Linear Algebra II Exercise Sheet no. 9

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011 June 7, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Warm-up: Isomorphisms of unitary (euclidean) spaces)

- (a) Let *V* and *W* be euclidean (unitary) spaces of dimension *n* and $\varphi \in \text{Hom}(V, W)$. Show that the following are equivalent:
 - i. φ is an isomorphism of euclidean (unitary) spaces.
 - ii. $\llbracket \varphi \rrbracket_{B'}^B \in O(n)$ for some choice of orthonormal bases *B* of *V* and *B'* of *W*.
 - iii. $\llbracket \varphi \rrbracket_{B'}^B \in O(n)$ for every orthonormal bases *B* of *V* and *B'* of *W*.
- (b) Conclude that φ ∈ Hom(V, V) is an orthogonal (unitary) endomorphism of the *n*-dimensional euclidean (unitary) space V iff [[φ]]^B_{B'} ∈ O(n) for some (every) combination of orthonormal bases B and B' of V.
 (NB: in one direction this extends Prop. 2.3.15 in the notes.)

Exercise 2 (Composition of two orthogonal projections)

(*Exercise 2.3.4 on page 68 of the notes.*) Let U and W be two subspaces of a finite dimensional euclidean or unitary vector space V, with orthogonal projections π_U and π_W onto U and W, respectively.

Prove that the following statements are equivalent:

- (a) π_U and π_W commute.
- (b) $\pi_W \circ \pi_U = \pi_{U \cap W}$.
- (c) $\pi_W \circ \pi_U$ is an orthogonal projection.
- (d) $U = (U \cap W) \oplus (U \cap W^{\perp}).$
- (e) $W = (U \cap W) \oplus (U^{\perp} \cap W).$

Exercise 3 (Endomorphisms that preserve orthogonality)

Let *V* be a finite dimensional euclidean space. Determine all endomorphisms φ of *V* that preserve orthogonality, that is for which:

 $\mathbf{v} \perp \mathbf{w} \Rightarrow \varphi(\mathbf{v}) \perp \varphi(\mathbf{w}) \text{ for all } \mathbf{v}, \mathbf{w} \in V.$

Exercise 4 (Jordan normal form and real matrices)

Let $A \in \mathbb{R}^{(n,n)}$ where n = 2m is even. Assume that the characteristic polynomial of A is $p_A = p_0^m$, where $p_0 \in \mathbb{R}[X]$ is an irreducible polynomial of degree 2 in $\mathbb{R}[X]$ (e.g., $p_0 = X^2 + 1$). Hence p_0 splits into linear factors $(\lambda - X)(\overline{\lambda} - X)$ in $\mathbb{C}[X]$, with $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

- (a) Show that if v is a generalised eigenvector for λ with height k, then v is a generalised eigenvector for λ with height k, and [[v]] ∩ [[v]] = 0. (*Hint.* Use Lemma 1.5.6.)
- (b) Show that *A* is similar to a real matrix $K \in \mathbb{R}^{(n,n)}$ composed of just three kinds of (2×2) -blocks: $\mathbf{0} \in \mathbb{R}^{(2,2)}$, $E_2 \in \mathbb{R}^{(2,2)}$ and some $A_0 = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathbb{R}^{(2,2)}$ with $b \neq 0$, where A_0 occurs along the diagonal, E_n and $\mathbf{0}$ immediately above the diagonal and just $\mathbf{0}$ everywhere else (a "block Jordan normal form").

Hint. Put *A* into Jordan normal form over \mathbb{C} w.r.t. basis consisting of complex conjugate vector pairs; then combine such pairs to find a real basis.

(c) Give examples of $A_k \in \mathbb{R}^{(6,6)}$ with characteristic polynomial $(X^2 + 1)^3$ and minimal polynomials $q_{A_k} = (X^2 + 1)^k$ for k = 1, 2, 3.