Linear Algebra II
 Exercise Sheet no. 14

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

July 12, 2011

Exercise 1 (Bijection between conic sections)
Let \mathbb{X} be the standard cone in \mathbb{R}^{3} (defined by the equation $x_{1}^{2}+x_{2}^{2}=x_{3}^{2}$), let $\mathbb{A}_{1}, \mathbb{A}_{2}$ be the planes defined by the equations $x_{3}=1$ and $x_{1}=\frac{1}{3} x_{3}+\frac{2}{3}$, respectively and let L be the line that goes through the vectors $\left(\begin{array}{c}\frac{1}{3} \\ \pm \frac{2}{3} \\ 1\end{array}\right)$.
(a) Let $\mathbf{n}:=\left(\begin{array}{c}-1 \\ 0 \\ \frac{1}{3}\end{array}\right)$. Then the map

$$
\begin{aligned}
& \varphi: \mathbb{A}_{1} \backslash L \rightarrow \mathbb{A}_{2} \\
& \mathbf{v} \mapsto-\frac{2}{3} \frac{1}{\langle\mathbf{n}, \mathbf{v}\rangle} \mathbf{v}
\end{aligned}
$$

describes the central projection through the origin from $\mathbb{A}_{1} \backslash L$ into \mathbb{A}_{2}. Make a sketch to verify this. (You only need to draw the (x_{1}, x_{3})-plane.) Determine the image of φ.
(b) Sketch the conic sections that you get from \mathbb{A}_{i} and $\mathbb{X}, i=1,2$. (You only need to draw the (x_{1}, x_{3})-plane.)
(c) Compute a parametric description of $\mathbb{A}_{1} \cap \mathbb{X}$ and $\mathbb{A}_{2} \cap \mathbb{X}$.
(d) How can you extend φ to a bijection from the one conic section $\left(\mathbb{A}_{1} \cap \mathbb{X}\right)$ onto a completion of the other?

Exercise 2 (Minkowski space)
Consider the "Minkowski metric" on \mathbb{R}^{4} induced by the symmetric bilinear form σ with diagonal entries $(1,1,1,-1)$ w.r.t. the standard basis.

The quadric $Q=\left\{\mathbf{v} \in \mathbb{R}^{4}: \sigma(\mathbf{v}, \mathbf{v})=0\right\}$ is called the null set of σ.
(a) Show that σ is non-degenerate but has a non-trivial null set; determine the null set and describe it geometrically.
(b) Give examples of other bases of \mathbb{R}^{4} w.r.t. which σ is represented by the matrix with diagonal entries $(1,1,1,-1)$, but which are not orthonormal w.r.t. the standard scalar product.
(c) Give an example of a subspace $U \subseteq \mathbb{R}^{4}$ s.t. $\mathbb{R}^{4} \neq U \oplus U^{\perp}$ where

$$
U^{\perp}:=\left\{\mathbf{v} \in \mathbb{R}^{4}: \sigma(\mathbf{v}, \mathbf{u})=0 \text { for all } \mathbf{u} \in U\right\}
$$

(d) Which are the signatures of the quadratic forms induced by σ on the 3-dimensional subspaces $U \subseteq \mathbb{R}^{4}$? Try to describe in each case the relation between the subspace U and the null set.

Exercise 3 (A rotated ellipse)
Let X be the ellipse in \mathbb{R}^{2} obtained by rotating the standard ellipse $\frac{x^{2}}{4}+y^{2}=1$ through the angle $-\frac{\pi}{6}$ and translating it so that its center is at the point $(1,-1)$. Find an equation for X.

Exercise 4 (Projection onto a plane)
Let A be the affine plane in the euclidean space $\left(\mathbb{R}^{3},\langle\rangle,\right)$ given by $x+2 y+2 z=9$.
(a) Find an orthonormal basis for the 2-dimensional linear subspace $U \subseteq \mathbb{R}^{3}$ which is parallel to A.
(b) Extend this basis to an orthonormal basis B for \mathbb{R}^{3}.
(c) Write down the matrix which represents the orthogonal projection φ onto U in terms of the standard basis $E=$ $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ of \mathbb{R}^{3}.
(d) Let P be the point $(1,2,-1)$. Find the shortest distance from P to A.

