Linear Algebra II
 Exercise Sheet no. 10

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

June 15, 2011

Exercise 1 (Warm-up: self-adjoint maps)
Let V be a finite-dimensional unitary space and $\varphi \in \operatorname{Hom}(V, V)$. Show that the following are equivalent:
(a) φ is self-adjoint.
(b) $\langle\mathbf{v}, \varphi(\mathbf{v})\rangle \in \mathbb{R}$ for all $\mathbf{v} \in V$.

Hint: Consider $\langle\mathbf{v}+\mathbf{w}, \varphi(\mathbf{v}+\mathbf{w})\rangle$ and $\langle\mathbf{v}+i \mathbf{w}, \varphi(\mathbf{v}+i \mathbf{w})\rangle$ for the implication (b) $\Rightarrow(\mathrm{a})$.
Exercise 2 (Eigenvalues)
Let V be a finite dimensional vector space and φ, ψ be endomorphisms of V.
Prove that λ is an eigenvalue of $\varphi \circ \psi$ if and only if it is an eigenvalue of $\psi \circ \varphi$.
Hint: It may help to distinguish cases according to whether $\lambda \neq 0$ or $\lambda=0$.
Extra: Can you give a counterexample in case V is infinite dimensional?
Exercise 3 (Self-adjoint and unitary maps)
Let V be a finite-dimensional unitary space and $\varphi \in \operatorname{Hom}(V, V)$ be a normal endomorphism. Show the following.
(a) φ is self-adjoint if and only if all the eigenvalues of φ are real.
(b) φ is unitary if and only if all the eigenvalues of φ have absolute value 1.

Exercise 4 (Simultaneous diagonalization)

Let V be a finite dimensional unitary space and $\varphi_{1}, \ldots, \varphi_{m}$ normal endomorphisms of V that pairwise commute, that is $\varphi_{i} \circ \varphi_{j}=\varphi_{j} \circ \varphi_{i}$ for all $i, j \in\{1, \ldots, m\}$.

Prove that there exists an orthonormal basis $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ of V consisting of simultaneous eigenvectors, that is there are complex numbers $\lambda_{i j}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$, such that

$$
\varphi_{i}\left(\mathbf{v}_{j}\right)=\lambda_{i j} \mathbf{v}_{j}
$$

for all i, j.
(a) Let λ be an eigenvalue of φ_{1} and $V_{\lambda}\left(\varphi_{1}\right)=\left\{\mathbf{v} \in V \mid \varphi_{1}(\mathbf{v})=\lambda \mathbf{v}\right\}$ the corresponding eigenspace. Prove that

$$
\varphi_{i}\left(V_{\lambda}\left(\varphi_{1}\right)\right) \subseteq V_{\lambda}\left(\varphi_{1}\right)
$$

for all i.
(b) Let λ and μ be two different eigenvalues of φ_{i}. Show that the corresponding eigenspaces are orthogonal.
(c) Prove now the existence of a basis of V with the desired properties.

Hint: Induction on m.
Exercise 5 (Isometries and 'skew-rotations')
We consider the real plane \mathbb{R}^{2} with the standard scalar product $\langle.,$.$\rangle . Let \varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map that is represented by a rotation matrix

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

with respect to some basis $B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. We assume that $\theta \neq 0, \pi$.
Show that φ is an isometry if and only if B is almost an orthonormal basis in the sense that

$$
\left\langle\mathbf{b}_{1}, \mathbf{b}_{2}\right\rangle=0 \quad \text { and } \quad\left\langle\mathbf{b}_{1}, \mathbf{b}_{1}\right\rangle=\left\langle\mathbf{b}_{2}, \mathbf{b}_{2}\right\rangle .
$$

(So we require the lengths of \mathbf{b}_{1} and \mathbf{b}_{2} only to be equal, not to be 1.)

