Linear Algebra II Exercise Sheet no. 1

TECHNISCHE UNIVERSITÄT DARMSTADT

SS 2011 April 11, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise G1 (Warm-up)

In \mathbb{R}^3 , let *g* be a line through the origin and *E* be a plane through the origin such that *g* is not in *E*. Determine (geometrically) the eigenvalues and eigenspaces of the following linear maps:

- (a) reflection in the plane *E*.
- (b) central reflection in the origin.
- (c) parallel projection in the direction of g onto E.
- (d) rotation about g through $\frac{1}{3}\pi$ followed by rescaling in the direction of g with factor 6.

Which of these maps admit a basis of eigenvectors?

Exercise G2 (Warm-up)

- (a) Suppose that $\varphi : V \to V$ is a linear map over an arbitrary field, and such that all vectors $\mathbf{v} \in \mathbf{V}$ are eigenvectors of φ . Show that φ must have exactly one eigenvalue λ , and that φ is precisely $\lambda \cdot id$, where id is the identity map.
- (b) Let $\psi : \mathbb{R}^4 \to \mathbb{R}^4$ be the map defined by

$$\varphi \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x \\ y \\ -w \\ z \end{pmatrix}$$

Find the (real) eigenvalues of φ and their multiplicity, and find bases for the corresponding eigenspaces.

Exercise G3 (Fixed points of affine maps)

Recall that an affine map is a function $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ of the form $\varphi(\mathbf{x}) = \varphi_0(\mathbf{x}) + \mathbf{b}$ where φ_0 is a linear map and $\mathbf{b} \in \mathbb{R}^2$ is a vector. In this exercise we are interested in the question of whether such a map φ has a *fixed point*, i.e., a point \mathbf{x} such that $\varphi(\mathbf{x}) = \mathbf{x}$.

- (a) Prove that φ has a fixed point, provided that 1 is not an eigenvalue of φ_0 .
- (b) Let φ be a rotation through the angle α about a point **c**. Give a formula for φ w.r.t. the standard basis, i.e., find functions *f* and *g* such that $\varphi(x, y) = (f(x, y), g(x, y))$.
- (c) Let $\rho_{\alpha} : \mathbb{R}^2 \to \mathbb{R}^2$ be a rotation through the angle α (about the origin) and let $\tau_{\mathbf{c}} : \mathbf{x} \mapsto \mathbf{x} + \mathbf{c}$ be the translation by \mathbf{c} . Using (ii), show that the composition $\tau_{\mathbf{c}} \circ \rho_{\alpha} \circ \tau_{-\mathbf{c}}$ is a rotation through α about the point \mathbf{c} .
- (d) Suppose that the linear map φ_0 is a rotation through an angle $\alpha \neq 0$. Prove that the affine map $\varphi : \mathbf{x} \mapsto \varphi_0(\mathbf{x}) + \mathbf{b}$ has a fixed point \mathbf{c} and that $\varphi = \tau_{\mathbf{c}} \circ \varrho_{\alpha} \circ \tau_{-\mathbf{c}}$, i.e., φ is a rotation through α about \mathbf{c} .
- (Bonus question: how can you find the centre **c** *geometrically* (i.e., without computation)?)
- (e) Give an example of an affine map $\varphi(\mathbf{x}) = \varphi_0(\mathbf{x}) + \mathbf{b}$ without fixed points such that φ_0 is not the identity map.

Exercise G4 (Eigenvalues and eigenvectors)

Consider the real 2 × 2 matrix $A = \begin{pmatrix} -2 & 6 \\ -2 & 5 \end{pmatrix}$ and the linear map $\varphi = \varphi_A$ given by A w.r.t. the standard basis.

- (a) Calculate the eigenvalues of A by expanding det $(A \lambda E)$ and find the zeroes/roots of the characteristic polynomial.
- (b) For each eigenvalue λ_i determine the eigenspace V_{λ_i} .
- (c) Find a basis *B* of \mathbb{R}^2 that only consists of eigenvectors of φ and find the matrix of the map φ with respect to the basis *B*.