Linear Algebra II
 Exercise Sheet no. 12

TECHNISCHE UNIVERSITAT DARMSTADT

Summer term 2011

Prof. Dr. Otto
 Dr. Le Roux
 Dr. Linshaw

June 25, 2011

Exercise 1 (Warm-up: diagonalisability of bilinear forms)
Let the bilinear forms σ_{1} and σ_{2} on \mathbb{R}^{3} be defined by the matrices

$$
A_{1}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right), \quad A_{2}=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

with respect to the standard basis of \mathbb{R}^{3}.
(a) Determine an orthonormal basis of \mathbb{R}^{3} with respect to which the matrix of σ_{1} is diagonal.
(b) Show that every eigenvector of A_{2} is also an eigenvector of A_{1}.
(c) Determine an orthonormal basis of \mathbb{R}^{3} with respect to which the matrix of σ_{2} is diagonal, and deduce the eigenvalues of A_{2} without computing the characteristic polynomial.

Solution:

a) We determine an orthonormal basis B_{1} of eigenvectors for each of the matrices A_{1}. These eigenvectors form the columns of a transformation matrix C_{1}. Then $\llbracket \sigma_{i} \rrbracket^{B_{1}}=C_{1}{ }^{t} A_{1} C_{1}$ is the matrix of σ_{1} in this basis and, by Proposition 3.2.9 (A_{1} is symmetric), $\llbracket \sigma_{1} \rrbracket^{B_{1}}$ is diagonal.

The eigenvalues of A_{1} are given by

$$
0=\operatorname{det}\left(A_{1}-\lambda E\right)=\lambda^{2}(2-\lambda),
$$

hence they are 0 , with algebraic and geometric multiplicity two, and 2 . We determine now the eigenvectors: For $\lambda=0$:

$$
\operatorname{ker}\left(A_{1}\right)=\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right), \quad \text { where } \mathbf{v}_{1}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{\sqrt{2}}{2} \\
-\frac{1}{2}
\end{array}\right) \text { and } \mathbf{v}_{2}=\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{\sqrt{2}}{2} \\
-\frac{1}{2}
\end{array}\right) .
$$

For $\lambda=2$:

$$
\operatorname{ker}\left(A_{1}-2 E\right)=\operatorname{span}\left(\mathbf{v}_{3}\right),
$$

where $\mathbf{v}_{3}=\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right)$.
Then $B_{1}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ and $\llbracket \sigma_{1} \rrbracket^{B_{1}}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right)$.
b) Assume that (x, y, z) is an eigenvector of A_{2} with eigenvalue λ. Then $2 x+z=\lambda x$ and $x+2 z=\lambda z$, so (3- $\left.\lambda\right)(x+$ $z)=0$. If $\lambda=3$ then $x=z$ since $2 x+z=\lambda x$, and if $\lambda \neq 3$ then $x=-z$. In both cases (x, y, z) is an eigenvector of A_{1}.
c) The same basis $B_{1}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ as in question (a) works due to question (b). So $\llbracket \sigma_{2} \rrbracket^{B_{1}}=C_{1}{ }^{t} A_{2} C_{1}$ is diagonal and its entries are the eigenvalues, namely 1 (multiplicity two) and 3.

Exercise 2 (Quadratic forms)
Which of the following are quadratic forms? Determine in each case the corresponding symmetric bilinear forms:
(a) $Q_{1}: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto x$.
(b) $Q_{2}: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto 0$.
(c) $Q_{3}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad\left(x_{1}, x_{2}\right) \mapsto-3 x_{1}^{2}-x_{2}^{2}-x_{2} x_{1}$.
(d) $Q_{4}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad\left(x_{1}, x_{2}\right) \mapsto\left(\sqrt{x_{1}}+\sqrt{x_{2}}\right)^{4}$.
(e) $Q_{5}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad\left(x_{1}, x_{2}\right) \mapsto\|\mathbf{x}\|^{2}$.

Solution:

a) This is not a quadratic form. For instance, $Q_{1}(2)=2 \neq 4=2^{2} Q_{1}(1)$.
b) This is a quadratic form and $\sigma_{2}(x, y)=0$
c) This is a quadratic form and $\sigma_{3}(x, y)=-3 x_{1} y_{1}-x_{2} y_{2}-x_{1} y_{2}-x_{2} y_{1}$.
d) Let $\left.\sigma_{4}(\mathbf{x}, \mathbf{y}):=\frac{1}{2}\left(Q_{4}(\mathbf{x}+\mathbf{y})-Q_{4}(\mathbf{x})-Q_{4}(\mathbf{y})\right)\right)$

