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Exercise 1 (Warm-up: diagonalisability of bilinear forms)
Let the bilinear forms o; and o, on R* be defined by the matrices

A1= A2=

= O
o O O
= O
— O N
O = O
N O =

with respect to the standard basis of R®.
(a) Determine an orthonormal basis of R® with respect to which the matrix of o, is diagonal.
(b) Show that every eigenvector of A, is also an eigenvector of A;.
(c) Determine an orthonormal basis of R with respect to which the matrix of o, is diagonal, and deduce the eigenval-
ues of A, without computing the characteristic polynomial.

Solution:

a) We determine an orthonormal basis B; of eigenvectors for each of the matrices A;. These eigenvectors form the
columns of a transformation matrix C;. Then [o;]%! = C,'A,C; is the matrix of o, in this basis and, by Proposition
3.2.9 (A, is symmetric), [o; ]! is diagonal.

The eigenvalues of A; are given by
0 =det(A, — AE) = A%(2 - 1),

hence they are 0, with algebraic and geometric multiplicity two, and 2. We determine now the eigenvectors:

For A =0:
1 1
2 2
ker(A;) = span(vy,v,), where v, = ? and v, = —?
1
T2 T2
For A = 2:
ker(A; — 2E) = span(vs),
1
V2
wherev; =] 0
1
2
0 0 O
Then B; = (v;,V,,v3) and [o,;]®'=|0 0 0
0 0 2
b) Assume that (x, y,2) is an eigenvector of A, with eigenvalue A. Then 2x +z = Ax and x + 2z = Az, so (3 — A)(x +
2) = 0. If A = 3 then x = z since 2x + z = Ax, and if A # 3 then x = —z. In both cases (x, y,z) is an eigenvector
of A;.




¢) The same basis B; = (v, V,,V3) as in question (a) works due to question (b). So [o,]% = C;'A,C; is diagonal
and its entries are the eigenvalues, namely 1 (multiplicity two) and 3.

Exercise 2 (Quadratic forms)
Which of the following are quadratic forms? Determine in each case the corresponding symmetric bilinear forms:

@ Q:R—-R, x—x.

(b) Q:R—R, x—0.

(© Q3:R* >R, (x,xy)— —3xZ —x2 — xpx;.
(d Q4:RZ-R, (x1,x5) = (1 + /X)*

(® Qs:R*—R, (xq,x5)— [[x|*.

Solution:

a) This is not a quadratic form. For instance, Q,(2) = 2 # 4 = 22Q,(1).
b) This is a quadratic form and o,(x,y) =0
¢) This is a quadratic form and o5(x,y) = —3x1Y1] — X3Y5 — X153 — X3¥1-

d) Let 04(x,y) := 5 (Qa(x+y) = Qu(x) — Q)
80 04((x1, %), (y1,¥2)) = 5 (Vo1 +y1+ /x2 + 2)24(E7 + VX = (V71 + v72)*).-

By observation 3.3.2 in the notes, Q4 is a quadratic form iff this o, is bilinear. We next show that o, is not
bilinear in order to show that Q, is not a quadratic form. By definition we have 20,((1,0),(0,1)) = 2* — 2
and 20,4((0,1),(0,1)) = 2 and 20,((1,1),(0,1)) = (1 + v2)* — 22 — 1, the latter being irrational. (Recall that
(a+b)* = a*+4a®b+6a?b?+4ab’+b* and that v/2 is irrational.) Therefore o4((1,1),(0,1)) # 04((1,0),(0,1))+
0,4((0,1),(0,1)), and Q, is not a quadratic form.

e) This is a quadratic form since Qs(x;,x;) = xf + x% is induced by the standard scalar product. (That is,
o5((x1,%2), (1, ¥2)) = X151 + x2¥2.)

Exercise 3 (Transformation of quadratic forms)
Let ¢ : R? — R? be the endomorphism represented w.r.t. the standard basis of R? by the matrix

a=(2 1)

S'={x=(x;,x) eR*: x? + x5 =1} = {xeR*: x'x = 1}.

Let

be the unit circle in R2.

(a) Describe the image of the unit circle S* under ¢, ¢[S'] € R?, by a corresponding equation.

(b) Determine a symmetric bilinear form o such that
e[S']={xeR?: o(x,x) = 1}.
(c) Find the symmetry axes of ¢[S!].
Hint: apply Theorem 3.2.5 to o.
Solution:

Note that A is regular and A™! = ((1) _11)




a) Letx= (xl
x

) € R2. It follows that x € ¢ [S!'] iff ¢ ~(x) € S! iff
2

1 = ('@ ' ®=A1x)Ax=x'A)Ax=x" ((1) _11) ((1) _11)x

(1 0y (1 -1\ _ (1 -1
121 1)lo 1 )J*% 1 2 )%

x? = 2x1x5 + 2x3.

Hence

S'1 = {x=(x;,x)€eR?: x2 —2x;x, +2x2 =1} = {xeR?: x'Bx =1},
2 1,42 1 142 2

1 -1
where C = (_1 9 )
b) Let o be the symmetric bilinear form represented by C w.r.t. the standard basis of R2. Then

e(SHY ={xeR?: o(x,x)=1}.

¢) The characteristic polynomial of C is

pc=det(C-XE)=(1-X)2-X)-1= ( - 3+2ﬁ) (X_ 3—2«/3)’

The eigenvalues of C are then A, = 3;5,12 = 3+T‘@ and the signature of o is (+,+). Therefore p[S!'] is an

2
ellipse.

