Linear Algebra II Exercise Sheet no. 15

TECHNISCHE UNIVERSITÄT DARMSTADT

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Characteristic and minimal polynomials) Find the characteristic and minimal polynomials of the following matrix

Exercise 2 (Jordan normal form)

(a) Let φ be an endomorphism of a ten-dimensional \mathbb{F} -vector space *V*. W.r.t. basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_{10})$ let φ be represented by a Jordan normal form matrix with three Jordan blocks for the same eigenvalue $\lambda \in \mathbb{F}$, of sizes 2, 3 and 5. Let $\psi := \varphi - \lambda$ id. Complete the following table:

i	1	2	3	4	5	6	7	8	9	10
dim(ker ψ^i)					10	10	10	10	10	10

In the notation of Lemma 1.6.4 of the notes: for which $\mathbf{v} \in V$ does $[\![\mathbf{v}]\!]$ have maximal dimension? Split the basis *B* in a way to obtain bases for the two invariant subspaces $V = [\![\mathbf{v}]\!] \oplus V'$ (as in Claim 1.6.5). If φ' is the restriction of φ to *V*', what is the matrix representation of φ' with respect to this basis? If $\psi' = \varphi' - \lambda id$, how is the corresponding table for ψ' related to the above?

(b) Now, let φ be another endomorphism of *V* with characteristic polynomial $(\lambda - X)^{10}$. Suppose we have the following data for $\psi = \varphi - \lambda id$:

i	1	2	3	4	5	6	7	8	9	10
dim(ker ψ^i)	3	5	7	8	9	10	10	10	10	10

Determine the Jordan normal form representation of φ from this data (up to permutation of Jordan blocks).

(c) (extra) In general, let φ_0 and φ_1 be two endomorphisms of \mathbb{F} -vector spaces V_0 and V_1 of the same finite dimension, with the same characteristic polynomial that splits into linear factors. Suppose moreover that for each eigenvalue λ of φ_0 and φ_1 , the tables for $\psi_0 = \varphi_0 - \lambda id$ and $\psi_1 = \varphi_1 - \lambda id$ are the same.

Sketch a proof for the similarity of φ_0 and φ_1 adapting the argument for the existence and uniqueness of the Jordan normal form. How can this be used to give a "different" proof for the similarity of *A* and *A*^t for any matrix $A \in \mathbb{C}^{(n,n)}$?

Exercise 3 (Diagonalization using orthogonal matrices)

Let φ be the endomorphism of \mathbb{R}^3 given in the standard basis by

$$A = \begin{pmatrix} 1 & -1 & -1/\sqrt{2} \\ -1 & 1 & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} & 2 \end{pmatrix}.$$

Summer term 2011 July 13, 2011

- (a) Find an orthogonal matrix *B* such that $B^{-1}AB$ is diagonal.
- (b) Describe all subspaces of \mathbb{R}^3 which are invariant under φ .
- (c) For $\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$, let *Q* be the quadratic form

$$Q(\mathbf{x}) = x_1^2 + x_2^2 + 2x_3^2 - 2x_1x_2 - \frac{2}{\sqrt{2}}x_1x_3 + \frac{2}{\sqrt{2}}x_2x_3.$$

Find the principle axes of the quadric *X* given by $Q(\mathbf{x}) = 1$.

Exercise 4 (Invariant planes in \mathbb{R}^4)

Let φ be an orthogonal transformation of \mathbb{R}^4 which fixes a plane U_1 pointwise, and acts by a nontrivial rotation on another plane U_2 . Prove that U_1 and U_2 are the only invariant subspaces of \mathbb{R}^4 of dimension 2.