Linear Algebra II Exercise Sheet no. 15

TECHNISCHE UNIVERSITÄT DARMSTADT

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Characteristic and minimal polynomials) Find the characteristic and minimal polynomials of the following matrix

Solution:

The characteristic polynomial is

$$p_A(x) = (1-x)^4 (2-x)^4 (4-x)^2$$
,

and the minimal polynomial is

$$q_A(x) = (x-1)^2(x-2)^3(x-4).$$

Exercise 2 (Jordan normal form)

(a) Let φ be an endomorphism of a ten-dimensional \mathbb{F} -vector space *V*. W.r.t. basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_{10})$ let φ be represented by a Jordan normal form matrix with three Jordan blocks for the same eigenvalue $\lambda \in \mathbb{F}$, of sizes 2, 3 and 5. Let $\psi := \varphi - \lambda id$. Complete the following table:

i	1	2	3	4	5	6	7	8	9	10
dim(ker ψ^i)					10	10	10	10	10	10

In the notation of Lemma 1.6.4 of the notes: for which $\mathbf{v} \in V$ does $[\![\mathbf{v}]\!]$ have maximal dimension? Split the basis *B* in a way to obtain bases for the two invariant subspaces $V = [\![\mathbf{v}]\!] \oplus V'$ (as in Claim 1.6.5). If φ' is the restriction of φ to *V*', what is the matrix representation of φ' with respect to this basis? If $\psi' = \varphi' - \lambda id$, how is the corresponding table for ψ' related to the above?

(b) Now, let φ be another endomorphism of *V* with characteristic polynomial $(\lambda - X)^{10}$. Suppose we have the following data for $\psi = \varphi - \lambda id$:

i	1	2	3	4	5	6	7	8	9	10
dim(ker ψ^i)	3	5	7	8	9	10	10	10	10	10

Determine the Jordan normal form representation of φ from this data (up to permutation of Jordan blocks).

(c) (extra) In general, let φ_0 and φ_1 be two endomorphisms of \mathbb{F} -vector spaces V_0 and V_1 of the same finite dimension, with the same characteristic polynomial that splits into linear factors. Suppose moreover that for each eigenvalue λ of φ_0 and φ_1 , the tables for $\psi_0 = \varphi_0 - \lambda$ id and $\psi_1 = \varphi_1 - \lambda$ id are the same.

Sketch a proof for the similarity of φ_0 and φ_1 adapting the argument for the existence and uniqueness of the Jordan normal form. How can this be used to give a "different" proof for the similarity of *A* and *A*^t for any matrix $A \in \mathbb{C}^{(n,n)}$?

Summer term 2011 July 13, 2011

Solution:

a) Let

The entries of the table are:

i	1	2	3	4	5	6	7	8	9	10
dim(ker ψ^i)	3	6	8	9	10	10	10	10	10	10

For $\mathbf{v} = \lambda \mathbf{b}_{10}$ with $\lambda \neq 0$, does $[\![\mathbf{v}]\!]$ have maximal dimension 5. The natural choice for a basis for V' is $(\mathbf{b}_1, \dots, \mathbf{b}_5)$, and the representation of φ' with respect to this basis is the 5 × 5-matrix in the top left corner of A:

$$A = \left(\begin{array}{cccc} \lambda & 1 & & & 0 \\ & \lambda & 1 & & \\ & & \lambda & & \\ & & & \lambda & 1 \\ & & & & \lambda \end{array} \right).$$

The table for ψ' has the form:

i	1	2	3	4	5
$\dim(\ker \psi'^i)$	2	4	5	5	5

The *i*th entry of this table is *i* less than the entry of the previous table, until we reach the dimension of [v].

b) The Jordan normal form is:

When $\mathbf{b}_i \in \ker \psi^{j+1} \setminus \ker \psi^j$, then *j* depends as follows on *i*:

	i	1	2	3	4	5	6	7	8	9	10
[.	j	1	1	2	3	1	2	3	4	5	6

c) Sketch: we can without loss of generality restrict ourselves to the case that φ_0 and φ_1 have λ as sole eigenvalue. Then we proceed by induction on dim $V_0 = \dim V_1$. By assumption, the tables for λ are the same for both $\psi_0 = \varphi_0 - \lambda id$ and $\psi_1 = \varphi_1 - \lambda id$. This means the first j such that dim $(\ker \psi_0^j) = \dim V_0$ is also the first j such that dim $(\ker \psi_1^j) = \dim V_1$. Then there are vectors $\mathbf{v}_0 \in \ker \psi_0^{j+1} \setminus \ker \psi_0^j$ and $\mathbf{v}_1 \in \ker \psi_1^{j+1} \setminus \ker \psi_1^j$, allowing us to split up V_0 and V_1 as $V_0 = [\![\mathbf{v}_0]\!] \oplus V'_0$ and $V' = [\![\mathbf{v}_1]\!] \oplus V'_1$. We let φ'_0 and φ'_1 be the restrictions of φ_0 and φ_1 to V'_0 and V'_1 respectively. We know that φ'_0 and φ'_1 also have λ as sole eigenvalue!, their tables are obtained in the same manner from those of φ_0 and φ_1 , and therefore φ'_0 and φ'_1 are represented by similar matrices by induction hypothesis. This can be extended to an isomorphism of V_0 and V_1 showing that φ_0 and φ_1 are represented by similar matrices.

