Linear Algebra II
 Exercise Sheet no. 9

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

June 7, 2011

Exercise 1 (Warm-up: Isomorphisms of unitary (euclidean) spaces)
(a) Let V and W be euclidean (unitary) spaces of dimension n and $\varphi \in \operatorname{Hom}(V, W)$. Show that the following are equivalent:
i. φ is an isomorphism of euclidean (unitary) spaces.
ii. $\llbracket \varphi \rrbracket_{B^{\prime}}^{B} \in O(n)$ for some choice of orthonormal bases B of V and B^{\prime} of W.
iii. $\llbracket \varphi \rrbracket_{B^{\prime}}^{B} \in O(n)$ for every orthonormal bases B of V and B^{\prime} of W.
(b) Conclude that $\varphi \in \operatorname{Hom}(V, V)$ is an orthogonal (unitary) endomorphism of the n-dimensional euclidean (unitary) space V iff $\llbracket \varphi \rrbracket_{B^{\prime}}^{B} \in O(n)$ for some (every) combination of orthonormal bases B and B^{\prime} of V.
(NB: in one direction this extends Prop. 2.3.15 in the notes.)
Exercise 2 (Composition of two orthogonal projections)
(Exercise 2.3 .4 on page 68 of the notes.) Let U and W be two subspaces of a finite dimensional euclidean or unitary vector space V, with orthogonal projections π_{U} and π_{W} onto U and W, respectively.

Prove that the following statements are equivalent:
(a) π_{U} and π_{W} commute.
(b) $\pi_{W} \circ \pi_{U}=\pi_{U \cap W}$.
(c) $\pi_{W} \circ \pi_{U}$ is an orthogonal projection.
(d) $U=(U \cap W) \oplus\left(U \cap W^{\perp}\right)$.
(e) $W=(U \cap W) \oplus\left(U^{\perp} \cap W\right)$.

Exercise 3 (Endomorphisms that preserve orthogonality)
Let V be a finite dimensional euclidean space. Determine all endomorphisms φ of V that preserve orthogonality, that is for which:

$$
\mathbf{v} \perp \mathbf{w} \Rightarrow \varphi(\mathbf{v}) \perp \varphi(\mathbf{w}) \quad \text { for all } \mathbf{v}, \mathbf{w} \in V .
$$

Exercise 4 (Jordan normal form and real matrices)
Let $A \in \mathbb{R}^{(n, n)}$ where $n=2 m$ is even. Assume that the characteristic polynomial of A is $p_{A}=p_{0}^{m}$, where $p_{0} \in \mathbb{R}[X]$ is an irreducible polynomial of degree 2 in $\mathbb{R}[X]$ (e.g., $p_{0}=X^{2}+1$). Hence p_{0} splits into linear factors $(\lambda-X)(\bar{\lambda}-X)$ in $\mathbb{C}[X]$, with $\lambda \in \mathbb{C} \backslash \mathbb{R}$.
(a) Show that if \mathbf{v} is a generalised eigenvector for λ with height k, then $\overline{\mathbf{v}}$ is a generalised eigenvector for $\bar{\lambda}$ with height k, and $\llbracket \mathbf{v} \rrbracket \cap \llbracket \overline{\mathbf{v}} \rrbracket=0$. (Hint. Use Lemma 1.5.6.)
(b) Show that A is similar to a real matrix $K \in \mathbb{R}^{(n, n)}$ composed of just three kinds of (2×2)-blocks: $0 \in \mathbb{R}^{(2,2)}, E_{2} \in \mathbb{R}^{(2,2)}$ and some $A_{0}=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right) \in \mathbb{R}^{(2,2)}$ with $b \neq 0$, where A_{0} occurs along the diagonal, E_{n} and $\mathbf{0}$ immediately above the diagonal and just $\mathbf{0}$ everywhere else (a "block Jordan normal form").
Hint. Put A into Jordan normal form over \mathbb{C} w.r.t. basis consisting of complex conjugate vector pairs; then combine such pairs to find a real basis.
(c) Give examples of $A_{k} \in \mathbb{R}^{(6,6)}$ with characteristic polynomial $\left(X^{2}+1\right)^{3}$ and minimal polynomials $q_{A_{k}}=\left(X^{2}+1\right)^{k}$ for $k=1,2,3$.

