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Exercise 1 (Bijection between conic sections)

Let X be the standard cone in R® (defined by the equation xf + xg = x%), let A, A, be the planes defined by the
1

1

equations x; =1 and x; = 3

3
X3+ §, respectively and let L be the line that goes through the vectors :I:%
1

-1
(a) Letn:=| O |. Then the map
1
3
SO:AI\L_)AZ
2 1
M 3(n,v)v

describes the central projection through the origin from A, \ L into A,. Make a sketch to verify this. (You only need
to draw the (x;, x3)-plane.) Determine the image of ¢.

(b) Sketch the conic sections that you get from A; and X, i = 1, 2. (You only need to draw the (x;, x3)-plane.)
(c) Compute a parametric description of A; NX and A, NX.

(d) How can you extend ¢ to a bijection from the one conic section (A; N X) onto a completion of the other?

Solution:
a) We can write the equation for A, as
2
hy={v:(vn) = -3}

First we show that ¢ is injective. Let v,w € A; \ L be vectors with ¢(v) = ¢(w). Then we get

2 1 B 2 1
3w 3w
which implies
v
v= W) w.

Note that (n, V) is non-zero on A; \ L. As v and w lie in A, they have to be equal.

b)




¢) One parametric description for X is X = {(rsina, rcosa,r) : r,a € R}. For the plane A; we have A; = {(x,y,1):
x,y € R} so that A; N X has the paramteric description A; NX = {(sina,cosa, 1) : a € R}. To compute A, NX we
use the map ¢ on the set {(sina,cosa,1): a € R,sina # %}:

sina 1 sina 9 sina
p(| cosa |)=—= cosa | =—— | cosa
3 -1 sina 3sina—1
1 1 1
(| O cosa |)
1
3 1

It follows that A, N X has the parametric description:

2sina 2cosa 2 . 1
ra€R,sina # 30

3sina—1’3sina—1"3sina—1

d) ¢ maps each ve (A;\ L)NX onto the other conic section, because the line through v and ¢(v) lies on X. Now we
have still two points left: (%, :|:§ V2, 1). These we map to those points of the line at infinity that are represented
by the asmyptotics of the hyperbola.

Exercise 2 (Minkowski space)

Consider the “Minkowski metric” on R* induced by the symmetric bilinear form o with diagonal entries (1,1,1,—1)
w.r.t. the standard basis.
The quadric Q = {ve R*: o(v,Vv) = 0} is called the null set of o.

(a) Show that o is non-degenerate but has a non-trivial null set; determine the null set and describe it geometrically.

(b) Give examples of other bases of R* w.r.t. which o is represented by the matrix with diagonal entries (1,1,1,—1),
but which are not orthonormal w.r.t. the standard scalar product.

(c¢) Give an example of a subspace U CR*s.t. R* AU QU L where
Ut:={veR*: o(v,u)=0forallue U}

(d) Which are the signatures of the quadratic forms induced by o on the 3-dimensional subspaces U C R*? Try to
describe in each case the relation between the subspace U and the null set.

Solution:
Uy Uy Uy
a) For | 2 # 0 we get o ( V2 b2 Y=v2+v2+v2+v2#£0
Vs vs || vs 1T Tl Uy 70
U4 U4 _U4
0
. 0 .
On the other hand, we have o(v,v) = 0 for each vector v in the subspace spanned by 1 So the null set is
1
not empty. It is a cone given by the equation x7 4+ x3 + x5 = x7. One gets this cone by taking one of the lines
1 0 0
0 1 0 . . .
A 0 A 0 and A 1 and rotating this set about the x,-axis.
1 1 1
1 0 0 0
. 0 1 0 0
b) We choose the basis v; = ol 2=|o =] & [»Va=| 2| Then
0 0 _3 4 §3
3 3
0 ifi#j,

1 else,

U(Vi,Vj) = O'(Vj’vi) = {




forie {1,2} and j € {1, 2, 3,4}. Furthermore we have

5 4 4 5
O'(V3’V4)=§ —g +§'§=0=O'(V4,V3).

and
25 16_ 16 25

o(vy,vy) = . 1, o(v4vy)= 59

Thus o is represented by the matrix with diagonal entries (1,1,1,—1) w.r.t this basis and the standard scalar

pI‘OdllCt Of V3 and V4 iS
‘]3, Vv = + 7é 0

) Let U be the subspace spanned by e;,e,,e; +e,. Ut = {veR*: o(v,w)=0forallue U}. Let v=

be an

element in U*. As o(v,e;) = 0 and o(v,e,) = 0 we have v; = 0 and v, = 0. Furthermore we have to show that
o(v,e; +e,) =o(v,e;) + o(v,e,) = 0. This implies v; = v,. Thus we have U* = {A(e; +e,) : A € R} C U and
U+ Ut #R.