So $\sigma_{4}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\frac{1}{2}\left(\left(\sqrt{x_{1}+y_{1}}+\sqrt{x_{2}+y_{2}}\right)^{2} 4\left(\sqrt{x_{1}}+\sqrt{x_{2}}\right)^{4}-\left(\sqrt{y_{1}}+\sqrt{y_{2}}\right)^{4}\right)$.
By observation 3.3.2 in the notes, Q_{4} is a quadratic form iff this σ_{4} is bilinear. We next show that σ_{4} is not bilinear in order to show that Q_{4} is not a quadratic form. By definition we have $2 \sigma_{4}((1,0),(0,1))=2^{4}-2$ and $2 \sigma_{4}((0,1),(0,1))=2$ and $2 \sigma_{4}((1,1),(0,1))=(1+\sqrt{2})^{4}-2^{2}-1$, the latter being irrational. (Recall that $(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$ and that $\sqrt{2}$ is irrational.) Therefore $\sigma_{4}((1,1),(0,1)) \neq \sigma_{4}((1,0),(0,1))+$ $\sigma_{4}((0,1),(0,1))$, and Q_{4} is not a quadratic form.
e) This is a quadratic form since $Q_{5}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ is induced by the standard scalar product. (That is, $\left.\sigma_{5}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=x_{1} y_{1}+x_{2} y_{2}.\right)$

Exercise 3 (Transformation of quadratic forms)

Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the endomorphism represented w.r.t. the standard basis of \mathbb{R}^{2} by the matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Let

$$
\mathbb{S}^{1}=\left\{\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}=1\right\}=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}^{t} \mathbf{x}=1\right\} .
$$

be the unit circle in \mathbb{R}^{2}.
(a) Describe the image of the unit circle \mathbb{S}^{1} under $\varphi, \varphi\left[\mathbb{S}^{1}\right] \subseteq \mathbb{R}^{2}$, by a corresponding equation.
(b) Determine a symmetric bilinear form σ such that

$$
\varphi\left[\mathbb{S}^{1}\right]=\left\{\mathbf{x} \in \mathbb{R}^{2}: \sigma(\mathbf{x}, \mathbf{x})=1\right\}
$$

(c) Find the symmetry axes of $\varphi\left[\mathbb{S}^{1}\right]$.

Hint: apply Theorem 3.2.5 to σ.

Solution:

Note that A is regular and $A^{-1}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$.
a) Let $\mathbf{x}=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$. It follows that $\mathbf{x} \in \varphi\left[\mathbb{S}^{1}\right] \operatorname{iff} \varphi^{-1}(\mathbf{x}) \in \mathbb{S}^{1}$ iff

$$
\begin{aligned}
1 & =\left(\varphi^{-1}(\mathbf{x})\right)^{t} \varphi^{-1}(\mathbf{x})=\left(A^{-1} \mathbf{x}\right)^{t} A^{-1} \mathbf{x}=\mathbf{x}^{t}\left(A^{-1}\right)^{t} A^{-1} \mathbf{x}=\mathbf{x}^{t}\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)^{t}\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \mathbf{x} \\
& =\mathbf{x}^{t}\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \mathbf{x}=\mathbf{x}^{t}\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) \mathbf{x} \\
& =x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2} .
\end{aligned}
$$

Hence

$$
\varphi\left[\mathbb{S}^{1}\right]=\left\{\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}=1\right\}=\left\{\mathbf{x} \in \mathbb{R}^{2}: \mathbf{x}^{t} B \mathbf{x}=1\right\}
$$

where $C=\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right)$.
b) Let σ be the symmetric bilinear form represented by C w.r.t. the standard basis of \mathbb{R}^{2}. Then

$$
\varphi\left(\mathbb{S}^{1}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2}: \sigma(\mathbf{x}, \mathbf{x})=1\right\}
$$

c) The characteristic polynomial of C is

$$
p_{C}=\operatorname{det}(C-X E)=(1-X)(2-X)-1=\left(X-\frac{3+\sqrt{5}}{2}\right)\left(X-\frac{3-\sqrt{5}}{2}\right)
$$

The eigenvalues of C are then $\lambda_{1}=\frac{3-\sqrt{5}}{2}, \lambda_{2}=\frac{3+\sqrt{5}}{2}$ and the signature of σ is $(+,+)$. Therefore $\varphi\left[\mathbb{S}^{1}\right]$ is an ellipse.
An orthonormal basis of eigenvectors is $B=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$, where

$$
\begin{aligned}
& \mathbf{v}_{1}=\frac{1}{\sqrt{1+\left(1-\lambda_{1}\right)^{2}}}\binom{1}{1-\lambda_{1}}=\frac{\sqrt{2}}{\sqrt{5-\sqrt{5}}}\binom{1}{\frac{-1+\sqrt{5}}{2}} \text { und } \\
& \mathbf{v}_{2}=\frac{1}{\sqrt{1+\left(1-\lambda_{2}\right)^{2}}}\binom{1}{1-\lambda_{2}}=\frac{\sqrt{2}}{\sqrt{5+\sqrt{5}}}\binom{1}{\frac{-1-\sqrt{5}}{2}}
\end{aligned}
$$

The symmetry axes of the ellipse $\varphi\left[\mathbb{S}^{1}\right]$ are the principal axes of σ, hence the eigenspaces $V_{\lambda_{1}}=\operatorname{span}\left(\mathbf{v}_{1}\right)$ and $V_{\lambda_{2}}=\operatorname{span}\left(\mathbf{v}_{2}\right)$.