An orthonormal basis of eigenvectors is B = (v, V,), where

(9]

! ( ! ) V2 ( ! ) und
v _ =—/ _
Y ira-ap V1A VA

1 (1 ) V2 (1 )
V —_— = _1—
’ JI+A -2 L 172 A

The symmetry axes of the ellipse p[S'] are the principal axes of o, hence the eigenspaces V,, = span(v;) and
V,, = span(v,).

Exercise 4 (Quadratic forms)
Determine the principal axes and the signature of the following quadratic forms

(@ Q(x)=—11x% — 16x;x, + x3,

() Qu(x) =9x% — 4x; x5 + 6x3,

(©) Q3(x)=4x? —12x;x, + 9x2,
where x = (x;,X,) € R2.

Solution:

a) A :=[Q,1°= (_—181 _18)
Characteristic polynomial: (X —5)(X + 15)
Eigenvalues: A, =5, A, = —15.
Eigenvectors for these eigenvalues: v; = (_12) ,Vy = (f)

Signature: (+, —)
Principal axes: Vs = span((1, —2)") and V_,5 = span((2,1)").




b) A, :=[Q,]% = (z 2)

Characteristic polynomial: (X —5)(X — 10)

Eigenvalues: A, =5, A, = 10.

Eigenvectors for these eigenvalues: v; = (_12) ,Vy = (_21)
Signature: (+,+)

Principal axes: Vs = span((1, —2)") and V;, = span((2,1)").

4 -6
C) A3 = [[Q3:[|B=(—6 9)
Characteristic polynomial: X(X — 3)
Eigenvalues: A, =0, A, = 3.

Eigenvectors for these eigenvalues: v; = (2) ,Vy = (_32)

Signature: (+,0)
Principal axes: V, = span((3,2)") and V5 = span((—2,3)").

Exercise 5 (Geometric properties of the ellipse in euclidean geometry)
Let 0 < e < 1 and consider the points given by the vectors e = (e,0) and —e = (—e, 0) in the real plane R?. Let the set
X, € R? be defined as the set of all those x € R? for which d(x,e) + d(x, —e) = 2.

(a) Show that X, is an ellipse defined by a quadratic equation of the form ax? + By? = 1 for suitable a,8 > 0.
Determine a and f3 in terms of e. Draw X, for e =0,1/2,1,1/v2.

(b) From (i) find a representation of X, as the image of the unit circle under a rescaling in the y-direction. Use this
rescaling and the fact that linear transformations preserve the property that a line is a tangent to a curve in order
to determine the equation of the tangent to the ellipse X, in a point x = (x,y) € X,. Show that lines from e and
—e through x form the same angle with the tangent at x. [This explains the réle of the points e and —e as the foci
of the ellipse: light shining from e is focussed in —e after reflection in X,.]

(c) Show by elementary geometric means that X, also has the following geometric property. Let t be the tangent to X,
in a point x € X, and [ the line through e perpendicular to t. Then the point of intersection v between [ and t lies
on the unit circle.

Hint: Consider the triangles (x,v,w) and (X, v, e) in the sketch below, where v marks the point where [ intersects t,
and w where it intersects the line through —e and x. Use (ii) to argue that these triangles are congruent.

Solution:

a) When x = (x, y), then
d(x,—e)+d(x,e)=2

e JtreP+y2+/(x—eP+y2=2

S ey - +y? +20/ (e Hy2 Y (x—eP+y2=4
& 2-x*—yr-e*=/(x+e)?+y2/(x —e)* + y2

& 2-x*—y?-e?)P=((x+e)*+y)(x —e)*+y?)

& (1-e)x?+y?=1-¢?

& Pz y=1




b)

)

(For the <-direction at (*), observe that (1 — e?)x2 + y? = 1 — 2 implies that y?> +e2 <1, and x2 + ﬁyz =1
implies that x? < 1, so that 2 — x2 — y? —e? > 0.)

The ellipse X, is the image of the unit circle under the linear map ¢, : (x,y) — (x, v/ (1 —e?)y).

Letx = (x, y) be a point on the ellipse X,, and assume (without loss of generality) that x, y > 0, and let x’ = (x, y’)
be the point on the unit circle such that ¢,(x") = x. The tangent to the unit circle in X’ passes through x” and the
point (1/x,0) (check!). Therefore the tangent through x to the ellipse X, is the line through x = ¢,(x’) and
(1/x,0) = ¢.(1/x,0), which in parameter form is:

t={x+Ax*-1,xy): LER}.

Therefore the vector b= (xy,1 — x2) is orthogonal to the tangent t at x = (x, ).

Let a; and a, be the difference vectors a, = x — (—e) and a, = x — e. Equality of the angles of a; and a, with the
tangent is then equivalent to
(ba al) (b: a2>

T

As both scalar products are positive for x, y > 0, this is equivalent to

<b’ al )Z (b: 32)2

lasll® &gl

which is equivalent to
(xy(x+e)+(1—-x?y)*  (xy(x—e)+(1—x?)y)?
(x+e)+y? - (x —e)?+y?

>

which in turn, after some lengthy but standard calculations, can be seen to be equivalent to the defining equation
x2(1—e?)+y2=1-¢2

Congruence of the triangles (x,v,w) and (x,V,e) follows from the fact that (a) they share the common side xv,
(b) t is perpendicular to [, so the angles Zxvw and Zxve are both straight, and (c) the angles Zvxw and Zvxe are
equal by (ii).

Therefore d(—e,w) = d(—e,x) + d(x,e) = 2, from which it follows that ||v|| = d(0,v) = %d(—e, w)=1.




