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Exercise 1 (Bijection between conic sections)
Let X be the standard cone in R3 (defined by the equation x2

1 + x2
2 = x2

3), let A1,A2 be the planes defined by the

equations x3 = 1 and x1 =
1
3

x3 +
2
3
, respectively and let L be the line that goes through the vectors







1
3
± 2

3
1






.

(a) Let n :=







−1
0
1
3






. Then the map

ϕ : A1 \ L→ A2

v 7→ −
2

3

1

〈n,v〉
v

describes the central projection through the origin from A1 \ L into A2. Make a sketch to verify this. (You only need
to draw the (x1, x3)-plane.) Determine the image of ϕ.

(b) Sketch the conic sections that you get from Ai and X, i = 1,2. (You only need to draw the (x1, x3)-plane.)

(c) Compute a parametric description of A1 ∩X and A2 ∩X.

(d) How can you extend ϕ to a bijection from the one conic section (A1 ∩X) onto a completion of the other?

Solution:

a) We can write the equation for A2 as

A2 = {v : 〈v,n〉=−
2

3
}.

First we show that ϕ is injective. Let v,w ∈ A1 \ L be vectors with ϕ(v) = ϕ(w). Then we get

−
2

3

1

〈n,v〉
v=−

2

3

1

〈n,w〉
w,

which implies

v=
〈n,v〉
〈n,w〉

w.

Note that 〈n,v〉 is non-zero on A1 \ L. As v and w lie in A1 they have to be equal.

b)
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c) One parametric description for X is X = {(r sinα, r cosα, r) : r,α ∈ R}. For the plane A1 we have A1 = {(x , y, 1) :
x , y ∈ R} so that A1 ∩X has the paramteric description A1 ∩X= {(sinα, cosα, 1) : α ∈ R}. To compute A2 ∩X we
use the map ϕ on the set {(sinα, cosα, 1) : α ∈ R, sinα 6= 1

3
}:

ϕ(







sinα
cosα

1






) =−

2

3

1

〈







−1
0
1
3













sinα
cosα

1






〉







sinα
cosα

1






=

2

3sinα− 1







sinα
cosα

1







It follows that A2 ∩ X has the parametric description:

��

2sinα

3sinα− 1
,

2 cosα

3sinα− 1
,

2

3 sinα− 1

�

: α ∈ R, sinα 6=
1

3

�

.

d) ϕ maps each v ∈ (A1 \ L)∩X onto the other conic section, because the line through v and ϕ(v) lies on X. Now we
have still two points left:

�

1
3
,± 2

3

p
2, 1
�

. These we map to those points of the line at infinity that are represented
by the asmyptotics of the hyperbola.

Exercise 2 (Minkowski space)
Consider the “Minkowski metric” on R4 induced by the symmetric bilinear form σ with diagonal entries (1, 1,1,−1)

w.r.t. the standard basis.
The quadric Q = {v ∈ R4 : σ(v,v) = 0} is called the null set of σ.

(a) Show that σ is non-degenerate but has a non-trivial null set; determine the null set and describe it geometrically.

(b) Give examples of other bases of R4 w.r.t. which σ is represented by the matrix with diagonal entries (1, 1,1,−1),
but which are not orthonormal w.r.t. the standard scalar product.

(c) Give an example of a subspace U ⊆ R4 s.t. R4 6= U ⊕ U⊥ where

U⊥ := {v ∈ R4 : σ(v,u) = 0 for all u ∈ U}

(d) Which are the signatures of the quadratic forms induced by σ on the 3-dimensional subspaces U ⊆ R4? Try to
describe in each case the relation between the subspace U and the null set.

Solution:

a) For











v1
v2
v3
v4











6= 0 we get σ(











v1
v2
v3
v4











,











v1
v2
v3
−v4











) = v 2
1 + v 2

2 + v 2
3 + v 2

4 6= 0.

On the other hand, we have σ(v,v) = 0 for each vector v in the subspace spanned by











0
0
1
1











. So the null set is

not empty. It is a cone given by the equation x2
1 + x2

2 + x2
3 = x2

4 . One gets this cone by taking one of the lines

λ











1
0
0
1











,λ











0
1
0
1











and λ











0
0
1
1











and rotating this set about the x4-axis.

b) We choose the basis v1 =











1
0
0
0











,v2 =











0
1
0
0











,v3 =











0
0
5
3
− 4

3











,v4 =











0
0
− 4

3
5
3











. Then

σ(vi ,v j) = σ(v j ,vi) =

(

0 if i 6= j ,

1 else ,
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for i ∈ {1, 2} and j ∈ {1,2, 3,4}. Furthermore we have

σ(v3,v4) =
5

3

�

−
4

3

�

+
4

3
·

5

3
= 0= σ(v4,v3).

and

σ(v3,v3) =
25

9
−

16

9
= 1, σ(v4,v4) =

16

9
−

25

9
=−1.

