Linear Algebra II
 Exercise Sheet no. 12

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

June 28, 2011

Exercise 1 (Warm-up: diagonalisability of bilinear forms)
Let the bilinear forms σ_{1} and σ_{2} on \mathbb{R}^{3} be defined by the matrices

$$
A_{1}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right), \quad A_{2}=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

with respect to the standard basis of \mathbb{R}^{3}.
(a) Determine an orthonormal basis of \mathbb{R}^{3} with respect to which the matrix of σ_{1} is diagonal.
(b) Show that every eigenvector of A_{2} is also an eigenvector of A_{1}.
(c) Determine an orthonormal basis of \mathbb{R}^{3} with respect to which the matrix of σ_{2} is diagonal, and deduce the eigenvalues of A_{2} without computing the characteristic polynomial.

Exercise 2 (Quadratic forms)

Which of the following are quadratic forms? Determine in each case the corresponding symmetric bilinear forms:
(a) $Q_{1}: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto x$.
(b) $Q_{2}: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto 0$.
(c) $Q_{3}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad\left(x_{1}, x_{2}\right) \mapsto-3 x_{1}^{2}-x_{2}^{2}-x_{2} x_{1}$.
(d) $Q_{4}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad\left(x_{1}, x_{2}\right) \mapsto\left(\sqrt{x_{1}}+\sqrt{x_{2}}\right)^{4}$.
(e) $Q_{5}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad\left(x_{1}, x_{2}\right) \mapsto\|\mathbf{x}\|^{2}$.

Exercise 3 (Transformation of quadratic forms)

Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the endomorphism represented w.r.t. the standard basis of \mathbb{R}^{2} by the matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Let

$$
\mathbb{S}^{1}=\left\{\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}=1\right\}=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}^{t} \mathbf{x}=1\right\} .
$$

be the unit circle in \mathbb{R}^{2}.
(a) Describe the image of the unit circle \mathbb{S}^{1} under $\varphi, \varphi\left[\mathbb{S}^{1}\right] \subseteq \mathbb{R}^{2}$, by a corresponding equation.
(b) Determine a symmetric bilinear form σ such that

$$
\varphi\left[\mathbb{S}^{1}\right]=\left\{\mathbf{x} \in \mathbb{R}^{2}: \sigma(\mathbf{x}, \mathbf{x})=1\right\} .
$$

(c) Find the symmetry axes of $\varphi\left[\mathbb{S}^{1}\right]$.

Hint: apply Theorem 3.2.5 to σ.

Exercise 4 (Quadratic forms)

Determine the principal axes and the signature of the following quadratic forms
(a) $Q_{1}(\mathrm{x})=-11 x_{1}^{2}-16 x_{1} x_{2}+x_{2}^{2}$,
(b) $Q_{2}(\mathrm{x})=9 x_{1}^{2}-4 x_{1} x_{2}+6 x_{2}^{2}$,
(c) $Q_{3}(\mathrm{x})=4 x_{1}^{2}-12 x_{1} x_{2}+9 x_{2}^{2}$,
where $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.
Exercise 5 (Geometric properties of the ellipse in euclidean geometry)
Let $0 \leqslant e<1$ and consider the points given by the vectors $\mathbf{e}=(e, 0)$ and $-\mathbf{e}=(-e, 0)$ in the real plane \mathbb{R}^{2}. Let the set $\mathbb{X}_{e} \subseteq \mathbb{R}^{2}$ be defined as the set of all those $\mathbf{x} \in \mathbb{R}^{2}$ for which $d(\mathbf{x}, \mathbf{e})+d(\mathbf{x},-\mathbf{e})=2$.
(a) Show that \mathbb{X}_{e} is an ellipse defined by a quadratic equation of the form $\alpha x^{2}+\beta y^{2}=1$ for suitable $\alpha, \beta>0$. Determine α and β in terms of e. Draw \mathbb{X}_{e} for $e=0,1 / 2,1,1 / \sqrt{2}$.
(b) From (i) find a representation of \mathbb{X}_{e} as the image of the unit circle under a rescaling in the y-direction. Use this rescaling and the fact that linear transformations preserve the property that a line is a tangent to a curve in order to determine the equation of the tangent to the ellipse \mathbb{X}_{e} in a point $\mathbf{x}=(x, y) \in \mathbb{X}_{e}$. Show that lines from \mathbf{e} and $-\mathbf{e}$ through \mathbf{x} form the same angle with the tangent at \mathbf{x}. [This explains the rôle of the points \mathbf{e} and $-\mathbf{e}$ as the foci of the ellipse: light shining from \mathbf{e} is focussed in $\mathbf{- e}$ after reflection in \mathbb{X}_{e}.]
(c) Show by elementary geometric means that \mathbb{X}_{e} also has the following geometric property. Let t be the tangent to \mathbb{X}_{e} in a point $\mathbf{x} \in \mathbb{X}_{e}$ and l the line through \mathbf{e} perpendicular to t. Then the point of intersection \mathbf{v} between l and t lies on the unit circle.
Hint: Consider the triangles $(\mathbf{x}, \mathbf{v}, \mathbf{w})$ and $(\mathbf{x}, \mathbf{v}, \mathbf{e})$ in the sketch below, where \mathbf{v} marks the point where l intersects t, and \mathbf{w} where it intersects the line through $-\mathbf{e}$ and \mathbf{x}. Use (ii) to argue that these triangles are congruent.

