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Exercise 1 (Characteristic and minimal polynomials)
Find the characteristic and minimal polynomials of the following matrix

N =
N =

Solution:
The characteristic polynomial is

pax) = (1 = x)*(2 = x)*(4 - x)?,

and the minimal polynomial is

qax) = (x = 1)%(x = 2)°(x — 4).

Exercise 2 (Jordan normal form)

(a)

(b)

(0

Let ¢ be an endomorphism of a ten-dimensional F-vector space V. W.r.t. basis B = (b, ...,b;,) let ¢ be represented
by a Jordan normal form matrix with three Jordan blocks for the same eigenvalue A € F, of sizes 2, 3 and 5. Let
Y := ¢ — Aid. Complete the following table:

i 1[2[3[4][ 5678910
dim(ker¢") 10| 10| 10| 10| 10| 10

In the notation of Lemma 1.6.4 of the notes: for which v € V does [[v] have maximal dimension? Split the basis B
in a way to obtain bases for the two invariant subspaces V = [v]] @V’ (as in Claim 1.6.5). If ¢’ is the restriction of ¢
to V’, what is the matrix representation of ¢’ with respect to this basis? If )’ = ¢’ — Aid, how is the corresponding
table for v’ related to the above?

Now, let ¢ be another endomorphism of V with characteristic polynomial (A —X)'°. Suppose we have the following
data for ¢ = ¢ — Aid:

i 1(2(3|4|5|6|7|8|9]|10
dim(kery') |3 |57 89|10 |10|10| 10| 10

Determine the Jordan normal form representation of ¢ from this data (up to permutation of Jordan blocks).

(extra) In general, let p, and ¢, be two endomorphisms of F-vector spaces V, and V; of the same finite dimension,
with the same characteristic polynomial that splits into linear factors. Suppose moreover that for each eigenvalue
A of ¢, and 4, the tables for ¢, = ¢, — Aid and ; = ¢, — Aid are the same.

Sketch a proof for the similarity of ¢, and ¢, adapting the argument for the existence and uniqueness of the Jordan
normal form. How can this be used to give a “different” proof for the similarity of A and A’ for any matrix A € C™?
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Solution:

a) Let

b)

c)

(A1 0
A1 \
A
A1
A
B _ a_
A1
A1
A1
\ 0 A )
The entries of the table are:
i 112|345 6|7]8]9]|10
dim(ker') |3 |68 |9|10|10| 10| 10| 10| 10

For v = Ab,, with A # 0, does [v] have maximal dimension 5. The natural choice for a basis for V' is (b4, ..
and the representation of ¢’ with respect to this basis is the 5 X 5-matrix in the top left corner of A:

The table for ¢ has the form:

A1 0
Al
A= A
A1
A
i 1(2(3(4|5
dim(kery™) | 2|4 (5|55

The ith entry of this table is i less than the entry of the previous table, until we reach the dimension of [v].

The Jordan normal form is:

When b; € ker1p/™ \kerv’, then j depends as follows on i:

[ A 0
A1 \
A1
A
A1
A1
A1
A1
A1
\ 0 2 )
i|l1]2(3|4(5|6[|7|8]|9]|10
jl1(1(2(3|1|2|3|4|5]| 6

. ;bS):

Sketch: we can without loss of generality restrict ourselves to the case that ¢, and ¢, have A as sole eigenvalue.
Then we proceed by induction on dimV, = dimV;. By assumption, the tables for A are the same for both 2, =
o — Aid and ; = ¢; — Aid. This means the first j such that dim(kerm/)f)) = dimVj, is also the first j such that
dim(ker]) = dim V;. Then there are vectors v, € kerv) " \ker1} and v; € kervp]""\ker), allowing us to split
up Vpand V; as Vy = [vo]] @ Vy and V' = [v;] @ V;. We let ¢ and ¢/ be the restricitions of ¢, and ¢, to V;
and V; respectively. We know that ¢ and ¢] also have A as sole eigenvalue! , their tables are obtained in the
same manner from those of ¢, and ¢, and therefore ¢ and ¢] are represented by similar matrices by induction
hypothesis. This can be extended to an isomorphism of V;, and V; showing that ¢, and ¢, are represented by

similar matrices, by sending v, to v, ¢V, to p,V;, etcetera. This completes the (sketch of the) proof.

Since A and A’ have the same characteristic polynomial, and dim(ker(A — AE)") = dim(ker(A’ — AE)') for every
eigenvalue A and i € N (for a matrix has the same rank as its transpose), we deduce that every matrix is similar to

its transpose over C.




Exercise 3 (Diagonalization using orthogonal matrices)
Let ¢ be the endomorphism of R® given in the standard basis by

1 -1 —-1/v2
A=| -1 1 1/v2
-1/vV2 1/v2 2

(a) Find an orthogonal matrix B such that B7lAB is diagonal.
(b) Describe all subspaces of R® which are invariant under ¢.

(c) For x = (x;,X,,x3) € R3, let Q be the quadratic form

2 2
Q(X) = X2 4 x2 +2x5 — 2X1Xy — —=X1X3 + —=XX3.

V2 V2
Find the principle axes of the quadric X given by Q(x) = 1.

Solution:

a) The characteristic polynomial of A is —(x — 1)(x — 3)(x), and the normalized eigenvectors of eigenvalues 3, 1, and
0, respectively, are

-1/2 1/2 1/V2

vi=| 1/2 |, wv,=|-1/2]|, vy=[1/V2

1/V2 1/v/2 0
-1/2  1/2 1/v2 300
Therefore the orthogonal matrix B= | 1/2 —1/2 1/+/2 | satisfiesB™!AB=|0 1 0
1/vV2 1/¥2 0 0 00

b) The invariant subspaces are {0}, span(v;), span(v,), span(v;), span(v;, v,), span(vy, v3), span(v,, v;), and R3.

c) Since the matrix representing Q is precisely A, the principal axes of X lie along the vectors v;, vy, V3.

Exercise 4 (Invariant planes in RY
Let ¢ be an orthogonal transformation of R* which fixes a plane U, pointwise, and acts by a nontrivial rotation on
another plane U,. Prove that U; and U, are the only invariant subspaces of R* of dimension 2.

Solution:

First, we have U; N U, = {0}, since this is the only vector that is fixed pointwise under a nontrivial rotation. Therefore
we have a direct sum decomposition R* = U; @ U,. Suppose that V is a two-dimensional invariant subspace of R*, and
V # U; and V # U,. Fix a non-null vector v € V; we have a unique decomposition v = u; + u,, with u; € U;. Since
V # U,;, we may choose v so that u, # 0.

First, we claim that u; # 0. Otherwise, we would have v € U,, and hence V = U, since v and ¢(v) are linearly
independent. (This follows from the fact that ¢ acts by a non-trivial rotation on U,). Then

e(v) = p(uy) + o(uy) =u; + ¢(uy).
Since u, # 0, we have v — ¢(v) = u, — ¢(u,) # 0. Since V is invariant under ¢, it follows that u, — ¢(u,) lies in V.

But u, — ¢(u,) also lies in U,. By applying ¢ again, we see that u, — ¢(u,) and ¢(u, — ¢(u,)) span U,, so we have
V = U,, which is a contradiction.




