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Exercise 1 (Warm-up: symmetries of quadrics)
Consider the quadric

X= {v ∈ Rn : Q(v) = c},

where Q is a quadratic form over Rn, c ∈ R. Show that X is invariant under the following linear isometries of Rn:

(a) −id : x 7→ −x (central symmetry);

(b) reflection in the hyperplanes orthogonal to a principal axis (i.e., hyperplanes spanned by any n− 1 basis vectors
from an orthonormal basis that diagonalises Q and the associated σ);

(c) rotations in planes spanned by two principal axes w.r.t. which Q has the same “eigenvalues”, i.e., by basis vectors
b,b′ from an orthonormal basis that diagonalises Q such that Q(b) =Q(b′).

Solution:

a) X is invariant under central symmetry, since Q(−v) = (−1)2Q(v) =Q(v).

b) Let (b1, . . . ,bn) be an orthonormal basis that diagonalises Q and ϕ be the reflection that maps b1 to −b1 and bi to
bi for i > 1. Let v=

∑

i x ibi ∈ X. Then for suitable λi ∈ R,

Q(ϕ(v)) =Q(−x1b1 + x2b2 + . . .+ xnbn) = λ1(−x1)
2 +λ2 x2

2 + . . .+λn x2
n =Q(v).

c) Let (b1, . . . ,bn) be an orthonormal basis that diagonalises Q and satisfies Q(b1) =Q(b2), and let ϕ be the rotation
that maps b1 to cos(α)b1 − sin(α)b2, b2 to sin(α)b1 + cos(α)b2 and bi to bi for i > 2. Let v =

∑

i x ibi ∈ X. Then
for suitable λi ∈ R with λ1 = λ2:

Q(ϕ(v)) = Q
�

(x1 cos(α) + x2 sin(α))b1 + (−x1 sin(α) + x2 cos(α))b2 +

+x3b3 + . . .+ xnbn
�

= λ1(x1 cos(α) + x2 sin(α))2 +λ2(−x1 sin(α) + x2 cos(α))2 +

+λ3 x2
3 + . . .+λn x2

n

= λ1 x2
1 +λ2 x2

2 +λ3 x2
3 + . . .+λn x2

n

= Q(v),

which proves the claim.

Exercise 2 (Canonical form of a quadric)
Let X be the set of all points x ∈ R3 satisfying the following equation:

2x2
1 + x2

2 + x2
3 + 2x2 x3 + 4x1 − 3x2 − x3 = 0.

(a) Find a matrix A and a vector b such that the given equation can be written as

xtAx+ btx= 0.
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(b) Find an affine transformation for R3 for which the given equation has the form

a(x ′1 + c1)
2 + b(x ′2 − c2)

2 + x ′3 − c3 = 0.

(c) Describe the set X geometrically.

Solution:

a) A=







2 0 0
0 1 1
0 1 1






and b=







4
−3
−1






.

b) The eigenvalues of A are 2,2, 0.







1
0
0






, 1p

2







0
1
1






, 1p

2







0
1
−1






is a basis of normalized eigenvectors and let S be the

basis transformation from the standard basis to our new basis. With x= Sx′ we compute

0 = (x′)tS tASx′ + btSx′ = (x′)t







2 0 0
0 2 0
0 0 0






x ′ + (4− 2

p
2−
p

2)x′

= 2(x ′1)
2 + 2(x ′2)

2 + 4x ′1 − 2
p

2x ′2 −
p

2x ′3

= 2(x ′1 + 1)2 − 2+ 2(x ′2 −
1
p

2
)2 − 1−

p
2x ′3

= 2(x ′1 + 1)2 + 2(x ′2 −
1
p

2
)2 −
p

2x ′3 − 3

So we get the following equation:

−
p

2(x ′1 + 1)2 −
p

2(x ′2 −
1
p

2
)2 + x3 +

3
p

2
= 0.

c) X is the surface obtained by rotating a parabola about the axis defined by x ′1 =−1 and x ′2 =
1p
2
.