d) There are three possibilities for signatures of o|;. We characterise them by their position w.r.t. the cone defined
by the null set:

1) (+,+,+) : oly is non-degenerate and positive definite; U intersects the null cone only in {0}, e.g. U =
span(e;, e,, e;);

2) (+,4+,—): o|y is non-degenerate but not positive definite; U intersects the null cone in a two dimensional
cone, e.g. U =span(e;, e,, e,);

3) (+,4+,0): oy is degenerate and positive definite on a two dimensional subspace of U, U is spanned by three
vectors, two of them lie in the exterior of the cone and one lies on the cone; e.g. U =span(e;,e,,e; +€,);

Why are there no other signatures? Let v # 0 with o(v,v) = 0. Wl.o.g. (after applying an o-isometry according
to (b)) we have v = e, + e,. We look at an w € vi: w = > A;e;. Then o(v,w) = 0 implies A; = A,. So for
o(w,w) we get: o(w,w) = A2 + Ag = 0. This is only equal to 0, if A, and A5 are equal to 0. This means that w
is an scalar multiple of v, and they are not linearly independent. This implies that besides an 0 the signature can
have only positive entries. We still have the possibility of more than one negative entry. Let v be a vector with

o(v,v) = —1. As before we can choose v = e,. For w € v! \ {0} we have w = A,e; + A,e, + A;e;. Therefore we
get o(w,w) = Af + 7L§ + lg > 0. This implies that besides an negative entry only positive entries can occur in our
signature.

Exercise 3 (A rotated ellipse)

Let X be the ellipse in R? obtained by rotating the standard ellipse % + y? =1 through the angle —% and translating
it so that its center is at the point (1, —1). Find an equation for X.

Solution:
Rotating the ellipse through the angle —% corresponds to rotating the coordinate axes by %. The corresponding

‘/1§//22 ;%ﬁ) Therefore the change of variables u = ‘/7§x + % y,v= —%x + ‘/73 y has the desired

2
effect. We find x = ?u - %v and y = %u + ? v. Substituting these into the equation - + y2 = 1 yields 1—76112 + %vz +

4
%uu = 1. Finally, translating the ellipse so that its center is at (1, 1) yields %(u— 1)2+1—2(v+1)2+%(u— D(v+1)=1.

Multiplying this out yields

rotation matrix is (

7 , 13 , 33 3v3-7  —3v/3+13  34/3-2
—V uv + u V= .

L2y n ¥
16" 16 8 8 8 8

As in the lecture notes, this equation can be rewritten more succinctly in the form u‘Au + b'u+ ¢ = 0, where A =

3v/3-7
7/16  3+/3/16 po [ S5 ) and e _3E2
3v3/16 13/16 |’ % ’ 8




Exercise 4 (Projection onto a plane)
Let A be the affine plane in the euclidean space (R, {,)) given by x + 2y + 2z = 9.

(a) Find an orthonormal basis for the 2-dimensional linear subspace U C R which is parallet to A.

(b) Extend this basis to an orthonormal basis B for R3.

(c) Write down the matrix which represents the orthogonal projection ¢ onto U in terms of the standard basis E =

(el; e2’e3) of R3'

(d) Let P be the point (1,2, —1). Find the shortest distance from P to A.

Solution:

a)

b)

c)

d)

1
U is precisely the subspace which is perpendicular to the vector | 2 |. To obtain an orthonormal basis for U, we
2
4 0

-1 anduzz% 1

apply the Gram-Schmidt process to the vectors e; and e,, obtaining u; = %
1 1

We rescale the vector | 2 | so that it has length 1, obtaining v = % 2 |. By construction, B = (v,u;,u,) is an
2 2

orthonormal basis for R® with the deisred properties.

The projection map ¢ has matrix [¢]% =

[N o)
o~ O

0

0 | with respect to B. Since [id]% is the orthogonal matrix
1

whose colums are v, u;, u,, we see that

8/9 —2/9 -2/9
[l =[id][e]5MdlE = | —2/9 5/9 —4/9
-2/9 —4/9 5/9

The subspace U is just the plane passing through the origin given by x+2y +2z = 0. The point Q = (9, 0, 0) clearly
9)
lies on A, so A is just the affine plane obtained by translating U by the vector | O |. In other words, (x, y,2) lies on
0
A if and only if (x — 9, y,2) lies on U. The distance from P = (1,2,—1) to A is therefore the same as the distance
-8 -8 —-2/3
from P’ = (—8,2,—1) to U. This is just the length of the vector | 2 | — [(p]]g 2 | = —-4/3 |, whichis 2.
-1 -1 —4/3




