Linear Algebra II
 Exercise Sheet no. 14

TECHNISCHE UNIVERSITAT
DARMSTADT

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

July 30, 2011

Exercise 1 (Bijection between conic sections)

Let \mathbb{X} be the standard cone in \mathbb{R}^{3} (defined by the equation $x_{1}^{2}+x_{2}^{2}=x_{3}^{2}$), let $\mathbb{A}_{1}, \mathbb{A}_{2}$ be the planes defined by the equations $x_{3}=1$ and $x_{1}=\frac{1}{3} x_{3}+\frac{2}{3}$, respectively and let L be the line that goes through the vectors $\left(\begin{array}{c}\frac{1}{3} \\ \pm \frac{2}{3} \\ 1\end{array}\right)$.
(a) Let $\mathbf{n}:=\left(\begin{array}{c}-1 \\ 0 \\ \frac{1}{3}\end{array}\right)$. Then the map

$$
\begin{aligned}
& \varphi: \mathbb{A}_{1} \backslash L \rightarrow \mathbb{A}_{2} \\
& \mathbf{v} \mapsto-\frac{2}{3} \frac{1}{\langle\mathbf{n}, \mathbf{v}\rangle} \mathbf{v}
\end{aligned}
$$

describes the central projection through the origin from $\mathbb{A}_{1} \backslash L$ into \mathbb{A}_{2}. Make a sketch to verify this. (You only need to draw the (x_{1}, x_{3})-plane.) Determine the image of φ.
(b) Sketch the conic sections that you get from \mathbb{A}_{i} and $\mathbb{X}, i=1,2$. (You only need to draw the (x_{1}, x_{3})-plane.)
(c) Compute a parametric description of $\mathbb{A}_{1} \cap \mathbb{X}$ and $\mathbb{A}_{2} \cap \mathbb{X}$.
(d) How can you extend φ to a bijection from the one conic section $\left(\mathbb{A}_{1} \cap \mathbb{X}\right)$ onto a completion of the other?

Solution:

a) We can write the equation for \mathbb{A}_{2} as

$$
\mathbb{A}_{2}=\left\{\mathbf{v}:\langle\mathbf{v}, \mathbf{n}\rangle=-\frac{2}{3}\right\} .
$$

First we show that φ is injective. Let $\mathbf{v}, \mathbf{w} \in \mathbb{A}_{1} \backslash L$ be vectors with $\varphi(\mathbf{v})=\varphi(\mathbf{w})$. Then we get

$$
-\frac{2}{3} \frac{1}{\langle\mathbf{n}, \mathbf{v}\rangle} \mathbf{v}=-\frac{2}{3} \frac{1}{\langle\mathbf{n}, \mathbf{w}\rangle} \mathbf{w},
$$

which implies

$$
\mathbf{v}=\frac{\langle\mathbf{n}, \mathbf{v}\rangle}{\langle\mathbf{n}, \mathbf{w}\rangle} \mathbf{w} .
$$

Note that $\langle\mathbf{n}, \mathbf{v}\rangle$ is non-zero on $\mathbb{A}_{1} \backslash L$. As \mathbf{v} and \mathbf{w} lie in \mathbb{A}_{1} they have to be equal.
b)
c) One parametric description for \mathbb{X} is $\mathbb{X}=\{(r \sin \alpha, r \cos \alpha, r): r, \alpha \in \mathbb{R}\}$. For the plane \mathbb{A}_{1} we have $\mathbb{A}_{1}=\{(x, y, 1)$: $x, y \in \mathbb{R}\}$ so that $\mathbb{A}_{1} \cap \mathbb{X}$ has the paramteric description $\mathbb{A}_{1} \cap \mathbb{X}=\{(\sin \alpha, \cos \alpha, 1): \alpha \in \mathbb{R}\}$. To compute $\mathbb{A}_{2} \cap \mathbb{X}$ we use the map φ on the set $\left\{(\sin \alpha, \cos \alpha, 1): \alpha \in \mathbb{R}, \sin \alpha \neq \frac{1}{3}\right\}$:

$$
\varphi\left(\left(\begin{array}{c}
\sin \alpha \\
\cos \alpha \\
1
\end{array}\right)\right)=-\frac{2}{3} \frac{1}{\left\langle\left(\begin{array}{c}
-1 \\
0 \\
\frac{1}{3}
\end{array}\right)\left(\begin{array}{c}
\sin \alpha \\
\cos \alpha \\
1
\end{array}\right)\right\rangle}\left(\begin{array}{c}
\sin \alpha \\
\cos \alpha \\
1
\end{array}\right)=\frac{2}{3 \sin \alpha-1}\left(\begin{array}{c}
\sin \alpha \\
\cos \alpha \\
1
\end{array}\right)
$$

