Linear Algebra II
 Exercise Sheet no. 4

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

May 2, 2011

Exercise 1 (Warm-up)

Prove the Cayley-Hamilton Theorem for 2×2 matrices by direct computation.

Exercise 2 (Eigenvalues)

Let p be a polynomial in $\mathbb{F}[X]$ and $A \in \mathbb{F}^{(n, n)}$. Show that if λ is an eigenvalue of A, then $p(\lambda)$ is an eigenvalue of the matrix $p(A)$.

Exercise 3 (Trace)
Recall that $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$ is the trace of an $n \times n$-matrix $A=\left(a_{i j}\right) \in \mathbb{F}^{(n, n)}$.
(a) Show that for any matrices $A, B \in \mathbb{F}^{(n, n)}, \operatorname{tr}(A B)=\operatorname{tr}(B A)$. Use this to show that similar matrices have the same trace.
(b) How does the characteristic polynomial p_{A} of a matrix A determine $\operatorname{tr}(A)$ and $\operatorname{det}(A)$? From this, conclude (again) that the trace is invariant under similarity (as is the determinant, of course).
(c) Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 3 \\
1 & -2
\end{array}\right), \quad C=\left(\begin{array}{cc}
2 & 1 \\
0 & -1
\end{array}\right) .
$$

Show that $\operatorname{tr}(A B C) \neq \operatorname{tr}(A C B)$. Therefore the trace is not invariant under arbitrary permutations of products of matrices.

Exercise 4 (Characteristic polynomial)

(a) Determine the characteristic polynomial p_{A} of the matrix

$$
A=\left(\begin{array}{ccccccc}
0 & 0 & 0 & \ldots & 0 & 0 & a_{0} \\
1 & 0 & 0 & \ldots & 0 & 0 & a_{1} \\
0 & 1 & 0 & \ldots & 0 & 0 & a_{2} \\
0 & 0 & 1 & \ldots & 0 & 0 & a_{3} \\
\vdots & & & & & & \\
0 & 0 & 0 & \ldots & 1 & 0 & a_{n-2} \\
0 & 0 & 0 & \ldots & 0 & 1 & a_{n-1}
\end{array}\right), \quad \text { with } n \geq 1
$$

Hint: expand the determinant along the last column.
(b) Show that every polynomial $p \in \mathbb{F}[X]$ of degree $n \geq 1$ with leading coefficient $(-1)^{n}$ occurs as a characteristic polynomial of a matrix $A \in \mathbb{F}^{(n, n)}$.

Exercise 5 (Polynomials over \mathbb{F}_{2})
(a) Show that in $\mathbb{F}_{2}[X]$ any non-linear polynomial with an odd number of powers X^{i} for $i \geq 1$ (with or without the constant term 1) is reducible.
(b) Find in $\mathbb{F}_{2}[X]$ all irreducible polynomials of degree 3 and 4.