Exercise 3 (Three-dimensional quadrics)
Various three-dimensional affine quadrics as for instance the single-sheet hyperboloid {(x , y, z) : x2+ y2− z2 = 1} and

the saddle surface {(x , y, z) : x2 − y2 = z}, can be seen to be different affine sections of the projective quadric

X= {[x] : x1 x2 − x3 x4 = 0}. (*)

(a) Find the matrix representing X w.r.t. the standard basis.

(b) Diagonalise the quadratic form for X.

(c) Use (∗) to find an affine hyperplane whose intersection with X is a saddle surface and use (b) to find a plane whose
intersection with X is a single-sheet hyperboloid.

(d) Give a homogeneous equation for another projective quadric X′ such that there exist two affine hyperplanes whose
intersections with X′ are a double-sheet hyperboloid and an ellipsoid, respectively.

Solution:

a) A=











0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0











b) The characteristic polynomial of A is (λ2 − 1)2. So we have eigenvalues 1 and −1, each of them twice. Therefore
we can choose a suitable orthonormal basis such that X is defined by the equation y2

1 + y2
2 − y2

3 − y2
4 = 0.

c) We choose the hyperplane x1 = 1 and get x2 − x3 x4 = 0. For new coordinates z1 =
1
2
(x3 + x4), z2 =

1
2
(x4 − x3)

instead of x3 and x4 we get x2 − z2
1 + z2

2 = 0⇔ x2 = z2
2 − z2

1 . This intersection is a hyperbolic paraboloid (saddle
surface). In the equation obtained in (b) we set y1 = 1 and get y2

3 + y2
4 − y2

2 = 1. This equation describes a
single-sheet hyperboloid.
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d) We take the equation x2
1+ x2

2+ x2
3− x2

4 = 0 that corresponds to the signature (1, 1,1,−1). Intersecting X′ with the
affine hyperplane x1 = 1, we obtain the quadric x2

2 + x2
3 − x2

4 = −1. This is a two-sheet hyperboloid. Intersecting
with x4 = 1 we get the quadric x2

1 + x2
2 + x2

3 = 1, which defines an ellipsoid.

Exercise 4 (Snake on a plane)
A snake wants to buy a blanket. The snake’s length is one unit, and we assume that it can bend any which way, but

may always be described by a smooth curve of length 1. The snake wants to make sure that it can cover itself with the
blanket no matter in which shape it wants to lie down. Obviously a round blanket of diameter 1 is good enough (why?).
A clever shop assistant points out that a half disc of diameter 1 should also suffice.

Prove that this is right: any length 1 curve in R2 can be covered by a half disc of diameter 1.

Hint: Consider the end points and the mid point of the curve, and use the fact that the whole of the snake lies within
the union of the two ellipses formed by the mid point with either end point as foci and with length 1/2 for the sum of
distances from the foci. It now suffices to show that any two such ellipses are contained within a half disc of radius 1/2
whose straight boundary is a common tangent to the two ellipses, and whose centre point is the orthogonal projection of
the shared focus point onto this tangent. (See Exercise E12.5.)

Solution:
Let S be a snake lying in the plane R2. Let H and T be the two ends of the snake, and P be the midpoint of the snake.
(These stand for head, tail and pancreas.) Let EH be the region bounded by the ellipse consisting of the points M such
that d(H, M)+d(M , P) = 1

2
. By definition of EH and by the triangle inequality, the fore-half of the snake must lie withing

EH . Let us define ET similarly, so that S ⊆ EH ∪ ET . Let L be a tangent to both EH and ET (we assume the existence of
such a line), so that both ellipses lie fully on the same side of the line. Let O be the orthogonal projection of P onto L.
By Exercise E12.5.c, the smallest circle including, e.g., EH intersects L at O. The diameter of this circle is 1

2
(like the big

diameter of the ellipse), so every point within the circle is at distance at most 1
2

from O. Therefore every point of the

fore-half of the snake is at distance at most 1
2

from O. Since this holds also for the other half-snake, we are done.

•
H

•
P

•
XXXXXXXXXXXXXXXXXXXXXXXXX

•

L

•O

M•
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