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Discuss and compare as many different solution strategies as possible for the following two questions from your exam.

Exercise T1 (Exam problem 2)
Let B = (b1, . . . ,bn) be an ordered basis of an n-dimensional F-vector space V .

(a) Let B′ be obtained by replacing bi by b′i =
∑i

j=1 b j for 1≤ i ≤ n:

B′ := (b1, b1 + b2, b1 + b2 + b3, . . . ,b1 + · · ·+ bn).

Determine whether B′ always also forms a basis of V .

(b) For v ∈ V let

B− v := (b1 − v, b2 − v, . . . , bn − v).

Show that the set of those v ∈ V for which B − v is not a basis of V forms an affine subspace of dimension n− 1
(which contains, and is therefore spanned by, the bi).

Hint: turn the condition that B− v admits a non-trivial linear combination of 0 into a vector equation for v.

Solution:

a) Let ϕ : V → V be the map ϕ(bi) = b′i . It is easy to check that the matrix ¹ϕºBB of ϕ has 1’s on and above the
diagonal, and zeroes below the diagonal. The determinant of this matrix is 1, so ϕ is invertible and B′ also forms
a basis of V .

b) Suppose that B− v is not a basis of V . Then there are constants λ1, . . . ,λn, not all zero, such that

λ1(b1 − v) + · · ·+λn(bn − v) = 0.

Then

λ1b1 + · · ·+λnbn = λv

where λ =
∑n

i=1λn. First, we claim that λ 6= 0; otherwise we would have a relation of linear dependence among
the elements of B. Hence we can divide both sides by λ, obtaining

µ1b1 + · · ·+µnbn = v

where µi =
λi
λ

. Clearly
∑n

i=1µi = 1, and this is the only condition on v. Hence the set of all v such that B−v is not
a basis of V is precisely the set of linear combinations µ1b1 + · · ·+ µnbn such that

∑n
i=1µi = 1. This is an affine

subset of dimension n− 1.

Exercise T2 (Exam Problem 4)
In V = R4, let ϕ : R4→ R4 be the linear map with

ϕ((1,0, 0,1)) = (2,0, 0,1), ϕ((2, 0,0,1)) = (0, 1,1, 0),
ϕ((0,1, 1,0)) = (0,1, 2,0), ϕ((0, 1,2,0)) = (1, 0,0, 1).
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(a) Check that b1 = (1,0, 0,1), b2 = (2, 0,0,1), b3 = (0,1, 1,0), b4 = (0, 1,2,0) form a basis B = (b1,b2,b3,b4) of R4

and determine the matrix representation ¹ϕºBB of ϕ.
Is ϕ injective? Does it have an inverse?

(b) Let S = (e1,e2,e3,e4) be the standard basis. Derive the matrix representations ¹ϕºBS and ¹ϕºSS from ¹ϕºBB
through a systematic application of suitable basis transformation matrices.

Solution:

a) It is easy to check that ¹ϕºBB has the form











0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0











. This matrix is invertible (being a permutation matrix),

and its inverse is just the transpose











0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0











.

b) By definition, ¹ϕºBS is given by











2 0 0 1
0 1 1 0
0 1 2 0
1 0 0 1











. Similarly, ¹idºBS is given by











1 2 0 0
0 0 1 1
0 0 1 2
1 1 0 0











. Since

¹idºSB¹idº
B
S = ¹idº

S
S , it follows that ¹idºSB is the inverse of ¹idºBS . By an easy computation, ¹idºSB is given

by











−1 0 0 2
1 0 0 −1
0 2 −1 0
0 −1 1 0











. It follows that

¹ϕºSS = ¹ϕº
B
S¹idº

S
B =











2 0 0 1
0 1 1 0
0 1 2 0
1 0 0 1





















−1 0 0 2
1 0 0 −1
0 2 −1 0
0 −1 1 0











=











−2 −1 1 4
1 2 −1 −1
1 4 −2 −1
−1 −1 1 2











.

Exercise T3 (Complex numbers)
Recall that complex numbers are represented by expressions of the form

z = a+ bi

with a, b ∈ R, i 6∈ R a new constant. Identifying a ∈ R with the complex number a + 0i and the new constant i with
0+1i, one may introduce addition and multiplication as the natural extensions of addition and multiplication in R based
on associativity, commutativity, distributivity and the identity i2 = −1. R thus becomes a subfield of the field of complex
numbers.

