Linear Algebra II Exercise Sheet no. 8

TECHNISCHE UNIVERSITÄT DARMSTADT

May 30, 2011

Summer term 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Warm-up: orthogonal complement and orthogonal projection)

Let *V* be a euclidean or unitary vector space of finite dimension, *U* be a subspace of *V* and $\pi_U : V \to U$ be the orthogonal projection onto *U*. Check the following facts.

- (a) U^{\perp} is a subspace of V.
- (b) If *B* is a basis of *U*, then $U^{\perp} = {\mathbf{v} \in V \mid \mathbf{v} \perp B}$.
- (c) π_U is linear, surjective and $ker(\pi_U) = U^{\perp}$.
- (d) $\pi_U \circ \pi_U = \pi_U$.
- (e) For any subspace *W* of *V*,

 $\pi_{U}^{-1}(W) = (U \cap W) \oplus U^{\perp}.$

(f) If $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ is an orthonormal basis of *U*, then

$$\pi_U(\mathbf{v}) = \sum_{i=1}^n \langle \mathbf{v}_i, \mathbf{v} \rangle \mathbf{v}_i.$$

Exercise 2 (Orthogonal complements)

(*Exercise 2.3.5 on page 68 of the notes.*) Let V be a euclidean or unitary vector space of finite dimension. Moreover, let U, U_1, U_2 be subspaces of V. Prove the following facts.

- (a) $U_1 \subseteq U_2$ implies $U_2^{\perp} \subseteq U_1^{\perp}$.
- (b) $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$.
- (c) $(U^{\perp})^{\perp} = U$.
- (d) $(U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp}$.

Exercise 3 (Stereographic projection)

Let $E \subseteq \mathbb{R}^3$ be the plane spanned by \mathbf{e}_1 and \mathbf{e}_2 and let $S \subseteq \mathbb{R}^3$ be the sphere with radius 1 and centre **0**. We denote the north pole of *S* by $\mathbf{p} := \mathbf{e}_3$ and we set $S_* := S \setminus \{\mathbf{p}\}$.

We define a map $\pi : E \to S_*$ by letting $\pi(\mathbf{x})$ be the point of intersection between S_* and the line passing through \mathbf{p} and \mathbf{x} .

- (a) Give an explicit formula for π , i.e., find functions f(x, y), g(x, y), and h(x, y) such that $\pi(x, y, 0) = (f(x, y), g(x, y), h(x, y))$.
- (b) Prove that $\pi: E \to S_*$ is a bijection.
- (c) Let $C \subseteq S$ be a circle, i.e., the intersection of *S* with a plane given by an equation of the form ax + by + cz = d. Prove that the pre-image $\pi^{-1}[C]$ is either also a circle or a line.
- (d) Let $c : \mathbb{R} \to E$ be a line with parametric description $x\mathbf{e}_1 + t\mathbf{v}$, $t \in \mathbb{R}$, where $\mathbf{v} = (\cos \alpha, \sin \alpha, 0)$. Note that c intersects the \mathbf{e}_1 -axis in the point $x\mathbf{e}_1$ under the angle α . Prove that the image of c under π , i.e., the curve $\pi \circ c : \mathbb{R} \to S_*$, intersects the great circle $\{(u, 0, v) \in S_* : u^2 + v^2 = 1\}$ under the same angle α . (This implies that π preserves angles. Such maps are called *conformal*.)

(*Hint*. Find the angle between the tangent vectors of the two curves. The tangent vector of a curve *c* at the point $c(t_0)$ is given by its derivative $\frac{d}{dt}c\Big|_{t_0}$.)

Exercise 4 (Characterisations of orthogonal projections)

(*Exercise 2.3.2 on page 68 of the notes.*) Let φ be an endomorphism of a finite dimensional euclidean or unitary vector space *V*.

Show the equivalence of the following:

- (a) φ is an orthogonal projection.
- (b) $\varphi \circ \varphi = \varphi$ and ker $(\varphi) \perp$ image (φ) .
- (c) $\varphi \circ \varphi = \varphi$ and $\mathbf{v} \varphi(\mathbf{v}) \perp \varphi(\mathbf{v})$ for all $\mathbf{v} \in V$.
- (d) $\mathbf{v} \varphi(\mathbf{v}) \perp \operatorname{image}(\varphi)$ for all $\mathbf{v} \in V$.

Exercise 5 (More on orthogonal projections)

(*Exercise 2.3.3 on page 68 of the notes.*) Show that the orthogonal projections of an *n*-dimensional euclidean or unitary vector space *V* are precisely those endomorphisms φ of *V* that are represented w.r.t. a suitable orthonormal basis by a diagonal matrix with ones and zeroes on the diagonal.