Linear Algebra II
 Exercise Sheet no. 15

Summer term 2011

Prof. Dr. Otto
July 13, 2011
Dr. Le Roux
Dr. Linshaw

Exercise 1 (Characteristic and minimal polynomials)

Find the characteristic and minimal polynomials of the following matrix

$$
A=\left(\begin{array}{llllllllll}
1 & 1 & & & & & & & & \\
& 1 & & & & & & & & \\
& & 1 & 1 & & & 0 & & & \\
& & & 1 & & & & & & \\
& & & & 2 & 1 & & & & \\
& & & & & 2 & 1 & & & \\
& & & & & & 2 & & & \\
& & & 0 & & & & 2 & & \\
& & & & & & & & 4 & \\
& & & & & & & & & 4
\end{array}\right)
$$

Exercise 2 (Jordan normal form)
(a) Let φ be an endomorphism of a ten-dimensional \mathbb{F}-vector space V. W.r.t. basis $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{10}\right)$ let φ be represented by a Jordan normal form matrix with three Jordan blocks for the same eigenvalue $\lambda \in \mathbb{F}$, of sizes 2,3 and 5 . Let $\psi:=\varphi-\lambda \mathrm{id}$. Complete the following table:

i	1	2	3	4	5	6	7	8	9	10
$\operatorname{dim}\left(\operatorname{ker} \psi^{i}\right)$					10	10	10	10	10	10

In the notation of Lemma 1.6 .4 of the notes: for which $\mathbf{v} \in V$ does $\llbracket \mathbf{v} \rrbracket$ have maximal dimension? Split the basis B in a way to obtain bases for the two invariant subspaces $V=\llbracket \mathbf{v} \rrbracket \oplus V^{\prime}$ (as in Claim 1.6.5). If φ^{\prime} is the restriction of φ to V^{\prime}, what is the matrix representation of φ^{\prime} with respect to this basis? If $\psi^{\prime}=\varphi^{\prime}-\lambda \mathrm{id}$, how is the corresponding table for ψ^{\prime} related to the above?
(b) Now, let φ be another endomorphism of V with characteristic polynomial $(\lambda-X)^{10}$. Suppose we have the following data for $\psi=\varphi-\lambda \mathrm{id}$:

i	1	2	3	4	5	6	7	8	9	10
$\operatorname{dim}\left(\operatorname{ker} \psi^{i}\right)$	3	5	7	8	9	10	10	10	10	10

Determine the Jordan normal form representation of φ from this data (up to permutation of Jordan blocks).
(c) (extra) In general, let φ_{0} and φ_{1} be two endomorphisms of \mathbb{F}-vector spaces V_{0} and V_{1} of the same finite dimension, with the same characteristic polynomial that splits into linear factors. Suppose moreover that for each eigenvalue λ of φ_{0} and φ_{1}, the tables for $\psi_{0}=\varphi_{0}-\lambda i d$ and $\psi_{1}=\varphi_{1}-\lambda i d$ are the same.
Sketch a proof for the similarity of φ_{0} and φ_{1} adapting the argument for the existence and uniqueness of the Jordan normal form. How can this be used to give a "different" proof for the similarity of A and A^{t} for any matrix $A \in \mathbb{C}^{(n, n)}$?

Exercise 3 (Diagonalization using orthogonal matrices)

Let φ be the endomorphism of \mathbb{R}^{3} given in the standard basis by

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 / \sqrt{2} \\
-1 & 1 & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2} & 2
\end{array}\right)
$$

(a) Find an orthogonal matrix B such that $B^{-1} A B$ is diagonal.
(b) Describe all subspaces of \mathbb{R}^{3} which are invariant under φ.
(c) For $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$, let Q be the quadratic form

$$
Q(\mathbf{x})=x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}-\frac{2}{\sqrt{2}} x_{1} x_{3}+\frac{2}{\sqrt{2}} x_{2} x_{3} .
$$

Find the principle axes of the quadric X given by $Q(\mathbf{x})=1$.
Exercise 4 (Invariant planes in \mathbb{R}^{4})
Let φ be an orthogonal transformation of \mathbb{R}^{4} which fixes a plane U_{1} pointwise, and acts by a nontrivial rotation on another plane U_{2}. Prove that U_{1} and U_{2} are the only invariant subspaces of \mathbb{R}^{4} of dimension 2 .