Thus σ is represented by the matrix with diagonal entries (1,1, 1,−1) w.r.t this basis and the standard scalar
product of v3 and v4 is

〈v3,v4〉=
5

3

�

−
4

3

�

+
�

−
4

3

�

5

3
6= 0.

c) Let U be the subspace spanned by e1,e2,e3 + e4. U⊥ = {v ∈ R4 : σ(v,w) = 0 for all u ∈ U}. Let v =











v1
v2
v3
v3











be an

element in U⊥. As σ(v,e1) = 0 and σ(v,e2) = 0 we have v1 = 0 and v2 = 0. Furthermore we have to show that
σ(v,e3 + e4) = σ(v,e3) +σ(v,e4) = 0. This implies v3 = v4. Thus we have U⊥ = {λ(e3 + e4) : λ ∈ R} ⊆ U and
U + U⊥ 6= R4.

d) There are three possibilities for signatures of σ|U . We characterise them by their position w.r.t. the cone defined
by the null set:

1) (+,+,+) : σ|U is non-degenerate and positive definite; U intersects the null cone only in {0}, e.g. U =
span(e1,e2,e3);

2) (+,+,−) : σ|U is non-degenerate but not positive definite; U intersects the null cone in a two dimensional
cone, e.g. U = span(e1,e2,e4);

3) (+,+, 0) : σ|U is degenerate and positive definite on a two dimensional subspace of U , U is spanned by three
vectors, two of them lie in the exterior of the cone and one lies on the cone; e.g. U = span(e1,e2,e3 + e4);

Why are there no other signatures? Let v 6= 0 with σ(v,v) = 0. W.l.o.g. (after applying an σ-isometry according
to (b)) we have v = e1 + e4. We look at an w ∈ v⊥: w =

∑

λiei . Then σ(v,w) = 0 implies λ1 = λ4. So for
σ(w,w) we get: σ(w,w) = λ2

2 + λ
2
3 ¾ 0. This is only equal to 0, if λ2 and λ3 are equal to 0. This means that w

is an scalar multiple of v, and they are not linearly independent. This implies that besides an 0 the signature can
have only positive entries. We still have the possibility of more than one negative entry. Let v be a vector with
σ(v,v) = −1. As before we can choose v = e4. For w ∈ v⊥ \ {0} we have w = λ1e1 + λ2e2 + λ3e3. Therefore we
get σ(w,w) = λ2

1 +λ
2
2 +λ

2
3 > 0. This implies that besides an negative entry only positive entries can occur in our

signature.

Exercise 3 (A rotated ellipse)
Let X be the ellipse in R2 obtained by rotating the standard ellipse x2

4
+ y2 = 1 through the angle −π

6
and translating

it so that its center is at the point (1,−1). Find an equation for X .

Solution:
Rotating the ellipse through the angle −π

6
corresponds to rotating the coordinate axes by π

6
. The corresponding

rotation matrix is

�p
3/2 −1/2

1/2
p

3/2

�

. Therefore the change of variables u =
p

3
2

x + 1
2

y , v = − 1
2

x +
p

3
2

y has the desired

effect. We find x =
p

3
2

u− 1
2

v and y = 1
2
u+

p
3

2
v . Substituting these into the equation x2

4
+ y2 = 1 yields 7

16
u2 + 13

16
v 2 +

3
p

3
8

uv = 1. Finally, translating the ellipse so that its center is at (1, 1) yields 7
16
(u−1)2+ 13

16
(v+1)2+ 3

p
3

8
(u−1)(v+1) = 1.

Multiplying this out yields

7

16
u2 +

13

16
v 2 +

3
p

3

8
uv +

3
p

3− 7

8
u+
−3
p

3+ 13

8
v =

3
p

3− 2

8
.

As in the lecture notes, this equation can be rewritten more succinctly in the form utAu+ btu+ c = 0, where A =
�

7/16 3
p

3/16
3
p

3/16 13/16

�

, b=

 

3
p

3−7
8

−3
p

3+13
8

!

, and c =− 3
p

3−2
8

.
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Exercise 4 (Projection onto a plane)
Let A be the affine plane in the euclidean space (R3, 〈, 〉) given by x + 2y + 2z = 9.

(a) Find an orthonormal basis for the 2-dimensional linear subspace U ⊆ R3 which is parallet to A.

(b) Extend this basis to an orthonormal basis B for R3.

(c) Write down the matrix which represents the orthogonal projection ϕ onto U in terms of the standard basis E =
(e1,e2,e3) of R3.

(d) Let P be the point (1,2,−1). Find the shortest distance from P to A.

Solution:

a) U is precisely the subspace which is perpendicular to the vector







1
2
2






. To obtain an orthonormal basis for U , we

apply the Gram-Schmidt process to the vectors e1 and e2, obtaining u1 =
4

3
p

2







4
−1
−1






and u2 =

1p
2







0
1
−1






.

b) We rescale the vector







1
2
2






so that it has length 1, obtaining v = 1

3







1
2
2






. By construction, B = (v,u1,u2) is an

orthonormal basis for R3 with the deisred properties.

c) The projection map ϕ has matrix ¹ϕºB
B =







0 0 0
0 1 0
0 0 1






with respect to B. Since ¹idºB

E is the orthogonal matrix

whose colums are v,u1,u2, we see that

¹ϕºE
E = ¹idºB

E¹ϕº
B
B¹idºE

B =







8/9 −2/9 −2/9
−2/9 5/9 −4/9
−2/9 −4/9 5/9






.

d) The subspace U is just the plane passing through the origin given by x+2y+2z = 0. The point Q = (9, 0,0) clearly

lies on A, so A is just the affine plane obtained by translating U by the vector







9
0
0






. In other words, (x , y, z) lies on

A if and only if (x − 9, y, z) lies on U . The distance from P = (1, 2,−1) to A is therefore the same as the distance

from P ′ = (−8,2,−1) to U . This is just the length of the vector







−8
2
−1






−¹ϕºE

E







−8
2
−1






=







−2/3
−4/3
−4/3






, which is 2.
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