \mathbf{b}_{1}+\cdots+\lambda_{n} \mathbf{b}_{n}=\lambda \mathbf{v}
$$

where $\lambda=\sum_{i=1}^{n} \lambda_{n}$. First, we claim that $\lambda \neq 0$; otherwise we would have a relation of linear dependence among the elements of B. Hence we can divide both sides by λ, obtaining

$$
\mu_{1} \mathbf{b}_{1}+\cdots+\mu_{n} \mathbf{b}_{n}=\mathbf{v}
$$

where $\mu_{i}=\frac{\lambda_{i}}{\lambda}$. Clearly $\sum_{i=1}^{n} \mu_{i}=1$, and this is the only condition on \mathbf{v}. Hence the set of all \mathbf{v} such that $B-\mathbf{v}$ is not a basis of V is precisely the set of linear combinations $\mu_{1} \mathbf{b}_{1}+\cdots+\mu_{n} \mathbf{b}_{n}$ such that $\sum_{i=1}^{n} \mu_{i}=1$. This is an affine subset of dimension $n-1$.

Exercise T2 (Exam Problem 4)

In $V=\mathbb{R}^{4}$, let $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear map with

$$
\begin{array}{ll}
\varphi((1,0,0,1))=(2,0,0,1), & \varphi((2,0,0,1))=(0,1,1,0), \\
\varphi((0,1,1,0))=(0,1,2,0), & \varphi((0,1,2,0))=(1,0,0,1) .
\end{array}
$$

(a) Check that $\mathbf{b}_{1}=(1,0,0,1), \mathbf{b}_{2}=(2,0,0,1), \mathbf{b}_{3}=(0,1,1,0), \mathbf{b}_{4}=(0,1,2,0)$ form a basis $B=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}\right)$ of \mathbb{R}^{4} and determine the matrix representation $\llbracket \varphi \rrbracket_{B}^{B}$ of φ.
Is φ injective? Does it have an inverse?
(b) Let $S=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right)$ be the standard basis. Derive the matrix representations $\llbracket \varphi \rrbracket_{S}^{B}$ and $\llbracket \varphi \rrbracket_{S}^{S}$ from $\llbracket \varphi \rrbracket_{B}^{B}$ through a systematic application of suitable basis transformation matrices.

Solution:

a) It is easy to check that $\llbracket \varphi \rrbracket_{B}^{B}$ has the form $\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$. This matrix is invertible (being a permutation matrix), and its inverse is just the transpose $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right)$.
b) By definition, $\llbracket \varphi \rrbracket_{S}^{B}$ is given by $\left(\begin{array}{llll}2 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 1\end{array}\right)$. Similarly, $\llbracket i d \rrbracket_{S}^{B}$ is given by $\left(\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 0 & 0\end{array}\right)$. Since $\llbracket \mathrm{id} \rrbracket_{B}^{S} \llbracket \mathrm{id} \rrbracket_{S}^{B}=\llbracket \mathrm{id} \rrbracket_{S}^{S}$, it follows that $\llbracket \mathrm{id} \rrbracket_{B}^{S}$ is the inverse of $\llbracket \mathrm{id} \rrbracket_{S}^{B}$. By an easy computation, $\llbracket \mathrm{idd} \rrbracket_{B}^{S}$ is given by $\left(\begin{array}{cccc}-1 & 0 & 0 & 2 \\ 1 & 0 & 0 & -1 \\ 0 & 2 & -1 & 0 \\ 0 & -1 & 1 & 0\end{array}\right)$. It follows that

$$
\llbracket \varphi \rrbracket_{S}^{S}=\llbracket \varphi \rrbracket_{S}^{B} \llbracket i d \rrbracket_{B}^{S}=\left(\begin{array}{cccc}
2 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
-1 & 0 & 0 & 2 \\
1 & 0 & 0 & -1 \\
0 & 2 & -1 & 0 \\
0 & -1 & 1 & 0
\end{array}\right)=\left(\begin{array}{cccc}
-2 & -1 & 1 & 4 \\
1 & 2 & -1 & -1 \\
1 & 4 & -2 & -1 \\
-1 & -1 & 1 & 2
\end{array}\right)
$$

Exercise T3 (Complex numbers)

Recall that complex numbers are represented by expressions of the form

$$
z=a+b i
$$

with $a, b \in \mathbb{R}, i \notin \mathbb{R}$ a new constant. Identifying $a \in \mathbb{R}$ with the complex number $a+0 i$ and the new constant i with $0+1 i$, one may introduce addition and multiplication as the natural extensions of addition and multiplication in \mathbb{R} based on associativity, commutativity, distributivity and the identity $i^{2}=-1$. \mathbb{R} thus becomes a subfield of the field of complex numbers.
(a) Let $z_{1}=3+4 i$ and $z_{2}=5+12 i$ be complex numbers. Compute

$$
z_{1}^{-1}, \quad z_{2}^{-1}, \quad z_{1}^{2}, \quad z_{2}^{2}, \quad \text { and } \quad z_{1} z_{2}
$$

and draw them in the complex plane. Find the complex square roots of i, z_{1} and z_{2}, i.e., solve the equations $x^{2}=i, x^{2}=z_{1}, x^{2}=z_{2}$ over \mathbb{C}.
(b) Define for $\varphi \in \mathbb{R}$,

