Linear Algebra II
 Exercise Sheet no. 8

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

Exercise 1 (Warm-up: orthogonal complement and orthogonal projection)
Let V be a euclidean or unitary vector space of finite dimension, U be a subspace of V and $\pi_{U}: V \rightarrow U$ be the orthogonal projection onto U. Check the following facts.
(a) U^{\perp} is a subspace of V.
(b) If B is a basis of U, then $U^{\perp}=\{\mathbf{v} \in V \mid \mathbf{v} \perp B\}$.
(c) π_{U} is linear, surjective and $\operatorname{ker}\left(\pi_{U}\right)=U^{\perp}$.
(d) $\pi_{U} \circ \pi_{U}=\pi_{U}$.
(e) For any subspace W of V,

$$
\pi_{U}^{-1}(W)=(U \cap W) \oplus U^{\perp}
$$

(f) If $B=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ is an orthonormal basis of U, then

$$
\pi_{U}(\mathbf{v})=\sum_{i=1}^{n}\left\langle\mathbf{v}_{i}, \mathbf{v}\right\rangle \mathbf{v}_{i} .
$$

Exercise 2 (Orthogonal complements)

(Exercise 2.3 .5 on page 68 of the notes.) Let V be a euclidean or unitary vector space of finite dimension. Moreover, let U, U_{1}, U_{2} be subspaces of V. Prove the following facts.
(a) $U_{1} \subseteq U_{2}$ implies $U_{2}^{\perp} \subseteq U_{1}^{\perp}$.
(b) $\left(U_{1}+U_{2}\right)^{\perp}=U_{1}^{\perp} \cap U_{2}^{\perp}$.
(c) $\left(U^{\perp}\right)^{\perp}=U$.
(d) $\left(U_{1} \cap U_{2}\right)^{\perp}=U_{1}^{\perp}+U_{2}^{\perp}$.

Exercise 3 (Stereographic projection)

Let $E \subseteq \mathbb{R}^{3}$ be the plane spanned by \mathbf{e}_{1} and \mathbf{e}_{2} and let $S \subseteq \mathbb{R}^{3}$ be the sphere with radius 1 and centre $\mathbf{0}$. We denote the north pole of S by $\mathbf{p}:=\mathbf{e}_{3}$ and we set $S_{*}:=S \backslash\{\mathbf{p}\}$.

We define a map $\pi: E \rightarrow S_{*}$ by letting $\pi(\mathbf{x})$ be the point of intersection between S_{*} and the line passing through \mathbf{p} and \mathbf{x}.
(a) Give an explicit formula for π, i.e., find functions $f(x, y), g(x, y)$, and $h(x, y)$ such that $\pi(x, y, 0)=$ $(f(x, y), g(x, y), h(x, y))$.
(b) Prove that $\pi: E \rightarrow S_{*}$ is a bijection.
(c) Let $C \subseteq S$ be a circle, i.e., the intersection of S with a plane given by an equation of the form $a x+b y+c z=d$. Prove that the pre-image $\pi^{-1}[C]$ is either also a circle or a line.
(d) Let $c: \mathbb{R} \rightarrow E$ be a line with parametric description $x \mathbf{e}_{1}+t \mathbf{v}, t \in \mathbb{R}$, where $\mathbf{v}=(\cos \alpha, \sin \alpha, 0)$. Note that c intersects the \mathbf{e}_{1}-axis in the point $x \mathbf{e}_{1}$ under the angle α. Prove that the image of c under π, i.e., the curve $\pi \circ c: \mathbb{R} \rightarrow S_{*}$, intersects the great circle $\left\{(u, 0, v) \in S_{*}: u^{2}+v^{2}=1\right\}$ under the same angle α. (This implies that π preserves angles. Such maps are called conformal.)
(Hint. Find the angle between the tangent vectors of the two curves. The tangent vector of a curve c at the point $c\left(t_{0}\right)$ is given by its derivative $\left.\frac{\mathrm{d}}{\mathrm{d} t}\right|_{t_{0}}$.)

Exercise 4 (Characterisations of orthogonal projections)
(Exercise 2.3.2 on page 68 of the notes.) Let φ be an endomorphism of a finite dimensional euclidean or unitary vector space V.

Show the equivalence of the following:
(a) φ is an orthogonal projection.
(b) $\varphi \circ \varphi=\varphi$ and $\operatorname{ker}(\varphi) \perp \operatorname{image}(\varphi)$.
(c) $\varphi \circ \varphi=\varphi$ and $\mathbf{v}-\varphi(\mathbf{v}) \perp \varphi(\mathbf{v})$ for all $\mathbf{v} \in V$.
(d) $\mathbf{v}-\varphi(\mathbf{v}) \perp \operatorname{image}(\varphi)$ for all $\mathbf{v} \in V$.

Exercise 5 (More on orthogonal projections)
(Exercise 2.3 .3 on page 68 of the notes.) Show that the orthogonal projections of an n-dimensional euclidean or unitary vector space V are precisely those endomorphisms φ of V that are represented w.r.t. a suitable orthonormal basis by a diagonal matrix with ones and zeroes on the diagonal.

