## Linear Algebra II <br> Exercise Sheet no. 15

Summer term 2011
Prof. Dr. Otto
July 13, 2011
Dr. Le Roux
Dr. Linshaw

## Exercise 1 (Characteristic and minimal polynomials)

Find the characteristic and minimal polynomials of the following matrix

$$
A=\left(\begin{array}{llllllllll}
1 & 1 & & & & & & & & \\
& 1 & & & & & & & & \\
& & 1 & 1 & & & \mathbf{O} & & & \\
& & & 1 & & & & & & \\
& & & & 2 & 1 & & & & \\
& & & & & 2 & 1 & & & \\
& & & & & & 2 & & & \\
& & & 0 & & & & 2 & & \\
& & & & & & & & 4 & \\
& & & & & & & & 4
\end{array}\right)
$$

## Solution:

The characteristic polynomial is

$$
p_{A}(x)=(1-x)^{4}(2-x)^{4}(4-x)^{2},
$$

and the minimal polynomial is

$$
q_{A}(x)=(x-1)^{2}(x-2)^{3}(x-4) .
$$

Exercise 2 (Jordan normal form)
(a) Let $\varphi$ be an endomorphism of a ten-dimensional $\mathbb{F}$-vector space $V$. W.r.t. basis $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{10}\right)$ let $\varphi$ be represented by a Jordan normal form matrix with three Jordan blocks for the same eigenvalue $\lambda \in \mathbb{F}$, of sizes 2,3 and 5 . Let $\psi:=\varphi-\lambda \mathrm{id}$. Complete the following table:

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{dim}\left(\operatorname{ker} \psi^{i}\right)$ |  |  |  |  | 10 | 10 | 10 | 10 | 10 | 10 |

In the notation of Lemma 1.6 .4 of the notes: for which $\mathbf{v} \in V$ does $\llbracket \mathbf{v} \rrbracket$ have maximal dimension? Split the basis $B$ in a way to obtain bases for the two invariant subspaces $V=\llbracket \mathbf{v} \rrbracket \oplus V^{\prime}$ (as in Claim 1.6.5). If $\varphi^{\prime}$ is the restriction of $\varphi$ to $V^{\prime}$, what is the matrix representation of $\varphi^{\prime}$ with respect to this basis? If $\psi^{\prime}=\varphi^{\prime}-\lambda$ id, how is the corresponding table for $\psi^{\prime}$ related to the above?
(b) Now, let $\varphi$ be another endomorphism of $V$ with characteristic polynomial $(\lambda-X)^{10}$. Suppose we have the following data for $\psi=\varphi-\lambda \mathrm{id}$ :

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{dim}\left(\operatorname{ker} \psi^{i}\right)$ | 3 | 5 | 7 | 8 | 9 | 10 | 10 | 10 | 10 | 10 |

Determine the Jordan normal form representation of $\varphi$ from this data (up to permutation of Jordan blocks).
(c) (extra) In general, let $\varphi_{0}$ and $\varphi_{1}$ be two endomorphisms of $\mathbb{F}$-vector spaces $V_{0}$ and $V_{1}$ of the same finite dimension, with the same characteristic polynomial that splits into linear factors. Suppose moreover that for each eigenvalue $\lambda$ of $\varphi_{0}$ and $\varphi_{1}$, the tables for $\psi_{0}=\varphi_{0}-\lambda i d$ and $\psi_{1}=\varphi_{1}-\lambda i d$ are the same.
Sketch a proof for the similarity of $\varphi_{0}$ and $\varphi_{1}$ adapting the argument for the existence and uniqueness of the Jordan normal form. How can this be used to give a "different" proof for the similarity of $A$ and $A^{t}$ for any matrix $A \in \mathbb{C}^{(n, n)}$ ?

## Solution:

a) Let

$$
\llbracket \varphi \rrbracket_{B}^{B}=A=\left(\begin{array}{lllllllll}
\lambda & 1 & & & & & & & \\
& & 1 & & & & & & \\
& & \lambda & & & & & & \\
\\
& & & \lambda & 1 & & & & \\
& \\
& & & & & & & & \\
& & \\
& & & & & & 1 & & \\
& \lambda & & \\
& & & & & & & & \\
& & & & & & & & \\
0 & & & & & & & & \\
& & & \\
& & \\
& & & \\
&
\end{array}\right) .
$$

The entries of the table are:

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{dim}\left(\operatorname{ker} \psi^{i}\right)$ | 3 | 6 | 8 | 9 | 10 | 10 | 10 | 10 | 10 | 10 |