It follows that $\mathbb{A}_{2} \cap X$ has the parametric description:

$$
\left\{\left(\frac{2 \sin \alpha}{3 \sin \alpha-1}, \frac{2 \cos \alpha}{3 \sin \alpha-1}, \frac{2}{3 \sin \alpha-1}\right): \alpha \in \mathbb{R}, \sin \alpha \neq \frac{1}{3}\right\} .
$$

d) φ maps each $\mathbf{v} \in\left(\mathbb{A}_{1} \backslash L\right) \cap \mathbb{X}$ onto the other conic section, because the line through \mathbf{v} and $\varphi(\mathbf{v})$ lies on \mathbb{X}. Now we have still two points left: $\left(\frac{1}{3}, \pm \frac{2}{3} \sqrt{2}, 1\right)$. These we map to those points of the line at infinity that are represented by the asmyptotics of the hyperbola.

Exercise 2 (Minkowski space)

Consider the "Minkowski metric" on \mathbb{R}^{4} induced by the symmetric bilinear form σ with diagonal entries $(1,1,1,-1)$ w.r.t. the standard basis.

The quadric $Q=\left\{\mathbf{v} \in \mathbb{R}^{4}: \sigma(\mathbf{v}, \mathbf{v})=0\right\}$ is called the null set of σ.
(a) Show that σ is non-degenerate but has a non-trivial null set; determine the null set and describe it geometrically.
(b) Give examples of other bases of \mathbb{R}^{4} w.r.t. which σ is represented by the matrix with diagonal entries $(1,1,1,-1)$, but which are not orthonormal w.r.t. the standard scalar product.
(c) Give an example of a subspace $U \subseteq \mathbb{R}^{4}$ s.t. $\mathbb{R}^{4} \neq U \oplus U^{\perp}$ where

$$
U^{\perp}:=\left\{\mathbf{v} \in \mathbb{R}^{4}: \sigma(\mathbf{v}, \mathbf{u})=0 \text { for all } \mathbf{u} \in U\right\}
$$

(d) Which are the signatures of the quadratic forms induced by σ on the 3-dimensional subspaces $U \subseteq \mathbb{R}^{4}$? Try to describe in each case the relation between the subspace U and the null set.

Solution:

a) For $\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3} \\ v_{4}\end{array}\right) \neq \mathbf{0}$ we get $\sigma\left(\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3} \\ v_{4}\end{array}\right),\left(\begin{array}{c}v_{1} \\ v_{2} \\ v_{3} \\ -v_{4}\end{array}\right)\right)=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2} \neq 0$.

On the other hand, we have $\sigma(\mathbf{v}, \mathbf{v})=0$ for each vector \mathbf{v} in the subspace spanned by $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)$. So the null set is not empty. It is a cone given by the equation $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=x_{4}^{2}$. One gets this cone by taking one of the lines $\lambda\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right), \lambda\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right)$ and $\lambda\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)$ and rotating this set about the x_{4}-axis.
b) We choose the basis $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{c}0 \\ 0 \\ \frac{5}{3} \\ -\frac{4}{3}\end{array}\right), \mathbf{v}_{4}=\left(\begin{array}{c}0 \\ 0 \\ -\frac{4}{3} \\ \frac{5}{3}\end{array}\right)$. Then

$$
\sigma\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)=\sigma\left(\mathbf{v}_{j}, \mathbf{v}_{i}\right)= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { else }\end{cases}
$$

for $i \in\{1,2\}$ and $j \in\{1,2,3,4\}$. Furthermore we have

$$
\sigma\left(\mathbf{v}_{3}, \mathbf{v}_{4}\right)=\frac{5}{3}\left(-\frac{4}{3}\right)+\frac{4}{3} \cdot \frac{5}{3}=0=\sigma\left(\mathbf{v}_{4}, \mathbf{v}_{3}\right) .
$$

and

$$
\sigma\left(\mathbf{v}_{3}, \mathbf{v}_{3}\right)=\frac{25}{9}-\frac{16}{9}=1, \quad \sigma\left(\mathbf{v}_{4}, \mathbf{v}_{4}\right)=\frac{16}{9}-\frac{25}{9}=-1 .
$$

