Linear Algebra II Exercise Sheet no. 5

Summer term 2011 May 6, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1

- (a) Consider 2 × 2-matrices over the complex numbers. Why does their minimal polynomial determine their characteristic polynomial? Is the same true for 3 × 3-matrices?
- (b) Find two 2×2 -matrices that are not similar, but have the same characteristic polynomial.
- (c) Show that any two 2×2-matrices with the same minimal polynomial are similar in $\mathbb{C}^{(2,2)}$. Is the same true in $\mathbb{R}^{(2,2)}$?
- (d) Discuss necessary and sufficient conditions (also in terms of the determinant, the trace, and the minimal and characteristic polynomial of a matrix) for the similarity of two matrices. Use these criteria to split the following 9 matrices into equivalence classes w.r.t. similarity.

$$A_{1} = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 3 & 2 \\ 6 & 8 & 7 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} 2 & 3 & 4 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{pmatrix} \qquad A_{3} = \begin{pmatrix} 1 & 3 & 4 \\ 3 & 7 & 2 \\ 2 & 8 & 6 \end{pmatrix}$$
$$A_{4} = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad A_{5} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad A_{6} = \begin{pmatrix} 2 & 4 & 3 \\ 3 & 1 & 2 \\ 8 & 6 & 7 \end{pmatrix}$$
$$A_{7} = \begin{pmatrix} 4 & 2 & 0 \\ -2 & 0 & 0 \\ 2 & 2 & 2 \end{pmatrix} \qquad A_{8} = \begin{pmatrix} 2 & 5 & 7 \\ 0 & 1 & 8 \\ 0 & 0 & 3 \end{pmatrix}, \qquad A_{9} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Exercise 2 (Endomorphisms and bases)

Let $\varphi \in \text{Hom}(\mathbb{R}^3, \mathbb{R}^3)$ be an endomorphism of \mathbb{R}^3 that, for some $\lambda \in \mathbb{R}$, is represented by the matrix

$$A_{\lambda} := \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$

- (a) Check that the third basis vector in a basis *B* giving rise to A_{λ} as $A_{\lambda} = \llbracket \varphi \rrbracket_{B}^{B}$ must be in ker $(\varphi \lambda id)^{3} \setminus ker(\varphi \lambda id)^{2}$.
- (b) Describe in words which properties of φ guarantee that $\llbracket \varphi \rrbracket_B^B = A_\lambda$ for some basis *B* (for instance, in terms of eigenvalues, eigenvectors, the minimal polynomial, or the characteristic polynomial).
- (c) For fixed φ (and λ), describe the set of all bases $B = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ for which $\llbracket \varphi \rrbracket_B^B = A_{\lambda}$. *Hint.* Use φ to express \mathbf{b}_1 in terms of \mathbf{b}_2 and \mathbf{b}_2 in terms of \mathbf{b}_3 , and determine the possible choices for \mathbf{b}_3 .
- (d) For $\lambda = 0$, what does the condition that $\llbracket \varphi \rrbracket_B^B = A_0$, for some basis *B*, tell us about dimensions of and the relationship between Im(φ) and ker(φ)? What are the invariant subspaces?

Exercise 3 (Nilpotent endomorphisms)

Recall that an endomorphism $\varphi: V \to V$ is *nilpotent* if there is some $k \in \mathbb{N}$ such that $\varphi^k = 0$. The minimal such k is called the *index* of φ .

(a) Suppose that *V* is $\operatorname{Pol}_n(\mathbb{R})$ the \mathbb{R} -vector space of all polynomial functions of degree up to *n*. Show that the usual differential operator $\partial : V \to V : f \mapsto f'$ is nilpotent of index n + 1.

Suppose that $\varphi: V \to V$ is nilpotent with index *k*.

- (b) Show that $q_{\varphi} = X^k$.
- (c) Show that, for every $\mathbf{v} \in V$, $W := \operatorname{span}(\mathbf{v}, \varphi(\mathbf{v}), \dots, \varphi^{k-1}(\mathbf{v}))$ is an invariant subspace.
- (d) Let *W* be the subspace from (iii) where we additionally assume that $\varphi^{k-1}(\mathbf{v}) \neq \mathbf{0}$. Show that the restriction φ_0 of φ to *W* is nilpotent with index *k*.
- (e) Suppose that V has dimension k. Show that there is some basis B such that

$$\llbracket \varphi \rrbracket_B^B = egin{pmatrix} 0 & 1 & 0 & \cdots & 0 \ & \ddots & \ddots & \ddots & \vdots \ \vdots & & \ddots & \ddots & 0 \ & & & \ddots & 1 \ 0 & & \cdots & & 0 \end{pmatrix}.$$

Exercise 4 (Characteristic and minimal polynomial)

Let $A \in \mathbb{F}^{(n,n)}$ have the characteristic polynomial p_A and the minimal polynomial $q_A = X^r + \sum_{i=0}^{r-1} c_i X^i$. (a) Let B_0, B_1, \dots, B_r be defined as below.

$$B_{0} := E_{n}$$

$$B_{1} := A + c_{r-1}E_{n}$$

$$B_{2} := A^{2} + c_{r-1}A + c_{r-2}E_{n}$$
...
$$B_{r-1} := A^{r-1} + c_{r-1}A^{r-2} + \dots + c_{1}E_{n}$$

$$B_{r} := A^{r} + c_{r-1}A^{r-1} + \dots + c_{0}E_{n}$$

Let $B(X) := X^{r-1}B_0 + X^{r-2}B_1 + \dots + XB_{r-2} + B_{r-1}$ and show that $(XE_n - A)B(X) = q_A(XE_n)$.

- (b) Use part (a) to show that p_A divides $(q_A)^n$.
- (c) Use part (b) to show that p_A and q_A have the same irreducible factors.