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Exercise 1 (Characteristic and minimal polynomials)
Find the characteristic and minimal polynomials of the following matrix
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Solution:
The characteristic polynomial is

pA(x) = (1− x)4(2− x)4(4− x)2,

and the minimal polynomial is

qA(x) = (x − 1)2(x − 2)3(x − 4).

Exercise 2 (Jordan normal form)
(a) Let ϕ be an endomorphism of a ten-dimensional F-vector space V . W.r.t. basis B = (b1, . . . ,b10) let ϕ be represented

by a Jordan normal form matrix with three Jordan blocks for the same eigenvalue λ ∈ F, of sizes 2, 3 and 5. Let
ψ := ϕ−λid. Complete the following table:

i 1 2 3 4 5 6 7 8 9 10
dim(kerψi) 10 10 10 10 10 10

In the notation of Lemma 1.6.4 of the notes: for which v ∈ V does ¹vº have maximal dimension? Split the basis B
in a way to obtain bases for the two invariant subspaces V = ¹vº⊕V ′ (as in Claim 1.6.5). If ϕ′ is the restriction of ϕ
to V ′, what is the matrix representation of ϕ′ with respect to this basis? If ψ′ = ϕ′−λid, how is the corresponding
table for ψ′ related to the above?

(b) Now, let ϕ be another endomorphism of V with characteristic polynomial (λ−X )10. Suppose we have the following
data for ψ= ϕ−λid:

i 1 2 3 4 5 6 7 8 9 10
dim(kerψi) 3 5 7 8 9 10 10 10 10 10

Determine the Jordan normal form representation of ϕ from this data (up to permutation of Jordan blocks).

(c) (extra) In general, let ϕ0 and ϕ1 be two endomorphisms of F-vector spaces V0 and V1 of the same finite dimension,
with the same characteristic polynomial that splits into linear factors. Suppose moreover that for each eigenvalue
λ of ϕ0 and ϕ1, the tables for ψ0 = ϕ0 −λid and ψ1 = ϕ1 −λid are the same.
Sketch a proof for the similarity of ϕ0 and ϕ1 adapting the argument for the existence and uniqueness of the Jordan
normal form. How can this be used to give a “different” proof for the similarity of A and At for any matrix A∈ C(n,n)?
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Solution:

a) Let

¹ϕºBB = A=
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.

The entries of the table are:

i 1 2 3 4 5 6 7 8 9 10
dim(kerψi) 3 6 8 9 10 10 10 10 10 10

For v= λb10 with λ 6= 0, does ¹vº have maximal dimension 5. The natural choice for a basis for V ′ is (b1, . . . ,b5),
and the representation of ϕ′ with respect to this basis is the 5× 5-matrix in the top left corner of A:

A=
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.

The table for ψ′ has the form:

i 1 2 3 4 5
dim(kerψ′i) 2 4 5 5 5

The ith entry of this table is i less than the entry of the previous table, until we reach the dimension of ¹vº.

b) The Jordan normal form is:
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.

When bi ∈ kerψ j+1\kerψ j , then j depends as follows on i:

i 1 2 3 4 5 6 7 8 9 10
j 1 1 2 3 1 2 3 4 5 6

c) Sketch: we can without loss of generality restrict ourselves to the case that ϕ0 and ϕ1 have λ as sole eigenvalue.
Then we proceed by induction on dim V0 = dim V1. By assumption, the tables for λ are the same for both ψ0 =
ϕ0 − λid and ψ1 = ϕ1 − λid. This means the first j such that dim(kerψ j

0) = dim V0 is also the first j such that
dim(kerψ j

1) = dim V1. Then there are vectors v0 ∈ kerψ j+1
0 \kerψ j

0 and v1 ∈ kerψ j+1
1 \kerψ j

1, allowing us to split
up V0 and V1 as V0 = ¹v0º⊕ V ′0 and V ′ = ¹v1º⊕ V ′1 . We let ϕ′0 and ϕ′1 be the restricitions of ϕ0 and ϕ1 to V ′0
and V ′1 respectively. We know that ϕ′0 and ϕ′1 also have λ as sole eigenvalue! , their tables are obtained in the
same manner from those of ϕ0 and ϕ1, and therefore ϕ′0 and ϕ′1 are represented by similar matrices by induction
hypothesis. This can be extended to an isomorphism of V0 and V1 showing that ϕ0 and ϕ1 are represented by
similar matrices, by sending v0 to v1, ϕ0v0 to ϕ1v1, etcetera. This completes the (sketch of the) proof.

Since A and At have the same characteristic polynomial, and dim(ker(A− λE)i) = dim(ker(At − λE)i) for every
eigenvalue λ and i ∈ N (for a matrix has the same rank as its transpose), we deduce that every matrix is similar to
its transpose over C.
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Exercise 3 (Diagonalization using orthogonal matrices)
Let ϕ be the endomorphism of R3 given in the standard basis by

A=







1 −1 −1/
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.

(a) Find an orthogonal matrix B such that B−1AB is diagonal.

(b) Describe all subspaces of R3 which are invariant under ϕ.

(c) For x= (x1, x2, x3) ∈ R3, let Q be the quadratic form

Q(x) = x2
1 + x2

2 + 2x2
3 − 2x1 x2 −

2
p

2
x1 x3 +

2
p

2
x2 x3.

Find the principle axes of the quadric X given by Q(x) = 1.

Solution:

a) The characteristic polynomial of A is −(x−1)(x−3)(x), and the normalized eigenvectors of eigenvalues 3, 1, and
0, respectively, are

v1 =
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, v2 =
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, v3 =
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.

Therefore the orthogonal matrix B =







−1/2 1/2 1/
p
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p
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satisfies B−1AB =







3 0 0
0 1 0
0 0 0






.

b) The invariant subspaces are {0}, span(v1), span(v2), span(v3), span(v1,v2), span(v1,v3), span(v2,v3), and R3.

c) Since the matrix representing Q is precisely A, the principal axes of X lie along the vectors v1,v2,v3.

Exercise 4 (Invariant planes in R4)
Let ϕ be an orthogonal transformation of R4 which fixes a plane U1 pointwise, and acts by a nontrivial rotation on

another plane U2. Prove that U1 and U2 are the only invariant subspaces of R4 of dimension 2.

Solution:
First, we have U1 ∩U2 = {0}, since this is the only vector that is fixed pointwise under a nontrivial rotation. Therefore

we have a direct sum decomposition R4 = U1 ⊕ U2. Suppose that V is a two-dimensional invariant subspace of R4, and
V 6= U1 and V 6= U2. Fix a non-null vector v ∈ V ; we have a unique decomposition v = u1 + u2, with ui ∈ Ui . Since
V 6= U1, we may choose v so that u2 6= 0.

First, we claim that u1 6= 0. Otherwise, we would have v ∈ U2, and hence V = U2 since v and ϕ(v) are linearly
independent. (This follows from the fact that ϕ acts by a non-trivial rotation on U2). Then

ϕ(v) = ϕ(u1) +ϕ(u2) = u1 +ϕ(u2).

Since u2 6= 0, we have v−ϕ(v) = u2 −ϕ(u2) 6= 0. Since V is invariant under ϕ, it follows that u2 −ϕ(u2) lies in V .
But u2 − ϕ(u2) also lies in U2. By applying ϕ again, we see that u2 − ϕ(u2) and ϕ(u2 − ϕ(u2)) span U2, so we have
V = U2, which is a contradiction.
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