Linear Algebra II
 Exercise Sheet no. 3

TECHNISCHE UNIVERSITAT DARMSTADT

Prof. Dr. Otto
\section*{Dr. Le Roux}

April 29, 2011
Dr. Linshaw

Exercise 1 (Warm-up: Multiple Zeroes)
For a polynomial $p=\sum_{i=0}^{n} a_{i} X^{i} \in \mathbb{F}[X]$ define its formal derivative p^{\prime} by

$$
p^{\prime}:=\sum_{i=1}^{n} i a_{i} X^{i-1} .
$$

(a) Check that the usual product rule for differentiaton applies to the formal derivative of polynomials considered here!
(b) Let α be a zero of P. Show the equivalence of the following:
i. α is a multiple zero of p. (In other words, $(X-\alpha)^{2}$ divides p.)
ii. α is a zero of p^{\prime}.
iii. α is a zero of $\operatorname{gcd}\left(p, p^{\prime}\right)$.

Exercise 2 (Commutative subrings of matrix rings)
Let $A \in \mathbb{F}^{(n, n)}$ be an $n \times n$ matrix over a field \mathbb{F}. Let $R_{A} \subseteq \mathbb{F}^{(n, n)}$ be the subring generated by A, which consists of all linear combinations of powers of A.
(a) Prove that R_{A} is a commutative subring of $\mathbb{F}^{(n, n)}$.
(b) Consider the evaluation map $\sim: \mathbb{F}[X] \rightarrow R_{A}$ defined by $\tilde{p}=\sum_{i}^{n} a_{i} A^{i}$ for $p=\sum_{i}^{n} a_{i} X^{i}$. Show that this map is a ring homomorphism. Is it surjective? Injective?

Hint: By forgetting about the multiplicative structure, we may regard $\mathbb{F}[X]$ and R_{A} as vector spaces over \mathbb{F}, and we may regard ${ }^{\sim}$ as a vector space homomorphism. Do $\mathbb{F}[X]$ and R_{A} have the same dimension as \mathbb{F}-vector spaces?

Exercise 3 (The Euclidean algorithm revisited)
Recall the Euclidean algorithm from Exercise Sheet 2. In particular, given natural numbers a, b, we normalise so that $d_{1}=\min \{a, b\}$ and $d_{0}=\max \{a, b\}$. In each step, we divide with remainder, obtaining $d_{k-1}=q_{k} d_{k}+d_{k+1}$. At the end of this procedure $d_{k+1}=0$, and $d_{k}=\operatorname{gcd}(a, b)$.
(a) Let k be the number of steps needed to compute $\operatorname{gcd}\left(a_{0}, b_{0}\right)$ in this way. Consider the matrix $M \in \mathbb{Z}^{(2,2)}$ given by

$$
M=\left(\begin{array}{cc}
0 & 1 \\
1 & q_{1}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & q_{2}
\end{array}\right) \cdots\left(\begin{array}{cc}
0 & 1 \\
1 & q_{k}
\end{array}\right)
$$

Show that M is regular and that M^{-1} is again a matrix over \mathbb{Z}. Compute $M^{-1}\binom{d_{1}}{d_{0}}$.
(b) Interpret the entries in second row of M^{-1} in terms of $\operatorname{gcd}\left(d_{0}, d_{1}\right)$.
(c) Recall that the least common multiple $\operatorname{lcm}\left(d_{0}, d_{1}\right)$ is an integer z characterized by the following properties:
i. $d_{0} \mid z$ and $d_{1} \mid z$.
ii. If a is any integer for which $d_{0} \mid a$ and $d_{1} \mid a$, then $z \mid a$.

Interpret the entries in the first row of M^{-1} in terms of $1 \mathrm{~cm}\left(d_{0}, d_{1}\right)$.

Exercise 4 (Polynomial factorisation and diagonalisation)

Consider the following polynomials in $\mathbb{F}[X]$ for $\mathbb{F}=\mathbb{Q}, \mathbb{R}$ and \mathbb{C} :

$$
p_{1}=X^{3}-2, \quad p_{2}=X^{3}+4 X^{2}+2 X, \quad p_{3}=X^{3}-X^{2}-2 X+2 .
$$

(a) Which of these polynomials are irreducible in $\mathbb{F}[X]$?
(b) Which of these polynomials decompose into linear factors over $\mathbb{F}[X]$?
(c) Suppose p_{i} is the characteristic polynomial of a matrix $A_{i} \in \mathbb{F}^{(3,3)}$. Which of the A_{i} is diagonalisable over \mathbb{F} ?

