Linear Algebra II Exercise Sheet no. 10

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011 June 15, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Warm-up: self-adjoint maps)

Let *V* be a finite-dimensional unitary space and $\varphi \in \text{Hom}(V, V)$. Show that the following are equivalent:

- (a) φ is self-adjoint.
- (b) $\langle \mathbf{v}, \varphi(\mathbf{v}) \rangle \in \mathbb{R}$ for all $\mathbf{v} \in V$.

Hint: Consider $\langle \mathbf{v} + \mathbf{w}, \varphi(\mathbf{v} + \mathbf{w}) \rangle$ and $\langle \mathbf{v} + i\mathbf{w}, \varphi(\mathbf{v} + i\mathbf{w}) \rangle$ for the implication (b) \Rightarrow (a).

Exercise 2 (Eigenvalues)

Let *V* be a finite dimensional vector space and φ, ψ be endomorphisms of *V*.

Prove that λ is an eigenvalue of $\varphi \circ \psi$ if and only if it is an eigenvalue of $\psi \circ \varphi$.

Hint: It may help to distinguish cases according to whether $\lambda \neq 0$ or $\lambda = 0$.

Extra: Can you give a counterexample in case *V* is infinite dimensional?

Exercise 3 (Self-adjoint and unitary maps)

Let V be a finite-dimensional unitary space and $\varphi \in \text{Hom}(V, V)$ be a normal endomorphism. Show the following.

(a) φ is self-adjoint if and only if all the eigenvalues of φ are real.

(b) φ is unitary if and only if all the eigenvalues of φ have absolute value 1.

Exercise 4 (Simultaneous diagonalization)

Let *V* be a finite dimensional unitary space and $\varphi_1, \ldots, \varphi_m$ normal endomorphisms of *V* that pairwise commute, that is $\varphi_i \circ \varphi_i = \varphi_i \circ \varphi_i$ for all $i, j \in \{1, \ldots, m\}$.

Prove that there exists an orthonormal basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of *V* consisting of *simultaneous eigenvectors*, that is there are complex numbers λ_{ij} for $i = 1, \dots, m$ and $j = 1, \dots, n$, such that

$$\varphi_i(\mathbf{v}_j) = \lambda_{ij} \mathbf{v}_j$$

for all *i*, *j*.

(a) Let λ be an eigenvalue of φ_1 and $V_{\lambda}(\varphi_1) = \{ \mathbf{v} \in V \mid \varphi_1(\mathbf{v}) = \lambda \mathbf{v} \}$ the corresponding eigenspace. Prove that

$$\varphi_i(V_\lambda(\varphi_1)) \subseteq V_\lambda(\varphi_1)$$

for all *i*.

- (b) Let λ and μ be two different eigenvalues of φ_i . Show that the corresponding eigenspaces are orthogonal.
- (c) Prove now the existence of a basis of *V* with the desired properties. Hint: *Induction on m*.

Exercise 5 (Isometries and 'skew-rotations')

We consider the real plane \mathbb{R}^2 with the standard scalar product $\langle ., . \rangle$. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map that is represented by a rotation matrix

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

with respect to some basis $B = {\mathbf{b}_1, \mathbf{b}_2}$. We assume that $\theta \neq 0, \pi$.

Show that φ is an isometry if and only if *B* is almost an orthonormal basis in the sense that

$$\langle \mathbf{b}_1, \mathbf{b}_2 \rangle = 0$$
 and $\langle \mathbf{b}_1, \mathbf{b}_1 \rangle = \langle \mathbf{b}_2, \mathbf{b}_2 \rangle$

(So we require the lengths of \mathbf{b}_1 and \mathbf{b}_2 only to be equal, not to be 1.)