Linear Algebra II Exercise Sheet no. 14

Summer term 2011 July 30, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Bijection between conic sections)

Let X be the standard cone in \mathbb{R}^3 (defined by the equation $x_1^2 + x_2^2 = x_3^2$), let $\mathbb{A}_1, \mathbb{A}_2$ be the planes defined by the

equations $x_3 = 1$ and $x_1 = \frac{1}{3}x_3 + \frac{2}{3}$, respectively and let *L* be the line that goes through the vectors $\begin{pmatrix} \frac{1}{3} \\ \pm \frac{2}{3} \\ \pm 1 \end{pmatrix}$.

(a) Let
$$\mathbf{n} := \begin{pmatrix} -1 \\ 0 \\ \frac{1}{3} \end{pmatrix}$$
. Then the map

$$\mathbf{v} \mapsto -\frac{2}{3} \frac{1}{\langle \mathbf{n}, \mathbf{v} \rangle} \mathbf{v}$$

 $\varphi: \mathbb{A}_1 \setminus L \to \mathbb{A}_2$

describes the central projection through the origin from $\mathbb{A}_1 \setminus L$ into \mathbb{A}_2 . Make a sketch to verify this. (You only need to draw the (x_1, x_3) -plane.) Determine the image of φ .

- (b) Sketch the conic sections that you get from \mathbb{A}_i and \mathbb{X} , i = 1, 2. (You only need to draw the (x_1, x_3) -plane.)
- (c) Compute a parametric description of $\mathbb{A}_1 \cap \mathbb{X}$ and $\mathbb{A}_2 \cap \mathbb{X}$.
- (d) How can you extend φ to a bijection from the one conic section $(\mathbb{A}_1 \cap \mathbb{X})$ onto a completion of the other?

Solution:

a) We can write the equation for \mathbb{A}_2 as

$$\mathbb{A}_2 = \{\mathbf{v} : \langle \mathbf{v}, \mathbf{n} \rangle = -\frac{2}{3}\}.$$

First we show that φ is injective. Let $\mathbf{v}, \mathbf{w} \in \mathbb{A}_1 \setminus L$ be vectors with $\varphi(\mathbf{v}) = \varphi(\mathbf{w})$. Then we get

$$-\frac{2}{3}\frac{1}{\langle \mathbf{n},\mathbf{v}\rangle}\mathbf{v} = -\frac{2}{3}\frac{1}{\langle \mathbf{n},\mathbf{w}\rangle}\mathbf{w}$$

which implies

$$\mathbf{v} = \frac{\langle \mathbf{n}, \mathbf{v} \rangle}{\langle \mathbf{n}, \mathbf{w} \rangle} \mathbf{w}$$

Note that $\langle \mathbf{n}, \mathbf{v} \rangle$ is non-zero on $\mathbb{A}_1 \setminus L$. As **v** and **w** lie in \mathbb{A}_1 they have to be equal.

b)

c) One parametric description for \mathbb{X} is $\mathbb{X} = \{(r \sin \alpha, r \cos \alpha, r) : r, \alpha \in \mathbb{R}\}$. For the plane \mathbb{A}_1 we have $\mathbb{A}_1 = \{(x, y, 1) : x, y \in \mathbb{R}\}$ so that $\mathbb{A}_1 \cap \mathbb{X}$ has the parametric description $\mathbb{A}_1 \cap \mathbb{X} = \{(\sin \alpha, \cos \alpha, 1) : \alpha \in \mathbb{R}\}$. To compute $\mathbb{A}_2 \cap \mathbb{X}$ we use the map φ on the set $\{(\sin \alpha, \cos \alpha, 1) : \alpha \in \mathbb{R}, \sin \alpha \neq \frac{1}{3}\}$:

$$\varphi\begin{pmatrix} \sin \alpha \\ \cos \alpha \\ 1 \end{pmatrix} = -\frac{2}{3} \frac{1}{\langle \begin{pmatrix} -1 \\ 0 \\ \frac{1}{3} \end{pmatrix} \begin{pmatrix} \sin \alpha \\ \cos \alpha \\ 1 \end{pmatrix} \rangle} \begin{pmatrix} \sin \alpha \\ \cos \alpha \\ 1 \end{pmatrix} = \frac{2}{3 \sin \alpha - 1} \begin{pmatrix} \sin \alpha \\ \cos \alpha \\ 1 \end{pmatrix}$$

