Linear Algebra II **Exercise Sheet no. 3**

UNIVERSITÄT DARMSTADT

April 29, 2011

SS 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Warm-up: Multiple Zeroes) For a polynomial $p = \sum_{i=0}^{n} a_i X^i \in \mathbb{F}[X]$ define its *formal derivative* p' by

$$p':=\sum_{i=1}^n ia_i X^{i-1}.$$

- (a) Check that the usual product rule for differentiaton applies to the formal derivative of polynomials considered here!
- (b) Let α be a zero of *P*. Show the equivalence of the following:
 - i. α is a multiple zero of *p*. (In other words, $(X \alpha)^2$ divides *p*.)
 - ii. α is a zero of p'.
 - iii. α is a zero of gcd(p, p').

Exercise 2 (Commutative subrings of matrix rings)

Let $A \in \mathbb{F}^{(n,n)}$ be an $n \times n$ matrix over a field \mathbb{F} . Let $R_A \subseteq \mathbb{F}^{(n,n)}$ be the subring generated by A, which consists of all linear combinations of powers of A.

- (a) Prove that R_A is a commutative subring of $\mathbb{F}^{(n,n)}$.
- (b) Consider the evaluation map $\tilde{:} \mathbb{F}[X] \to R_A$ defined by $\tilde{p} = \sum_i^n a_i A^i$ for $p = \sum_i^n a_i X^i$. Show that this map is a ring homomorphism. Is it surjective? Injective?

Hint: By forgetting about the multiplicative structure, we may regard $\mathbb{F}[X]$ and R_A as vector spaces over \mathbb{F} , and we may regard \tilde{a} as a vector space homomorphism. Do $\mathbb{F}[X]$ and R_A have the same dimension as \mathbb{F} -vector spaces?

Exercise 3 (The Euclidean algorithm revisited)

Recall the Euclidean algorithm from Exercise Sheet 2. In particular, given natural numbers a, b, we normalise so that $d_1 = \min\{a, b\}$ and $d_0 = \max\{a, b\}$. In each step, we divide with remainder, obtaining $d_{k-1} = q_k d_k + d_{k+1}$. At the end of this procedure $d_{k+1} = 0$, and $d_k = \gcd(a, b)$.

(a) Let k be the number of steps needed to compute $gcd(a_0, b_0)$ in this way. Consider the matrix $M \in \mathbb{Z}^{(2,2)}$ given by

$$M = \begin{pmatrix} 0 & 1 \\ 1 & q_1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & q_2 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & q_k \end{pmatrix}.$$

Show that *M* is regular and that M^{-1} is again a matrix over \mathbb{Z} . Compute $M^{-1}\begin{pmatrix} d_1\\ d_2 \end{pmatrix}$.

- (b) Interpret the entries in second row of M^{-1} in terms of $gcd(d_0, d_1)$.
- (c) Recall that the *least common multiple* $lcm(d_0, d_1)$ is an integer *z* characterized by the following properties: i. $d_0|z$ and $d_1|z$.
 - ii. If *a* is any integer for which $d_0|a$ and $d_1|a$, then z|a.

Interpret the entries in the first row of M^{-1} in terms of lcm (d_0, d_1) .

Exercise 4 (Polynomial factorisation and diagonalisation)

Consider the following polynomials in $\mathbb{F}[X]$ for $\mathbb{F} = \mathbb{Q}, \mathbb{R}$ and \mathbb{C} :

$$p_1 = X^3 - 2$$
, $p_2 = X^3 + 4X^2 + 2X$, $p_3 = X^3 - X^2 - 2X + 2$.

- (a) Which of these polynomials are irreducible in $\mathbb{F}[X]$?
- (b) Which of these polynomials decompose into linear factors over $\mathbb{F}[X]$?
- (c) Suppose p_i is the characteristic polynomial of a matrix $A_i \in \mathbb{F}^{(3,3)}$. Which of the A_i is diagonalisable over \mathbb{F} ?