Linear Algebra II
 Exercise Sheet no. 11

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

June 20, 2011

Exercise 1 (Warm-up)
(Exercise 3.1.1 in the notes, see also T7.2.) Show that the relation \approx on $\mathbb{R}^{(n, n)}$ defined as $A \approx A^{\prime}$ iff $A^{\prime}=C^{t} A C$ for some $C \in \mathrm{GL}_{n}(\mathbb{R})$ is an equivalence relation. What are sufficient criteria for $A \not \approx A^{\prime}$?

Exercise 2 (Normal matrices)
Recall that a matrix A is called normal if $A A^{+}=A^{+} A$. We have seen (cf Exercise T11.1) that unitary, hermitian, and skew-hermitian matrices are normal. (Similarly in the real case, orthogonal, symmetric, skew-symmetric matrices are normal.) In this exercise we will see that there are normal matrices that do not belong to any of these classes.
(a) Prove that every real 2×2 normal matrix is either symmetric or a scalar multiple of an orthogonal matrix.
(b) Find a sufficient (and also necessary) condition for a complex 2×2 matrix to be normal. Give an example of such a matrix which is neither hermitian, skew-hermitian, nor a scalar multiple of a unitary matrix.
(c) Let $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$. Show that A is normal, but is neither symmetric, skew-symmetric, nor a scalar multiple of an orthogonal matrix.

Exercise 3 (Canonical form of an orthogonal map)
Consider the endomorphism $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ represented in the standard basis by the following orthogonal matrix in $\mathbb{R}^{(3,3)}$:

$$
A=\left(\begin{array}{ccc}
-1 / 2 & 1 / 2 & -1 / \sqrt{2} \\
1 / 2 & -1 / 2 & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right)
$$

(a) Regard A as a complex matrix via the inclusion $\mathbb{R}^{(3,3)} \subseteq \mathbb{C}^{(3,3)}$, and find its characteristic polynomial over \mathbb{C}.
(b) Find a basis of complex eigenvectors $\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ of A.
(c) Use this information to find the invariant subspaces of φ regarded again as an endomorphism of \mathbb{R}^{3}. Find an orthonormal basis for \mathbb{R}^{3} such that in this basis, φ is given by a rotation followed by a reflection.

Exercise 4 (Dual maps)

Let $\left(V,\langle\cdot, \cdot\rangle^{V}\right)$ and $\left(W,\langle\cdot, \cdot\rangle^{W}\right)$ be finite-dimensional euclidean spaces. Recall from Exercise T8.4 that the scalar product of V induces a canonical (i.e., basis-independent) isomorphism $\rho^{V}: V \rightarrow V^{*}$, where $V^{*}=\operatorname{Hom}(V, \mathbb{R})$ is the dual space of V.

$$
\begin{aligned}
\rho^{V}: & V \rightarrow V^{*} \\
& \mathbf{v} \mapsto\langle\mathbf{v}, \cdot\rangle^{V}
\end{aligned}
$$

where

$$
\begin{aligned}
\langle\mathbf{v}, \cdot\rangle^{V}: & V \rightarrow \mathbb{R} \\
& \mathbf{u} \mapsto\langle\mathbf{v}, \mathbf{u}\rangle^{V}
\end{aligned}
$$

Note that $\rho^{W}: W \rightarrow W^{*}$ is defined similarly.
(a) Let $\varphi \in \operatorname{Hom}(V, W)$ be a linear map. We define the dual of φ to be the map $\varphi^{*} \in \operatorname{Hom}\left(W^{*}, V^{*}\right)$ as follows:

$$
\begin{array}{ll}
\varphi^{*}: & W^{*} \rightarrow V^{*} \\
& \eta \mapsto \eta \circ \varphi
\end{array}
$$

Note that everything we have defined so far does not depend on a choice of basis. Now let $B_{V}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ be any basis for V. We define the dual basis $B_{V}^{*}=\left(\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}\right)$ for V^{*} by the condition $\mathbf{b}_{j}^{*}\left(\mathbf{b}_{j}\right)=0$ for $i \neq j$ and $\mathbf{b}_{j}^{*}\left(\mathbf{b}_{j}\right)=1$ for $i=j$. Similarly, fix a basis $B_{W}=\left(\hat{\mathbf{b}}_{1}, \ldots, \hat{\mathbf{b}}_{m}\right)$ for W, with associated dual basis B_{W}^{*}. Show that the relationship between the matrix representations of φ and φ^{*} w.r.t. these bases is
$\llbracket \varphi^{*} \rrbracket_{B_{V}^{*}}^{B_{*}^{*}}=\left(\llbracket \varphi \rrbracket_{B_{W}}^{B_{V}}\right)^{t}$.
(b) What is the status of the map $\varphi^{+}:=\left(\rho^{V}\right)^{-1} \circ \varphi^{*} \circ \rho^{W}$ w.r.t. $\langle\cdot, \cdot\rangle^{W}$ and $\langle\cdot, \cdot\rangle^{V}$? Discuss its matrix representations w.r.t. the orthonormal bases B_{V} and B_{W}.
(c) In the special case of $V=W=(V,\langle\cdot, \cdot\rangle)$, consider the map $\varphi^{+}=\left(\rho^{V}\right)^{-1} \circ \varphi^{*} \circ \rho^{W}$ and try to interpret the adjoint of the endomorphism φ in terms of an isomorphic copy of the dual φ^{*} via canonical identifications of V with V^{*} via ρ^{V}.
Analyse the change of basis transformations w.r.t. changes from an onb $B_{V}\left(=B_{W}\right)$ to another onb $B_{V}^{\prime}\left(=B_{W}^{\prime}\right)$.
Exercise 5 (Positive definiteness and compactness of the unit surface)
(a) Let σ_{A} be a bilinear form on \mathbb{R}^{n}, which in the standard basis is represented by a symmetric matrix A, whose $i j$ th entry $a_{i j}=\sigma_{A}\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)$. Define the unit surface

$$
S_{A}=\left\{\mathbf{v} \in \mathbb{R}^{n}: \sigma_{A}(\mathbf{v}, \mathbf{v})=1\right\} .
$$

Suppose that S_{A} is non-empty. Prove that S_{A} is compact if and only if σ_{A} is positive definite.
(b) Let A and B be matrices representing scalar products $\langle\cdot, \cdot\rangle_{A}$ and $\langle\cdot, \cdot\rangle_{B}$ on \mathbb{R}^{n}. Show that the corresponding norms are equivalent in the sense that there exist positive real numbers m and M satisfying

$$
m\langle\mathbf{v}, \mathbf{v}\rangle_{A} \leqslant\langle\mathbf{v}, \mathbf{v}\rangle_{B} \leqslant M\langle\mathbf{v}, \mathbf{v}\rangle_{A}
$$

for all $\mathbf{v} \in \mathbb{R}^{n}$.