Since *A* and *A*^t have the same characteristic polynomial, and dim $(\ker(A - \lambda E)^i) = \dim(\ker(A^t - \lambda E)^i)$ for every eigenvalue λ and $i \in \mathbb{N}$ (for a matrix has the same rank as its transpose), we deduce that every matrix is similar to its transpose over \mathbb{C} .

Exercise 3 (Diagonalization using orthogonal matrices)

Let φ be the endomorphism of \mathbb{R}^3 given in the standard basis by

$$A = \begin{pmatrix} 1 & -1 & -1/\sqrt{2} \\ -1 & 1 & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} & 2 \end{pmatrix}.$$

- (a) Find an orthogonal matrix *B* such that $B^{-1}AB$ is diagonal.
- (b) Describe all subspaces of \mathbb{R}^3 which are invariant under φ .
- (c) For $\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$, let *Q* be the quadratic form

$$Q(\mathbf{x}) = x_1^2 + x_2^2 + 2x_3^2 - 2x_1x_2 - \frac{2}{\sqrt{2}}x_1x_3 + \frac{2}{\sqrt{2}}x_2x_3.$$

Find the principle axes of the quadric *X* given by $Q(\mathbf{x}) = 1$.

Solution:

a) The characteristic polynomial of *A* is -(x - 1)(x - 3)(x), and the normalized eigenvectors of eigenvalues 3, 1, and 0, respectively, are

$$\mathbf{v}_{1} = \begin{pmatrix} -1/2 \\ 1/2 \\ 1/\sqrt{2} \end{pmatrix}, \quad \mathbf{v}_{2} = \begin{pmatrix} 1/2 \\ -1/2 \\ 1/\sqrt{2} \end{pmatrix}, \quad \mathbf{v}_{3} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}.$$

Therefore the orthogonal matrix $B = \begin{pmatrix} -1/2 & 1/2 & 1/\sqrt{2} \\ 1/2 & -1/2 & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{pmatrix}$ satisfies $B^{-1}AB = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$

- b) The invariant subspaces are $\{0\}$, span (v_1) , span (v_2) , span (v_3) , span (v_1, v_2) , span (v_1, v_3) , span (v_2, v_3) , and \mathbb{R}^3 .
- c) Since the matrix representing Q is precisely A, the principal axes of X lie along the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Exercise 4 (Invariant planes in \mathbb{R}^4)

Let φ be an orthogonal transformation of \mathbb{R}^4 which fixes a plane U_1 pointwise, and acts by a nontrivial rotation on another plane U_2 . Prove that U_1 and U_2 are the only invariant subspaces of \mathbb{R}^4 of dimension 2.

Solution:

First, we have $U_1 \cap U_2 = \{\mathbf{0}\}$, since this is the only vector that is fixed pointwise under a nontrivial rotation. Therefore we have a direct sum decomposition $\mathbb{R}^4 = U_1 \oplus U_2$. Suppose that *V* is a two-dimensional invariant subspace of \mathbb{R}^4 , and $V \neq U_1$ and $V \neq U_2$. Fix a non-null vector $\mathbf{v} \in V$; we have a unique decomposition $\mathbf{v} = \mathbf{u}_1 + \mathbf{u}_2$, with $\mathbf{u}_i \in U_i$. Since $V \neq U_1$, we may choose \mathbf{v} so that $\mathbf{u}_2 \neq \mathbf{0}$.

First, we claim that $\mathbf{u}_1 \neq \mathbf{0}$. Otherwise, we would have $\mathbf{v} \in U_2$, and hence $V = U_2$ since \mathbf{v} and $\varphi(\mathbf{v})$ are linearly independent. (This follows from the fact that φ acts by a non-trivial rotation on U_2). Then

$$\varphi(\mathbf{v}) = \varphi(\mathbf{u}_1) + \varphi(\mathbf{u}_2) = \mathbf{u}_1 + \varphi(\mathbf{u}_2)$$

Since $\mathbf{u}_2 \neq \mathbf{0}$, we have $\mathbf{v} - \varphi(\mathbf{v}) = \mathbf{u}_2 - \varphi(\mathbf{u}_2) \neq \mathbf{0}$. Since *V* is invariant under φ , it follows that $\mathbf{u}_2 - \varphi(\mathbf{u}_2)$ lies in *V*. But $\mathbf{u}_2 - \varphi(\mathbf{u}_2)$ also lies in U_2 . By applying φ again, we see that $\mathbf{u}_2 - \varphi(\mathbf{u}_2)$ and $\varphi(\mathbf{u}_2 - \varphi(\mathbf{u}_2))$ span U_2 , so we have $V = U_2$, which is a contradiction.