Linear Algebra II
 Exercise Sheet no. 1

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

Exercise G1 (Warm-up)

In \mathbb{R}^{3}, let g be a line through the origin and E be a plane through the origin such that g is not in E. Determine (geometrically) the eigenvalues and eigenspaces of the following linear maps:
(a) reflection in the plane E.
(b) central reflection in the origin.
(c) parallel projection in the direction of g onto E.
(d) rotation about g through $\frac{1}{3} \pi$ followed by rescaling in the direction of g with factor 6 .

Which of these maps admit a basis of eigenvectors?

Exercise G2 (Warm-up)

(a) Suppose that $\varphi: V \rightarrow V$ is a linear map over an arbitrary field, and such that all vectors $\mathbf{v} \in \mathbf{V}$ are eigenvectors of φ. Show that φ must have exactly one eigenvalue λ, and that φ is precisely $\lambda \cdot \mathrm{id}$, where id is the identity map.
(b) Let $\psi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the map defined by

$$
\varphi\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
-w \\
z
\end{array}\right)
$$

Find the (real) eigenvalues of φ and their multiplicity, and find bases for the corresponding eigenspaces.
Exercise G3 (Fixed points of affine maps)
Recall that an affine map is a function $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of the form $\varphi(\mathbf{x})=\varphi_{0}(\mathbf{x})+\mathbf{b}$ where φ_{0} is a linear map and $\mathbf{b} \in \mathbb{R}^{2}$ is a vector. In this exercise we are interested in the question of whether such a map φ has a fixed point, i.e., a point \mathbf{x} such that $\varphi(\mathbf{x})=\mathbf{x}$.
(a) Prove that φ has a fixed point, provided that 1 is not an eigenvalue of φ_{0}.
(b) Let φ be a rotation through the angle α about a point \mathbf{c}. Give a formula for φ w.r.t. the standard basis, i.e., find functions f and g such that $\varphi(x, y)=(f(x, y), g(x, y))$.
(c) Let $\varrho_{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rotation through the angle α (about the origin) and let $\tau_{\mathbf{c}}: \mathbf{x} \mapsto \mathbf{x}+\mathbf{c}$ be the translation by \mathbf{c}. Using (ii), show that the composition $\tau_{\mathbf{c}} \circ \varrho_{\alpha} \circ \tau_{-\mathbf{c}}$ is a rotation through α about the point \mathbf{c}.
(d) Suppose that the linear map φ_{0} is a rotation through an angle $\alpha \neq 0$. Prove that the affine map $\varphi: \mathbf{x} \mapsto \varphi_{0}(\mathbf{x})+\mathbf{b}$ has a fixed point \mathbf{c} and that $\varphi=\tau_{\mathbf{c}} \circ \varrho_{\alpha} \circ \tau_{-\mathbf{c}}$, i.e., φ is a rotation through α about \mathbf{c}.
(Bonus question: how can you find the centre \mathbf{c} geometrically (i.e., without computation)?)
(e) Give an example of an affine map $\varphi(\mathbf{x})=\varphi_{0}(\mathbf{x})+\mathbf{b}$ without fixed points such that φ_{0} is not the identity map.

Exercise G4 (Eigenvalues and eigenvectors)
Consider the real 2×2 matrix $A=\left(\begin{array}{ll}-2 & 6 \\ -2 & 5\end{array}\right)$ and the linear map $\varphi=\varphi_{A}$ given by A w.r.t. the standard basis.
(a) Calculate the eigenvalues of A by expanding $\operatorname{det}(A-\lambda E)$ and find the zeroes/roots of the characteristic polynomial.
(b) For each eigenvalue λ_{i} determine the eigenspace $V_{\lambda_{i}}$.
(c) Find a basis B of \mathbb{R}^{2} that only consists of eigenvectors of φ and find the matrix of the map φ with respect to the basis B.