Exercise 4 (Quadratic forms)

Determine the principal axes and the signature of the following quadratic forms
(a) $Q_{1}(\mathrm{x})=-11 x_{1}^{2}-16 x_{1} x_{2}+x_{2}^{2}$,
(b) $Q_{2}(\mathrm{x})=9 x_{1}^{2}-4 x_{1} x_{2}+6 x_{2}^{2}$,
(c) $Q_{3}(\mathbf{x})=4 x_{1}^{2}-12 x_{1} x_{2}+9 x_{2}^{2}$,
where $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.

Solution:

a) $A_{1}:=\llbracket Q_{1} \rrbracket^{B}=\left(\begin{array}{cc}-11 & -8 \\ -8 & 1\end{array}\right)$.

Characteristic polynomial: $(X-5)(X+15)$
Eigenvalues: $\lambda_{1}=5, \lambda_{2}=-15$.
Eigenvectors for these eigenvalues: $\mathbf{v}_{1}=\binom{1}{-2}, \mathbf{v}_{2}=\binom{2}{1}$
Signature: $(+,-)$
Principal axes: $V_{5}=\operatorname{span}\left((1,-2)^{t}\right)$ and $V_{-15}=\operatorname{span}\left((2,1)^{t}\right)$.
b) $A_{2}:=\llbracket Q_{2} \rrbracket^{B}=\left(\begin{array}{ll}9 & 2 \\ 2 & 6\end{array}\right)$.

Characteristic polynomial: $(X-5)(X-10)$
Eigenvalues: $\lambda_{1}=5, \lambda_{2}=10$.
Eigenvectors for these eigenvalues: $\mathbf{v}_{1}=\binom{1}{-2}, \mathbf{v}_{2}=\binom{2}{-1}$
Signature: $(+,+)$
Principal axes: $V_{5}=\operatorname{span}\left((1,-2)^{t}\right)$ and $V_{10}=\operatorname{span}\left((2,1)^{t}\right)$.
c) $A_{3}:=\llbracket Q_{3} \rrbracket^{B}=\left(\begin{array}{cc}4 & -6 \\ -6 & 9\end{array}\right)$.

Characteristic polynomial: $X(X-3)$
Eigenvalues: $\lambda_{1}=0, \lambda_{2}=3$.
Eigenvectors for these eigenvalues: $\mathbf{v}_{1}=\binom{3}{2}, \mathbf{v}_{2}=\binom{-2}{3}$
Signature: $(+, 0)$
Principal axes: $V_{0}=\operatorname{span}\left((3,2)^{t}\right)$ and $V_{3}=\operatorname{span}\left((-2,3)^{t}\right)$.
Exercise 5 (Geometric properties of the ellipse in euclidean geometry)
Let $0 \leqslant e<1$ and consider the points given by the vectors $\mathbf{e}=(e, 0)$ and $-\mathbf{e}=(-e, 0)$ in the real plane \mathbb{R}^{2}. Let the set $\mathbb{X}_{e} \subseteq \mathbb{R}^{2}$ be defined as the set of all those $\mathbf{x} \in \mathbb{R}^{2}$ for which $d(\mathbf{x}, \mathbf{e})+d(\mathbf{x},-\mathbf{e})=2$.
(a) Show that \mathbb{X}_{e} is an ellipse defined by a quadratic equation of the form $\alpha x^{2}+\beta y^{2}=1$ for suitable $\alpha, \beta>0$. Determine α and β in terms of e. Draw \mathbb{X}_{e} for $e=0,1 / 2,1,1 / \sqrt{2}$.
(b) From (i) find a representation of \mathbb{X}_{e} as the image of the unit circle under a rescaling in the y-direction. Use this rescaling and the fact that linear transformations preserve the property that a line is a tangent to a curve in order to determine the equation of the tangent to the ellipse \mathbb{X}_{e} in a point $\mathbf{x}=(x, y) \in \mathbb{X}_{e}$. Show that lines from \mathbf{e} and $-\mathbf{e}$ through \mathbf{x} form the same angle with the tangent at \mathbf{x}. [This explains the rôle of the points \mathbf{e} and $-\mathbf{e}$ as the foci of the ellipse: light shining from \mathbf{e} is focussed in $\mathbf{- e}$ after reflection in \mathbb{X}_{e}.]
(c) Show by elementary geometric means that \mathbb{X}_{e} also has the following geometric property. Let t be the tangent to \mathbb{X}_{e} in a point $\mathbf{x} \in \mathbb{X}_{e}$ and l the line through \mathbf{e} perpendicular to t. Then the point of intersection \mathbf{v} between l and t lies on the unit circle.
Hint: Consider the triangles $(\mathbf{x}, \mathbf{v}, \mathbf{w})$ and $(\mathbf{x}, \mathbf{v}, \mathbf{e})$ in the sketch below, where \mathbf{v} marks the point where l intersects t, and \mathbf{w} where it intersects the line through $-\mathbf{e}$ and \mathbf{x}. Use (ii) to argue that these triangles are congruent.