Thus σ is represented by the matrix with diagonal entries $(1,1,1,-1)$ w.r.t this basis and the standard scalar product of \mathbf{v}_{3} and \mathbf{v}_{4} is

$$
\left\langle\mathbf{v}_{3}, \mathbf{v}_{4}\right\rangle=\frac{5}{3}\left(-\frac{4}{3}\right)+\left(-\frac{4}{3}\right) \frac{5}{3} \neq 0 .
$$

c) Let U be the subspace spanned by $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}+\mathbf{e}_{4} . U^{\perp}=\left\{\mathbf{v} \in \mathbb{R}^{4}: \sigma(\mathbf{v}, \mathbf{w})=0\right.$ for all $\left.\mathbf{u} \in U\right\}$. Let $\mathbf{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3} \\ v_{3}\end{array}\right)$ be an element in U^{\perp}. As $\sigma\left(\mathbf{v}, \mathbf{e}_{1}\right)=0$ and $\sigma\left(\mathbf{v}, \mathbf{e}_{2}\right)=0$ we have $\nu_{1}=0$ and $\nu_{2}=0$. Furthermore we have to show that $\sigma\left(\mathbf{v}, \mathbf{e}_{3}+\mathbf{e}_{4}\right)=\sigma\left(\mathbf{v}, \mathbf{e}_{3}\right)+\sigma\left(\mathbf{v}, \mathbf{e}_{4}\right)=0$. This implies $v_{3}=v_{4}$. Thus we have $U^{\perp}=\left\{\lambda\left(\mathbf{e}_{3}+\mathbf{e}_{4}\right): \lambda \in \mathbb{R}\right\} \subseteq U$ and $U+U^{\perp} \neq \mathbb{R}^{4}$.
d) There are three possibilities for signatures of $\left.\sigma\right|_{U}$. We characterise them by their position w.r.t. the cone defined by the null set:

1) $(+,+,+):\left.\sigma\right|_{U}$ is non-degenerate and positive definite; U intersects the null cone only in $\{0\}$, e.g. $U=$ $\operatorname{span}\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$;
2) $(+,+,-):\left.\sigma\right|_{U}$ is non-degenerate but not positive definite; U intersects the null cone in a two dimensional cone, e.g. $U=\operatorname{span}\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{4}\right)$;
3) $(+,+, 0):\left.\sigma\right|_{U}$ is degenerate and positive definite on a two dimensional subspace of U, U is spanned by three vectors, two of them lie in the exterior of the cone and one lies on the cone; e.g. $U=\operatorname{span}\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}+\mathbf{e}_{4}\right)$;

Why are there no other signatures? Let $\mathbf{v} \neq \mathbf{0}$ with $\sigma(\mathbf{v}, \mathbf{v})=0$. W.l.o.g. (after applying an σ-isometry according to (b)) we have $\mathbf{v}=\mathbf{e}_{1}+\mathbf{e}_{4}$. We look at an $\mathbf{w} \in \mathbf{v}^{\perp}: \mathbf{w}=\sum \lambda_{i} \mathbf{e}_{i}$. Then $\sigma(\mathbf{v}, \mathbf{w})=0$ implies $\lambda_{1}=\lambda_{4}$. So for $\sigma(\mathbf{w}, \mathbf{w})$ we get: $\sigma(\mathbf{w}, \mathbf{w})=\lambda_{2}^{2}+\lambda_{3}^{2} \geqslant 0$. This is only equal to 0 , if λ_{2} and λ_{3} are equal to 0 . This means that \mathbf{w} is an scalar multiple of \mathbf{v}, and they are not linearly independent. This implies that besides an 0 the signature can have only positive entries. We still have the possibility of more than one negative entry. Let \mathbf{v} be a vector with $\sigma(\mathbf{v}, \mathbf{v})=-1$. As before we can choose $\mathbf{v}=\mathbf{e}_{4}$. For $\mathbf{w} \in \mathbf{v}^{\perp} \backslash\{0\}$ we have $\mathbf{w}=\lambda_{1} \mathbf{e}_{1}+\lambda_{2} \mathbf{e}_{2}+\lambda_{3} \mathbf{e}_{3}$. Therefore we get $\sigma(\mathbf{w}, \mathbf{w})=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}>0$. This implies that besides an negative entry only positive entries can occur in our signature.

Exercise 3 (A rotated ellipse)

Let X be the ellipse in \mathbb{R}^{2} obtained by rotating the standard ellipse $\frac{x^{2}}{4}+y^{2}=1$ through the angle $-\frac{\pi}{6}$ and translating it so that its center is at the point $(1,-1)$. Find an equation for X.