(a) Let z1 = 3+ 4i and z2 = 5+ 12i be complex numbers. Compute

z−1
1 , z−1

2 , z2
1 , z2

2 , and z1z2,

and draw them in the complex plane. Find the complex square roots of i, z1 and z2, i.e., solve the equations
x2 = i, x2 = z1, x2 = z2 over C.

(b) Define for ϕ ∈ R,

eiϕ := cosϕ+ i sinϕ.

Show that eiϕeiψ = ei(ϕ+ψ) and (eiϕ)n = einϕ for every natural number n.

(c) Show that every complex number z ∈ C\{0} can be represented as:

z = reiϕ,

with r ∈ R>0. Prove that this representation is unique in the following sense:
z = seiψ with s > 0 implies r = s and ϕ ≡ψ mod 2π.
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(d) Use the representation from (c) to
i. give a geometric description of complex multiplication in terms of rotations and rescalings (i.e., dilations or

contractions) in R2.
ii. find all complex solutions of z5 = 1 and draw these in the complex plane. In general, find all solutions to

zn = w for w ∈ C\{0}, n ∈ N.

Solution:

a)

z−1
1 =

1

3+ 4i
=

3− 4i

(3+ 4i)(3− 4i)
=

3− 4i

25
, z−1

2 =
1

5+ 12i
=

5− 12i

169

z2
1 =−7+ 24i z2

2 =−119+ 120i, and z1z2 =−33+ 56i

For x2 = i:

x1 =

p
2

2
+

p
2

2
i and x2 =−

p
2

2
−
p

2

2
i.

For x2 = z1:

x1 = 2+ i and x2 =−2− i.

For x2 = z2:

x1 = 3+ 2i and x2 =−3− 2i.

b)

eiϕeiψ = (cosϕ+ i sinϕ)(cosψ+ i sinψ)

= (cosϕ cosψ− sinϕ sinψ) + (cosϕ sinψ+ sinϕ cosψ)i

= cos(ϕ+ψ) + sin(ϕ+ψ)i

= ei(ϕ+ψ),

using the trigonometric formulas for cos(ϕ+ψ) and sin(ϕ+ψ).

The equality (eiϕ)n = einϕ then follows by induction on n.

c) Let z = a+ bi 6= 0. Trying to find a representation z = reiϕ = r cosϕ + (r sinϕ)i means solving a = r cosϕ and
b = r sinϕ. One finds r by observing that

a2 + b2 = r2(cos2ϕ+ sin2ϕ) = r2,

so r =
p

a2 + b2 > 0 and r is uniquely determined (it is the modulus of z). Furthermore, ϕ has to be an angle
such that

cosϕ =
a
p

a2 + b2
and sinϕ =

b
p

a2 + b2
.

This has a unique solution ϕ0 ∈ [0, 2π), called the argument of z. The argument of z is just the angle between the
positive part of the x-axis and the vector z in the complex plane. Furthermore, the set of all solutions is given by
{ϕ0 + 2kπ : k ∈ Z}.

d) 1. Let z ∈ C. If z = 0, then wz = 0 for all w ∈ C. Assume that z 6= 0, so by (iii), it has the form z = reiϕ with
r > 0 and ϕ ∈ [0,2π). Then, for any complex number w, multiplication of w by z is equivalent to a rotation
of w through angle ϕ followed by a rescaling using the modulus r of z.

2. z = 0 is certainly not a solution of z5 = 1, so assume z is of the form reiϕ with r > 0. We have to solve the
equation:

(reiϕ)5 = 1, that is r5ei5ϕ = 1ei0.

By the uniqueness of the representation, this implies r5 = 1 and 5ϕ = 0 mod 2π. So r = 1, since r > 0.
Then by solving 5ϕ = 2πk for every integer k with 0 ≤ k < 5, we find solutions ϕk =

2πk
5
∈ [0,2π). This

means we have found five different solutions (viz, eiϕk with 0 ≤ k < 5), which must be all, since a fifth
degree equations can have at most five solutions.

For general w = eiϕ ∈ C \ {0}, the equation zn = reiϕ has n solutions

zk =
npreiϕk , with ϕk =

2πk

n
, k = 0, . . . , n− 1.
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