Linear Algebra II
 Exercise Sheet no. 7

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

May 24, 2011

Exercise 1 (Warm up: the trace)
Recall Exercise E4.3 about the trace.
Let $V:=\mathbb{R}^{(n, n)}$ be the \mathbb{R}-vector space of all real $n \times n$ matrices and let $S \subseteq V$ be the subspace consisting of all symmetric matrices (i.e., all matrices A with $A^{t}=A$). For $A, B \in V$, we define

$$
\langle A, B\rangle:=\operatorname{Tr}(A B),
$$

where the trace $\operatorname{Tr}(A)$ of a matrix $A=\left(a_{i j}\right)$ is defined as

$$
\operatorname{Tr}(A):=\sum_{i=1}^{n} a_{i i}
$$

(a) Show that $\langle.,$.$\rangle is bilinear.$
(b) Show that $\langle.,$.$\rangle is a scalar product on S$.

Exercise 2 (Cauchy-Schwarz and triangle inequalities)
(a) (Exercise 2.1.4 on page 60 of the notes)

Let $(V,\langle.,\rangle$.$) be a euclidean or unitary vector space. Show that equality holds in the Cauchy-Schwarz inequality,$ i.e., we have $\|\langle\mathbf{v}, \mathbf{w}\rangle\|=\|\mathbf{v}\| \cdot\|\mathbf{w}\|$, if, and only if, \mathbf{v} and \mathbf{w} are linearly dependent.
(b) (Exercise 2.1.5 on page 60 of the notes)

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be pairwise distinct vectors in a euclidean or unitary vector space ($V,\langle.,$.$\rangle), and write \mathbf{a}:=\mathbf{v}-\mathbf{u}$, $\mathbf{b}:=\mathbf{w}-\mathbf{v}$. Show that equality holds in the triangle inequality

$$
d(\mathbf{u}, \mathbf{w})=d(\mathbf{u}, \mathbf{v})+d(\mathbf{v}, \mathbf{w}), \text { or, equivalently, }\|\mathbf{a}+\mathbf{b}\|=\|\mathbf{a}\|+\|\mathbf{b}\|,
$$

if, and only if, \mathbf{a} and \mathbf{b} are positive real scalar multiples of each other (geometrically: $\mathbf{v}=\mathbf{u}+s(\mathbf{w}-\mathbf{u})$ for some $s \in(0,1) \subseteq \mathbb{R})$.

Exercise 3 (Orthogonal matrices)

We consider real $n \times n$ matrices. Set

$$
\mathrm{O}(n):=\left\{A \in \mathbb{R}^{(n, n)} \mid A^{t} A=E_{n}\right\} .
$$

Show that $\mathrm{O}(n)$ is a subgroup of $\mathrm{GL}_{n}(\mathbb{R})$.
Exercise 4 (Orthogonal vectors)
Let V be a euclidean or unitary space and $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a set of non-null pairwise orthogonal vectors.
(a) Show that S is linearly independent.
(b) Let $\mathbf{u} \in V$. Show that the vector

$$
\mathbf{w}:=\mathbf{u}-\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}_{i}, \mathbf{u}\right\rangle}{\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle} \mathbf{v}_{i}
$$

is orthogonal to S. Note that $\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}_{i}, \mathbf{u}\right\rangle}{\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle} \mathbf{v}_{i}$ is the orthogonal projection of \mathbf{w} on $\operatorname{span}(S)$.
(c) [Parseval's identity] Suppose that V is finite dimensional and that S is an othornormal basis of V. Show that

$$
\langle\mathbf{v}, \mathbf{w}\rangle=\sum_{i=1}^{n}\left\langle\mathbf{v}, \mathbf{v}_{i}\right\rangle\left\langle\mathbf{v}_{i}, \mathbf{w}\right\rangle \quad \text { for all } \mathbf{v}, \mathbf{w} \in V
$$

(d) [Bessel's inequality] Suppose that V is euclidean and S is orthonormal. Show that

$$
\sum_{i=1}^{n}\left\langle\mathbf{v}_{i}, \mathbf{u}\right\rangle^{2} \leq\|\mathbf{u}\|^{2} \quad \text { for all } \mathbf{u} \in V
$$

Exercise 5 (Jordan normal form for describing processes)
Suppose that we use vectors $\mathbf{s}_{n} \in \mathbb{R}^{3}$ to describe the state of a 3-dimensional system at step $n \in \mathbb{N}$ (for example, the position of a particle in space). The evolution of the system from stage n to $n+1$ is given by

$$
\mathbf{s}_{n+1}=A \mathbf{s}_{n}, \quad \text { where } \quad A=\left(\begin{array}{ccc}
-4 & 2 & -1 \\
-4 & 3 & 0 \\
14 & -5 & 5
\end{array}\right)
$$

(a) Use a transformation of the given A into Jordan normal form in order to get a feasible formula for \mathbf{s}_{n}, as a function of the index n and the initial state \mathbf{s}_{0}.
(b) Compute \mathbf{s}_{100} for $\mathbf{s}_{0}=\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$.