For $\mathbf{v}=\lambda \mathbf{b}_{10}$ with $\lambda \neq 0$, does $\llbracket \mathbf{v} \rrbracket$ have maximal dimension 5 . The natural choice for a basis for $V^{\prime}$ is $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{5}\right)$, and the representation of $\varphi^{\prime}$ with respect to this basis is the $5 \times 5$-matrix in the top left corner of $A$ :

$$
A=\left(\begin{array}{lllll}
\lambda & 1 & & & 0 \\
& \lambda & 1 & & \\
& & \lambda & & \\
& & & \lambda & 1 \\
& & & & \lambda
\end{array}\right)
$$

The table for $\psi^{\prime}$ has the form:

| $i$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{dim}\left(\operatorname{ker} \psi^{/ i}\right)$ | 2 | 4 | 5 | 5 | 5 |

The $i$ th entry of this table is $i$ less than the entry of the previous table, until we reach the dimension of $\llbracket \mathbf{v} \rrbracket$.
b) The Jordan normal form is:

$$
\left(\begin{array}{llllllllll}
\lambda & & & & & & & & & 0 \\
& \lambda & 1 & & & & & & & \\
& & \lambda & 1 & & & & & & \\
& & & \lambda & & & & & & \\
& & & & \lambda & 1 & & & & \\
& & & & & \lambda & 1 & & & \\
& & & & & & \lambda & 1 & & \\
& & & & & & & \lambda & 1 & \\
& & & & & & & & \lambda & 1 \\
0 & & & & & & & & & \lambda
\end{array}\right)
$$

When $\mathbf{b}_{i} \in \operatorname{ker} \psi^{j+1} \backslash \operatorname{ker} \psi^{j}$, then $j$ depends as follows on $i$ :

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $j$ | 1 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 |

c) Sketch: we can without loss of generality restrict ourselves to the case that $\varphi_{0}$ and $\varphi_{1}$ have $\lambda$ as sole eigenvalue. Then we proceed by induction on $\operatorname{dim} V_{0}=\operatorname{dim} V_{1}$. By assumption, the tables for $\lambda$ are the same for both $\psi_{0}=$ $\varphi_{0}-\lambda$ id and $\psi_{1}=\varphi_{1}-\lambda$ id. This means the first $j$ such that $\operatorname{dim}\left(\operatorname{ker} \psi_{0}^{j}\right)=\operatorname{dim} V_{0}$ is also the first $j$ such that $\operatorname{dim}\left(\operatorname{ker} \psi_{1}^{j}\right)=\operatorname{dim} V_{1}$. Then there are vectors $\mathbf{v}_{0} \in \operatorname{ker} \psi_{0}^{j+1} \backslash \operatorname{ker} \psi_{0}^{j}$ and $\mathbf{v}_{1} \in \operatorname{ker} \psi_{1}^{j+1} \backslash \operatorname{ker} \psi_{1}^{j}$, allowing us to split up $V_{0}$ and $V_{1}$ as $V_{0}=\llbracket \mathbf{v}_{0} \rrbracket \oplus V_{0}^{\prime}$ and $V^{\prime}=\llbracket \mathbf{v}_{1} \rrbracket \oplus V_{1}^{\prime}$. We let $\varphi_{0}^{\prime}$ and $\varphi_{1}^{\prime}$ be the restricitions of $\varphi_{0}$ and $\varphi_{1}$ to $V_{0}^{\prime}$ and $V_{1}^{\prime}$ respectively. We know that $\varphi_{0}^{\prime}$ and $\varphi_{1}^{\prime}$ also have $\lambda$ as sole eigenvalue!, their tables are obtained in the same manner from those of $\varphi_{0}$ and $\varphi_{1}$, and therefore $\varphi_{0}^{\prime}$ and $\varphi_{1}^{\prime}$ are represented by similar matrices by induction hypothesis. This can be extended to an isomorphism of $V_{0}$ and $V_{1}$ showing that $\varphi_{0}$ and $\varphi_{1}$ are represented by similar matrices, by sending $\mathbf{v}_{0}$ to $\mathbf{v}_{1}, \varphi_{0} \mathbf{v}_{0}$ to $\varphi_{1} \mathbf{v}_{1}$, etcetera. This completes the (sketch of the) proof.
Since $A$ and $A^{t}$ have the same characteristic polynomial, and $\operatorname{dim}\left(\operatorname{ker}(A-\lambda E)^{i}\right)=\operatorname{dim}\left(\operatorname{ker}\left(A^{t}-\lambda E\right)^{i}\right)$ for every eigenvalue $\lambda$ and $i \in \mathbb{N}$ (for a matrix has the same rank as its transpose), we deduce that every matrix is similar to its transpose over $\mathbb{C}$.