$$
e^{i \varphi}:=\cos \varphi+i \sin \varphi
$$

Show that $e^{i \varphi} e^{i \psi}=e^{i(\varphi+\psi)}$ and $\left(e^{i \varphi}\right)^{n}=e^{i n \varphi}$ for every natural number n.
(c) Show that every complex number $z \in \mathbb{C} \backslash\{0\}$ can be represented as:

$$
z=r e^{i \varphi}
$$

with $r \in \mathbb{R}_{>0}$. Prove that this representation is unique in the following sense:
$z=s e^{i \psi}$ with $s>0$ implies $r=s$ and $\varphi \equiv \psi \bmod 2 \pi$.
(d) Use the representation from (c) to
i. give a geometric description of complex multiplication in terms of rotations and rescalings (i.e., dilations or contractions) in \mathbb{R}^{2}.
ii. find all complex solutions of $z^{5}=1$ and draw these in the complex plane. In general, find all solutions to $z^{n}=w$ for $w \in \mathbb{C} \backslash\{0\}, n \in \mathbb{N}$.

Solution:

a)

$$
\begin{gathered}
z_{1}^{-1}=\frac{1}{3+4 i}=\frac{3-4 i}{(3+4 i)(3-4 i)}=\frac{3-4 i}{25}, \quad z_{2}^{-1}=\frac{1}{5+12 i}=\frac{5-12 i}{169} \\
z_{1}^{2}=-7+24 i \quad z_{2}^{2}=-119+120 i, \quad \text { and } z_{1} z_{2}=-33+56 i
\end{gathered}
$$

For $x^{2}=i$:

$$
x_{1}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i \text { and } x_{2}=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i .
$$

For $x^{2}=z_{1}$:

$$
x_{1}=2+i \text { and } x_{2}=-2-i
$$

For $x^{2}=z_{2}$:

$$
x_{1}=3+2 i \text { and } x_{2}=-3-2 i
$$

b)

$$
\begin{aligned}
e^{i \varphi} e^{i \psi} & =(\cos \varphi+i \sin \varphi)(\cos \psi+i \sin \psi) \\
& =(\cos \varphi \cos \psi-\sin \varphi \sin \psi)+(\cos \varphi \sin \psi+\sin \varphi \cos \psi) i \\
& =\cos (\varphi+\psi)+\sin (\varphi+\psi) i \\
& =e^{i(\varphi+\psi)}
\end{aligned}
$$

using the trigonometric formulas for $\cos (\varphi+\psi)$ and $\sin (\varphi+\psi)$.
The equality $\left(e^{i \varphi}\right)^{n}=e^{i n \varphi}$ then follows by induction on n.
c) Let $z=a+b i \neq 0$. Trying to find a representation $z=r e^{i \varphi}=r \cos \varphi+(r \sin \varphi) i$ means solving $a=r \cos \varphi$ and $b=r \sin \varphi$. One finds r by observing that

$$
a^{2}+b^{2}=r^{2}\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)=r^{2}
$$

so $r=\sqrt{a^{2}+b^{2}}>0$ and r is uniquely determined (it is the modulus of z). Furthermore, φ has to be an angle such that

$$
\cos \varphi=\frac{a}{\sqrt{a^{2}+b^{2}}} \text { and } \sin \varphi=\frac{b}{\sqrt{a^{2}+b^{2}}}
$$

This has a unique solution $\varphi_{0} \in[0,2 \pi)$, called the argument of z. The argument of z is just the angle between the positive part of the x-axis and the vector z in the complex plane. Furthermore, the set of all solutions is given by $\left\{\varphi_{0}+2 k \pi: k \in \mathbb{Z}\right\}$.
d) 1. Let $z \in \mathbb{C}$. If $z=0$, then $w z=0$ for all $w \in \mathbb{C}$. Assume that $z \neq 0$, so by (iii), it has the form $z=r e^{i \varphi}$ with $r>0$ and $\varphi \in[0,2 \pi)$. Then, for any complex number w, multiplication of w by z is equivalent to a rotation of w through angle φ followed by a rescaling using the modulus r of z.
2. $z=0$ is certainly not a solution of $z^{5}=1$, so assume z is of the form $r e^{i \varphi}$ with $r>0$. We have to solve the equation:

$$
\left(r e^{i \varphi}\right)^{5}=1, \quad \text { that is } \quad r^{5} e^{i 5 \varphi}=1 e^{i 0} .
$$

By the uniqueness of the representation, this implies $r^{5}=1$ and $5 \varphi=0 \bmod 2 \pi$. So $r=1$, since $r>0$. Then by solving $5 \varphi=2 \pi k$ for every integer k with $0 \leq k<5$, we find solutions $\varphi_{k}=\frac{2 \pi k}{5} \in[0,2 \pi)$. This means we have found five different solutions (viz, $e^{i \varphi_{k}}$ with $0 \leq k<5$), which must be all, since a fifth degree equations can have at most five solutions.
For general $w=e^{i \varphi} \in \mathbb{C} \backslash\{0\}$, the equation $z^{n}=r e^{i \varphi}$ has n solutions

$$
z_{k}=\sqrt[n]{r} e^{i \varphi_{k}}, \text { with } \varphi_{k}=\frac{2 \pi k}{n}, \quad k=0, \ldots, n-1
$$