It follows that $\mathbb{A}_2 \cap X$ has the parametric description:

$$\left\{ \left(\frac{2\sin\alpha}{3\sin\alpha-1}, \frac{2\cos\alpha}{3\sin\alpha-1}, \frac{2}{3\sin\alpha-1}\right) : \alpha \in \mathbb{R}, \sin\alpha \neq \frac{1}{3} \right\}.$$

d) φ maps each $\mathbf{v} \in (\mathbb{A}_1 \setminus L) \cap \mathbb{X}$ onto the other conic section, because the line through \mathbf{v} and $\varphi(\mathbf{v})$ lies on \mathbb{X} . Now we have still two points left: $(\frac{1}{3}, \pm \frac{2}{3}\sqrt{2}, 1)$. These we map to those points of the line at infinity that are represented by the asymptotics of the hyperbola.

Exercise 2 (Minkowski space)

Consider the "Minkowski metric" on \mathbb{R}^4 induced by the symmetric bilinear form σ with diagonal entries (1, 1, 1, -1) w.r.t. the standard basis.

The quadric $Q = {\mathbf{v} \in \mathbb{R}^4 : \sigma(\mathbf{v}, \mathbf{v}) = 0}$ is called the *null set* of σ .

- (a) Show that σ is non-degenerate but has a non-trivial null set; determine the null set and describe it geometrically.
- (b) Give examples of other bases of \mathbb{R}^4 w.r.t. which σ is represented by the matrix with diagonal entries (1, 1, 1, -1), but which are not orthonormal w.r.t. the standard scalar product.
- (c) Give an example of a subspace $U \subseteq \mathbb{R}^4$ s.t. $\mathbb{R}^4 \neq U \oplus U^{\perp}$ where

$$U^{\perp} := \{ \mathbf{v} \in \mathbb{R}^4 : \sigma(\mathbf{v}, \mathbf{u}) = 0 \text{ for all } \mathbf{u} \in U \}$$

(d) Which are the signatures of the quadratic forms induced by σ on the 3-dimensional subspaces $U \subseteq \mathbb{R}^4$? Try to describe in each case the relation between the subspace U and the null set.

Solution:

a) For
$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} \neq \mathbf{0}$$
 we get $\sigma(\begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}) = v_1^2 + v_2^2 + v_3^2 + v_4^2 \neq \mathbf{0}.$

On the other hand, we have $\sigma(\mathbf{v}, \mathbf{v}) = 0$ for each vector \mathbf{v} in the subspace spanned by $\begin{pmatrix} 0\\ 0\\ 1\\ 1 \end{pmatrix}$. So the null set is

not empty. It is a cone given by the equation $x_1^2 + x_2^2 + x_3^2 = x_4^2$. One gets this cone by taking one of the lines $\begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix}$

$$\lambda \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \lambda \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \text{ and } \lambda \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ and rotating this set about the } x_4\text{-axis.}$$

b) We choose the basis $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 0 \\ 0 \\ \frac{5}{3} \\ -\frac{4}{3} \end{pmatrix}, \mathbf{v}_4 = \begin{pmatrix} 0 \\ 0 \\ -\frac{4}{3} \\ \frac{5}{3} \end{pmatrix}.$ Then
$$\sigma(\mathbf{v}_i, \mathbf{v}_j) = \sigma(\mathbf{v}_j, \mathbf{v}_i) = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{else}, \end{cases}$$

for $i \in \{1, 2\}$ and $j \in \{1, 2, 3, 4\}$. Furthermore we have

$$\sigma(\mathbf{v}_3,\mathbf{v}_4) = \frac{5}{3}\left(-\frac{4}{3}\right) + \frac{4}{3}\cdot\frac{5}{3} = 0 = \sigma(\mathbf{v}_4,\mathbf{v}_3).$$

and

$$\sigma(\mathbf{v}_3, \mathbf{v}_3) = \frac{25}{9} - \frac{16}{9} = 1, \quad \sigma(\mathbf{v}_4, \mathbf{v}_4) = \frac{16}{9} - \frac{25}{9} = -1$$

