Linear Algebra II
 Exercise Sheet no. 5

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

May 6, 2011

Exercise 1

(a) Consider 2×2-matrices over the complex numbers. Why does their minimal polynomial determine their characteristic polynomial? Is the same true for 3×3-matrices?
(b) Find two 2×2-matrices that are not similar, but have the same characteristic polynomial.
(c) Show that any two 2×2-matrices with the same minimal polynomial are similar in $\mathbb{C}^{(2,2)}$. Is the same true in $\mathbb{R}^{(2,2)}$?
(d) Discuss necessary and sufficient conditions (also in terms of the determinant, the trace, and the minimal and characteristic polynomial of a matrix) for the similarity of two matrices. Use these criteria to split the following 9 matrices into equivalence classes w.r.t. similarity.

$$
\begin{array}{lll}
A_{1}=\left(\begin{array}{lll}
4 & 2 & 3 \\
1 & 3 & 2 \\
6 & 8 & 7
\end{array}\right) & A_{2}=\left(\begin{array}{lll}
2 & 3 & 4 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right) & A_{3}=\left(\begin{array}{lll}
1 & 3 & 4 \\
3 & 7 & 2 \\
2 & 8 & 6
\end{array}\right) \\
A_{4}=\left(\begin{array}{lll}
2 & 0 & 4 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) & A_{5}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) & A_{6}=\left(\begin{array}{lll}
2 & 4 & 3 \\
3 & 1 & 2 \\
8 & 6 & 7
\end{array}\right) \\
A_{7}=\left(\begin{array}{cll}
4 & 2 & 0 \\
-2 & 0 & 0 \\
2 & 2 & 2
\end{array}\right) & A_{8}=\left(\begin{array}{lll}
2 & 5 & 7 \\
0 & 1 & 8 \\
0 & 0 & 3
\end{array}\right), & A_{9}=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{array}
$$

Exercise 2 (Endomorphisms and bases)
Let $\varphi \in \operatorname{Hom}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ be an endomorphism of \mathbb{R}^{3} that, for some $\lambda \in \mathbb{R}$, is represented by the matrix

$$
A_{\lambda}:=\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)
$$

(a) Check that the third basis vector in a basis B giving rise to A_{λ} as $A_{\lambda}=\llbracket \varphi \rrbracket_{B}^{B}$ must be in $\operatorname{ker}(\varphi-\lambda \mathrm{id})^{3} \backslash \operatorname{ker}(\varphi-\lambda \mathrm{id})^{2}$.
(b) Describe in words which properties of φ guarantee that $\llbracket \varphi \rrbracket_{B}^{B}=A_{\lambda}$ for some basis B (for instance, in terms of eigenvalues, eigenvectors, the minimal polynomial, or the characteristic polynomial).
(c) For fixed φ (and λ), describe the set of all bases $B=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right)$ for which $\llbracket \varphi \rrbracket_{B}^{B}=A_{\lambda}$. Hint. Use φ to express \mathbf{b}_{1} in terms of \mathbf{b}_{2} and \mathbf{b}_{2} in terms of \mathbf{b}_{3}, and determine the possible choices for \mathbf{b}_{3}.
(d) For $\lambda=0$, what does the condition that $\llbracket \varphi \rrbracket_{B}^{B}=A_{0}$, for some basis B, tell us about dimensions of and the relationship between $\operatorname{Im}(\varphi)$ and $\operatorname{ker}(\varphi)$? What are the invariant subspaces?

Exercise 3 (Nilpotent endomorphisms)

Recall that an endomorphism $\varphi: V \rightarrow V$ is nilpotent if there is some $k \in \mathrm{~N}$ such that $\varphi^{k}=0$. The minimal such k is called the index of φ.
(a) Suppose that V is $\operatorname{Pol}_{n}(\mathbb{R})$ the \mathbb{R}-vector space of all polynomial functions of degree up to n. Show that the usual differential operator $\partial: V \rightarrow V: f \mapsto f^{\prime}$ is nilpotent of index $n+1$.

Suppose that $\varphi: V \rightarrow V$ is nilpotent with index k.
(b) Show that $q_{\varphi}=X^{k}$.
(c) Show that, for every $\mathbf{v} \in V, W:=\operatorname{span}\left(\mathbf{v}, \varphi(\mathbf{v}), \ldots, \varphi^{k-1}(\mathbf{v})\right)$ is an invariant subspace.
(d) Let W be the subspace from (iii) where we additionally assume that $\varphi^{k-1}(\mathbf{v}) \neq \mathbf{0}$. Show that the restriction φ_{0} of φ to W is nilpotent with index k.
(e) Suppose that V has dimension k. Show that there is some basis B such that

$$
\llbracket \varphi \rrbracket_{B}^{B}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
& \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
& & & \ddots & 1 \\
0 & & \cdots & & 0
\end{array}\right) .
$$

Exercise 4 (Characteristic and minimal polynomial)
Let $A \in \mathbb{F}^{(n, n)}$ have the characteristic polynomial p_{A} and the minimal polynomial $q_{A}=X^{r}+\sum_{i=0}^{r-1} c_{i} X^{i}$.
(a) Let $B_{0}, B_{1}, \ldots, B_{r}$ be defined as below.

$$
\begin{aligned}
B_{0} & :=E_{n} \\
B_{1} & :=A+c_{r-1} E_{n} \\
B_{2} & :=A^{2}+c_{r-1} A+c_{r-2} E_{n} \\
\ldots & \\
B_{r-1} & :=A^{r-1}+c_{r-1} A^{r-2}+\cdots+c_{1} E_{n} \\
B_{r} & :=A^{r}+c_{r-1} A^{r-1}+\cdots+c_{0} E_{n}
\end{aligned}
$$

Let $B(X):=X^{r-1} B_{0}+X^{r-2} B_{1}+\cdots+X B_{r-2}+B_{r-1}$ and show that $\left(X E_{n}-A\right) B(X)=q_{A}\left(X E_{n}\right)$.
(b) Use part (a) to show that p_{A} divides $\left(q_{A}\right)^{n}$.
(c) Use part (b) to show that p_{A} and q_{A} have the same irreducible factors.