Exercise 3 (Diagonalization using orthogonal matrices)
Let $\varphi$ be the endomorphism of $\mathbb{R}^{3}$ given in the standard basis by

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 / \sqrt{2} \\
-1 & 1 & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2} & 2
\end{array}\right)
$$

(a) Find an orthogonal matrix $B$ such that $B^{-1} A B$ is diagonal.
(b) Describe all subspaces of $\mathbb{R}^{3}$ which are invariant under $\varphi$.
(c) For $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$, let $Q$ be the quadratic form

$$
Q(\mathbf{x})=x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}-\frac{2}{\sqrt{2}} x_{1} x_{3}+\frac{2}{\sqrt{2}} x_{2} x_{3} .
$$

Find the principle axes of the quadric $X$ given by $Q(\mathbf{x})=1$.

## Solution:

a) The characteristic polynomial of $A$ is $-(x-1)(x-3)(x)$, and the normalized eigenvectors of eigenvalues 3 , 1 , and 0 , respectively, are

$$
\begin{aligned}
& \qquad \mathbf{v}_{1}=\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1 / \sqrt{2}
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1 / \sqrt{2}
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right) . \\
& \text { Therefore the orthogonal matrix } B=\left(\begin{array}{ccc}
-1 / 2 & 1 / 2 & 1 / \sqrt{2} \\
1 / 2 & -1 / 2 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right) \text { satisfies } B^{-1} A B=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

b) The invariant subspaces are $\{\mathbf{0}\}$, $\operatorname{span}\left(\mathbf{v}_{1}\right), \operatorname{span}\left(\mathbf{v}_{2}\right), \operatorname{span}\left(\mathbf{v}_{3}\right), \operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right), \operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{3}\right), \operatorname{span}\left(\mathbf{v}_{2}, \mathbf{v}_{3}\right)$, and $\mathbb{R}^{3}$.
c) Since the matrix representing $Q$ is precisely $A$, the principal axes of $X$ lie along the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

Exercise 4 (Invariant planes in $\mathbb{R}^{4}$ )
Let $\varphi$ be an orthogonal transformation of $\mathbb{R}^{4}$ which fixes a plane $U_{1}$ pointwise, and acts by a nontrivial rotation on another plane $U_{2}$. Prove that $U_{1}$ and $U_{2}$ are the only invariant subspaces of $\mathbb{R}^{4}$ of dimension 2.

## Solution:

First, we have $U_{1} \cap U_{2}=\{0\}$, since this is the only vector that is fixed pointwise under a nontrivial rotation. Therefore we have a direct sum decomposition $\mathbb{R}^{4}=U_{1} \oplus U_{2}$. Suppose that $V$ is a two-dimensional invariant subspace of $\mathbb{R}^{4}$, and $V \neq U_{1}$ and $V \neq U_{2}$. Fix a non-null vector $\mathbf{v} \in V$; we have a unique decomposition $\mathbf{v}=\mathbf{u}_{1}+\mathbf{u}_{2}$, with $\mathbf{u}_{i} \in U_{i}$. Since $V \neq U_{1}$, we may choose $\mathbf{v}$ so that $\mathbf{u}_{2} \neq \mathbf{0}$.

First, we claim that $\mathbf{u}_{1} \neq \mathbf{0}$. Otherwise, we would have $\mathbf{v} \in U_{2}$, and hence $V=U_{2}$ since $\mathbf{v}$ and $\varphi(\mathbf{v})$ are linearly independent. (This follows from the fact that $\varphi$ acts by a non-trivial rotation on $U_{2}$ ). Then

$$
\varphi(\mathbf{v})=\varphi\left(\mathbf{u}_{1}\right)+\varphi\left(\mathbf{u}_{2}\right)=\mathbf{u}_{1}+\varphi\left(\mathbf{u}_{2}\right) .
$$

Since $\mathbf{u}_{2} \neq \mathbf{0}$, we have $\mathbf{v}-\varphi(\mathbf{v})=\mathbf{u}_{2}-\varphi\left(\mathbf{u}_{2}\right) \neq \mathbf{0}$. Since $V$ is invariant under $\varphi$, it follows that $\mathbf{u}_{2}-\varphi\left(\mathbf{u}_{2}\right)$ lies in $V$. But $\mathbf{u}_{2}-\varphi\left(\mathbf{u}_{2}\right)$ also lies in $U_{2}$. By applying $\varphi$ again, we see that $\mathbf{u}_{2}-\varphi\left(\mathbf{u}_{2}\right)$ and $\varphi\left(\mathbf{u}_{2}-\varphi\left(\mathbf{u}_{2}\right)\right)$ span $U_{2}$, so we have $V=U_{2}$, which is a contradiction.