Thus σ is represented by the matrix with diagonal entries (1, 1, 1, -1) w.r.t this basis and the standard scalar product of \mathbf{v}_3 and \mathbf{v}_4 is

$$\langle \mathbf{v}_3, \mathbf{v}_4 \rangle = \frac{5}{3} \left(-\frac{4}{3} \right) + \left(-\frac{4}{3} \right) \frac{5}{3} \neq 0.$$

c) Let *U* be the subspace spanned by $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 + \mathbf{e}_4$. $U^{\perp} = \{\mathbf{v} \in \mathbb{R}^4 : \sigma(\mathbf{v}, \mathbf{w}) = 0 \text{ for all } \mathbf{u} \in U\}$. Let $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_2 \end{pmatrix}$ be an

element in U^{\perp} . As $\sigma(\mathbf{v}, \mathbf{e}_1) = 0$ and $\sigma(\mathbf{v}, \mathbf{e}_2) = 0$ we have $v_1 = 0$ and $v_2 = 0$. Furthermore we have to show that $\sigma(\mathbf{v}, \mathbf{e}_3 + \mathbf{e}_4) = \sigma(\mathbf{v}, \mathbf{e}_3) + \sigma(\mathbf{v}, \mathbf{e}_4) = 0$. This implies $v_3 = v_4$. Thus we have $U^{\perp} = \{\lambda(\mathbf{e}_3 + \mathbf{e}_4) : \lambda \in \mathbb{R}\} \subseteq U$ and $U + U^{\perp} \neq \mathbb{R}^4$.

- d) There are three possibilities for signatures of $\sigma|_U$. We characterise them by their position w.r.t. the cone defined by the null set:
 - 1) (+,+,+): $\sigma|_U$ is non-degenerate and positive definite; U intersects the null cone only in {0}, e.g. $U = \text{span}(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$;
 - (+,+,-): σ|_U is non-degenerate but not positive definite; U intersects the null cone in a two dimensional cone, e.g. U = span(e₁, e₂, e₄);
 - 3) $(+, +, 0) : \sigma|_U$ is degenerate and positive definite on a two dimensional subspace of *U*, *U* is spanned by three vectors, two of them lie in the exterior of the cone and one lies on the cone; e.g. $U = \text{span}(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 + \mathbf{e}_4)$;

Why are there no other signatures? Let $\mathbf{v} \neq \mathbf{0}$ with $\sigma(\mathbf{v}, \mathbf{v}) = 0$. W.l.o.g. (after applying an σ -isometry according to (b)) we have $\mathbf{v} = \mathbf{e}_1 + \mathbf{e}_4$. We look at an $\mathbf{w} \in \mathbf{v}^{\perp}$: $\mathbf{w} = \sum \lambda_i \mathbf{e}_i$. Then $\sigma(\mathbf{v}, \mathbf{w}) = 0$ implies $\lambda_1 = \lambda_4$. So for $\sigma(\mathbf{w}, \mathbf{w})$ we get: $\sigma(\mathbf{w}, \mathbf{w}) = \lambda_2^2 + \lambda_3^2 \ge 0$. This is only equal to 0, if λ_2 and λ_3 are equal to 0. This means that \mathbf{w} is an scalar multiple of \mathbf{v} , and they are not linearly independent. This implies that besides an 0 the signature can have only positive entries. We still have the possibility of more than one negative entry. Let \mathbf{v} be a vector with $\sigma(\mathbf{v}, \mathbf{v}) = -1$. As before we can choose $\mathbf{v} = \mathbf{e}_4$. For $\mathbf{w} \in \mathbf{v}^{\perp} \setminus \{\mathbf{0}\}$ we have $\mathbf{w} = \lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + \lambda_3 \mathbf{e}_3$. Therefore we get $\sigma(\mathbf{w}, \mathbf{w}) = \lambda_1^2 + \lambda_2^2 + \lambda_3^2 > 0$. This implies that besides an negative entry only positive entries can occur in our signature.

Exercise 3 (A rotated ellipse)

Let *X* be the ellipse in \mathbb{R}^2 obtained by rotating the standard ellipse $\frac{x^2}{4} + y^2 = 1$ through the angle $-\frac{\pi}{6}$ and translating it so that its center is at the point (1, -1). Find an equation for *X*.