Solution:

Rotating the ellipse through the angle $-\frac{\pi}{6}$ corresponds to rotating the coordinate axes by $\frac{\pi}{6}$. The corresponding rotation matrix is $\left(\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)$. Therefore the change of variables $u=\frac{\sqrt{3}}{2} x+\frac{1}{2} y, v=-\frac{1}{2} x+\frac{\sqrt{3}}{2} y$ has the desired effect. We find $x=\frac{\sqrt{3}}{2} u-\frac{1}{2} v$ and $y=\frac{1}{2} u+\frac{\sqrt{3}}{2} v$. Substituting these into the equation $\frac{x^{2}}{4}+y^{2}=1$ yields $\frac{7}{16} u^{2}+\frac{13}{16} v^{2}+$ $\frac{3 \sqrt{3}}{8} u v=1$. Finally, translating the ellipse so that its center is at $(1,1)$ yields $\frac{7}{16}(u-1)^{2}+\frac{13}{16}(v+1)^{2}+\frac{3 \sqrt{3}}{8}(u-1)(v+1)=1$. Multiplying this out yields

$$
\frac{7}{16} u^{2}+\frac{13}{16} v^{2}+\frac{3 \sqrt{3}}{8} u v+\frac{3 \sqrt{3}-7}{8} u+\frac{-3 \sqrt{3}+13}{8} v=\frac{3 \sqrt{3}-2}{8} .
$$

As in the lecture notes, this equation can be rewritten more succinctly in the form $\mathbf{u}^{t} A \mathbf{u}+\mathbf{b}^{t} \mathbf{u}+c=0$, where $A=$ $\left(\begin{array}{cc}7 / 16 & 3 \sqrt{3} / 16 \\ 3 \sqrt{3} / 16 & 13 / 16\end{array}\right), \mathbf{b}=\binom{\frac{3 \sqrt{3}-7}{8}}{\frac{-3 \sqrt{3}+13}{8}}$, and $c=-\frac{3 \sqrt{3}-2}{8}$.

Exercise 4 (Projection onto a plane)

Let A be the affine plane in the euclidean space $\left(\mathbb{R}^{3},\langle\rangle,\right)$ given by $x+2 y+2 z=9$.
(a) Find an orthonormal basis for the 2-dimensional linear subspace $U \subseteq \mathbb{R}^{3}$ which is parallet to A.
(b) Extend this basis to an orthonormal basis B for \mathbb{R}^{3}.
(c) Write down the matrix which represents the orthogonal projection φ onto U in terms of the standard basis $E=$ $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ of \mathbb{R}^{3}.
(d) Let P be the point $(1,2,-1)$. Find the shortest distance from P to A.

Solution:

a) U is precisely the subspace which is perpendicular to the vector $\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$. To obtain an orthonormal basis for U, we apply the Gram-Schmidt process to the vectors \mathbf{e}_{1} and \mathbf{e}_{2}, obtaining $\mathbf{u}_{1}=\frac{4}{3 \sqrt{2}}\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right)$ and $\mathbf{u}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$.
b) We rescale the vector $\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ so that it has length 1 , obtaining $\mathbf{v}=\frac{1}{3}\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$. By construction, $B=\left(\mathbf{v}, \mathbf{u}_{1}, \mathbf{u}_{2}\right)$ is an orthonormal basis for \mathbb{R}^{3} with the deisred properties.
c) The projection map φ has matrix $\llbracket \varphi \rrbracket_{B}^{B}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ with respect to B. Since $\llbracket \mathrm{id} \rrbracket_{E}^{B}$ is the orthogonal matrix whose colums are $\mathbf{v}, \mathbf{u}_{1}, \mathbf{u}_{2}$, we see that

$$
\llbracket \varphi \rrbracket_{E}^{E}=\llbracket \mathrm{id} \rrbracket_{E}^{B} \llbracket \varphi \rrbracket_{B}^{B} \llbracket i \mathrm{id} \rrbracket_{B}^{E}=\left(\begin{array}{ccc}
8 / 9 & -2 / 9 & -2 / 9 \\
-2 / 9 & 5 / 9 & -4 / 9 \\
-2 / 9 & -4 / 9 & 5 / 9
\end{array}\right) .
$$

d) The subspace U is just the plane passing through the origin given by $x+2 y+2 z=0$. The point $Q=(9,0,0)$ clearly lies on A, so A is just the affine plane obtained by translating U by the vector $\left(\begin{array}{l}9 \\ 0 \\ 0\end{array}\right)$. In other words, (x, y, z) lies on A if and only if $(x-9, y, z)$ lies on U. The distance from $P=(1,2,-1)$ to A is therefore the same as the distance from $P^{\prime}=(-8,2,-1)$ to U. This is just the length of the vector $\left(\begin{array}{c}-8 \\ 2 \\ -1\end{array}\right)-\llbracket \varphi \rrbracket_{E}^{E}\left(\begin{array}{c}-8 \\ 2 \\ -1\end{array}\right)=\left(\begin{array}{c}-2 / 3 \\ -4 / 3 \\ -4 / 3\end{array}\right)$, which is 2 .

