Linear Algebra II Exercise Sheet no. 12

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011

June 28, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Warm-up: diagonalisability of bilinear forms) Let the bilinear forms σ_1 and σ_2 on \mathbb{R}^3 be defined by the matrices

$$A_1 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

with respect to the standard basis of \mathbb{R}^3 .

- (a) Determine an orthonormal basis of \mathbb{R}^3 with respect to which the matrix of σ_1 is diagonal.
- (b) Show that every eigenvector of A_2 is also an eigenvector of A_1 .
- (c) Determine an orthonormal basis of \mathbb{R}^3 with respect to which the matrix of σ_2 is diagonal, and deduce the eigenvalues of A_2 without computing the characteristic polynomial.

Exercise 2 (Quadratic forms)

Which of the following are quadratic forms? Determine in each case the corresponding symmetric bilinear forms:

(a)
$$Q_1 : \mathbb{R} \to \mathbb{R}, \quad x \mapsto x$$

(b)
$$Q_2: \mathbb{R} \to \mathbb{R}, \quad x \mapsto 0.$$

- (c) $Q_3: \mathbb{R}^2 \to \mathbb{R}, \quad (x_1, x_2) \mapsto -3x_1^2 x_2^2 x_2x_1.$
- (d) $Q_4: \mathbb{R}^2 \to \mathbb{R}, \quad (x_1, x_2) \mapsto (\sqrt{x_1} + \sqrt{x_2})^4.$
- (e) $Q_5 : \mathbb{R}^2 \to \mathbb{R}, \quad (x_1, x_2) \mapsto ||\mathbf{x}||^2.$

Exercise 3 (Transformation of quadratic forms)

Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ be the endomorphism represented w.r.t. the standard basis of \mathbb{R}^2 by the matrix

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Let

$$\mathbb{S}^1 = \{ \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1 \} = \{ \mathbf{x} \in \mathbb{R}^2 : \mathbf{x}^t \mathbf{x} = 1 \}.$$

be the unit circle in \mathbb{R}^2 .

- (a) Describe the image of the unit circle \mathbb{S}^1 under $\varphi, \varphi[\mathbb{S}^1] \subseteq \mathbb{R}^2$, by a corresponding equation.
- (b) Determine a symmetric bilinear form σ such that

$$\varphi[\mathbb{S}^1] = \{ \mathbf{x} \in \mathbb{R}^2 \colon \sigma(\mathbf{x}, \mathbf{x}) = 1 \}.$$

(c) Find the symmetry axes of φ[S¹].
Hint: apply Theorem 3.2.5 to σ.

Exercise 4 (Quadratic forms)

Determine the principal axes and the signature of the following quadratic forms

- (a) $Q_1(\mathbf{x}) = -11x_1^2 16x_1x_2 + x_2^2$,
- (b) $Q_2(\mathbf{x}) = 9x_1^2 4x_1x_2 + 6x_2^2$,
- (c) $Q_3(\mathbf{x}) = 4x_1^2 12x_1x_2 + 9x_2^2$,

where $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$.

Exercise 5 (Geometric properties of the ellipse in euclidean geometry)

Let $0 \le e < 1$ and consider the points given by the vectors $\mathbf{e} = (e, 0)$ and $-\mathbf{e} = (-e, 0)$ in the real plane \mathbb{R}^2 . Let the set $\mathbb{X}_e \subseteq \mathbb{R}^2$ be defined as the set of all those $\mathbf{x} \in \mathbb{R}^2$ for which $d(\mathbf{x}, \mathbf{e}) + d(\mathbf{x}, -\mathbf{e}) = 2$.

- (a) Show that \mathbb{X}_e is an *ellipse* defined by a quadratic equation of the form $\alpha x^2 + \beta y^2 = 1$ for suitable $\alpha, \beta > 0$. Determine α and β in terms of *e*. Draw \mathbb{X}_e for $e = 0, 1/2, 1, 1/\sqrt{2}$.
- (b) From (i) find a representation of X_e as the image of the unit circle under a rescaling in the *y*-direction. Use this rescaling and the fact that linear transformations preserve the property that a line is a tangent to a curve in order to determine the equation of the tangent to the ellipse X_e in a point **x** = (x, y) ∈ X_e. Show that lines from **e** and -**e** through **x** form the same angle with the tangent at **x**. [This explains the rôle of the points **e** and -**e** as the *foci* of the ellipse: light shining from **e** is focussed in -**e** after reflection in X_e.]
- (c) Show by elementary geometric means that \mathbb{X}_e also has the following geometric property. Let *t* be the tangent to \mathbb{X}_e in a point $\mathbf{x} \in \mathbb{X}_e$ and *l* the line through **e** perpendicular to *t*. Then the point of intersection **v** between *l* and *t* lies on the unit circle.

Hint: Consider the triangles $(\mathbf{x}, \mathbf{v}, \mathbf{w})$ and $(\mathbf{x}, \mathbf{v}, \mathbf{e})$ in the sketch below, where \mathbf{v} marks the point where l intersects t, and \mathbf{w} where it intersects the line through $-\mathbf{e}$ and \mathbf{x} . Use (ii) to argue that these triangles are congruent.