Solution:

Rotating the ellipse through the angle $-\frac{\pi}{6}$ corresponds to rotating the coordinate axes by $\frac{\pi}{6}$. The corresponding rotation matrix is $\begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix}$. Therefore the change of variables $u = \frac{\sqrt{3}}{2}x + \frac{1}{2}y$, $v = -\frac{1}{2}x + \frac{\sqrt{3}}{2}y$ has the desired effect. We find $x = \frac{\sqrt{3}}{2}u - \frac{1}{2}v$ and $y = \frac{1}{2}u + \frac{\sqrt{3}}{2}v$. Substituting these into the equation $\frac{x^2}{4} + y^2 = 1$ yields $\frac{7}{16}u^2 + \frac{13}{16}v^2 + \frac{3\sqrt{3}}{8}uv = 1$. Finally, translating the ellipse so that its center is at (1, 1) yields $\frac{7}{16}(u-1)^2 + \frac{13}{16}(v+1)^2 + \frac{3\sqrt{3}}{8}(u-1)(v+1) = 1$. Multiplying this out yields

$$\frac{7}{16}u^2 + \frac{13}{16}v^2 + \frac{3\sqrt{3}}{8}uv + \frac{3\sqrt{3}-7}{8}u + \frac{-3\sqrt{3}+13}{8}v = \frac{3\sqrt{3}-2}{8}.$$

As in the lecture notes, this equation can be rewritten more succinctly in the form $\mathbf{u}^t A \mathbf{u} + \mathbf{b}^t \mathbf{u} + c = 0$, where $A = \begin{pmatrix} 7/16 & 3\sqrt{3}/16 \\ 3\sqrt{3}/16 & 13/16 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} \frac{3\sqrt{3}-7}{8} \\ -\frac{3\sqrt{3}+13}{8} \\ \frac{3\sqrt{3}+13}{8} \end{pmatrix}$, and $c = -\frac{3\sqrt{3}-2}{8}$.

Exercise 4 (Projection onto a plane)

Let *A* be the affine plane in the euclidean space $(\mathbb{R}^3, \langle, \rangle)$ given by x + 2y + 2z = 9.

- (a) Find an orthonormal basis for the 2-dimensional linear subspace $U \subseteq \mathbb{R}^3$ which is parallet to *A*.
- (b) Extend this basis to an orthonormal basis *B* for \mathbb{R}^3 .
- (c) Write down the matrix which represents the orthogonal projection φ onto *U* in terms of the standard basis $E = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ of \mathbb{R}^3 .
- (d) Let *P* be the point (1, 2, -1). Find the shortest distance from *P* to *A*.

Solution:

a) *U* is precisely the subspace which is perpendicular to the vector $\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$. To obtain an orthonormal basis for *U*, we

apply the Gram-Schmidt process to the vectors \mathbf{e}_1 and \mathbf{e}_2 , obtaining $\mathbf{u}_1 = \frac{4}{3\sqrt{2}} \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix}$ and $\mathbf{u}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$.

b) We rescale the vector $\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ so that it has length 1, obtaining $\mathbf{v} = \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$. By construction, $B = (\mathbf{v}, \mathbf{u}_1, \mathbf{u}_2)$ is an orthonormal basis for \mathbb{R}^3 with the deisred properties.

c) The projection map φ has matrix $\llbracket \varphi \rrbracket_B^B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ with respect to *B*. Since $\llbracket \text{id} \rrbracket_E^B$ is the orthogonal matrix whose colums are $\mathbf{v}, \mathbf{u}_1, \mathbf{u}_2$, we see that

$$\llbracket \varphi \rrbracket_{E}^{E} = \llbracket \mathrm{id} \rrbracket_{E}^{B} \llbracket \varphi \rrbracket_{B}^{B} \llbracket \mathrm{id} \rrbracket_{B}^{E} = \begin{pmatrix} 8/9 & -2/9 & -2/9 \\ -2/9 & 5/9 & -4/9 \\ -2/9 & -4/9 & 5/9 \end{pmatrix}.$$

d) The subspace *U* is just the plane passing through the origin given by x + 2y + 2z = 0. The point Q = (9, 0, 0) clearly lies on *A*, so *A* is just the affine plane obtained by translating *U* by the vector $\begin{pmatrix} 9\\0\\0 \end{pmatrix}$. In other words, (x, y, z) lies on *A* if and only if (x - 9, y, z) lies on *U*. The distance from P = (1, 2, -1) to *A* is therefore the same as the distance from P' = (-8, 2, -1) to *U*. This is just the length of the vector $\begin{pmatrix} -8\\2\\-1 \end{pmatrix} - \llbracket \varphi \rrbracket_E^E \begin{pmatrix} -8\\2\\-1 \end{pmatrix} = \begin{pmatrix} -2/3\\-4/3\\-4/3 \end{pmatrix}$, which is 2.