Solution:

a) When $\mathbf{x}=(x, y)$, then

$$
\begin{array}{ll}
& d(\mathbf{x},-\mathbf{e})+d(\mathbf{x}, \mathbf{e})=2 \\
\Leftrightarrow & \sqrt{(x+e)^{2}+y^{2}}+\sqrt{(x-e)^{2}+y^{2}}=2 \\
\Leftrightarrow & (x+e)^{2}+y^{2}+(x-e)^{2}+y^{2}+2 \sqrt{(x+e)^{2}+y^{2}} \sqrt{(x-e)^{2}+y^{2}}=4 \\
\Leftrightarrow & 2-x^{2}-y^{2}-e^{2}=\sqrt{(x+e)^{2}+y^{2}} \sqrt{(x-e)^{2}+y^{2}} \\
\Leftrightarrow & \left(2-x^{2}-y^{2}-e^{2}\right)^{2}=\left((x+e)^{2}+y^{2}\right)\left((x-e)^{2}+y^{2}\right) \\
\Leftrightarrow & \left(1-e^{2}\right) x^{2}+y^{2}=1-e^{2} \\
\Leftrightarrow & x^{2}+\frac{1}{1-e^{2}} y^{2}=1 .
\end{array}
$$

(For the \Leftarrow-direction at (*), observe that $\left(1-e^{2}\right) x^{2}+y^{2}=1-e^{2}$ implies that $y^{2}+e^{2} \leqslant 1$, and $x^{2}+\frac{1}{1-e^{2}} y^{2}=1$ implies that $x^{2} \leqslant 1$, so that $2-x^{2}-y^{2}-e^{2} \geqslant 0$.)
b) The ellipse \mathbb{X}_{e} is the image of the unit circle under the linear map $\varphi_{e}:(x, y) \mapsto\left(x, \sqrt{\left(1-e^{2}\right)} y\right)$.

Let $\mathbf{x}=(x, y)$ be a point on the ellipse \mathbb{X}_{e}, and assume (without loss of generality) that $x, y>0$, and let $\mathbf{x}^{\prime}=\left(x, y^{\prime}\right)$ be the point on the unit circle such that $\varphi_{e}\left(\mathbf{x}^{\prime}\right)=\mathbf{x}$. The tangent to the unit circle in \mathbf{x}^{\prime} passes through \mathbf{x}^{\prime} and the point $(1 / x, 0)$ (check!). Therefore the tangent through \mathbf{x} to the ellipse \mathbb{X}_{e} is the line through $\mathbf{x}=\varphi_{e}\left(\mathbf{x}^{\prime}\right)$ and $(1 / x, 0)=\varphi_{e}(1 / x, 0)$, which in parameter form is:

$$
t=\left\{x+\lambda\left(x^{2}-1, x y\right): \lambda \in \mathbb{R}\right\}
$$

Therefore the vector $\mathbf{b}=\left(x y, 1-x^{2}\right)$ is orthogonal to the tangent t at $\mathbf{x}=(x, y)$.
Let \mathbf{a}_{1} and \mathbf{a}_{2} be the difference vectors $\mathbf{a}_{1}=\mathbf{x}-(-\mathbf{e})$ and $\mathbf{a}_{2}=\mathbf{x}-\mathbf{e}$. Equality of the angles of \mathbf{a}_{1} and \mathbf{a}_{2} with the tangent is then equivalent to

$$
\frac{\left\langle\mathbf{b}, \mathbf{a}_{1}\right\rangle}{\left\|\mathbf{a}_{1}\right\|}=\frac{\left\langle\mathbf{b}, \mathbf{a}_{2}\right\rangle}{\left\|\mathbf{a}_{2}\right\|}
$$

As both scalar products are positive for $x, y>0$, this is equivalent to

$$
\frac{\left\langle\mathbf{b}, \mathbf{a}_{1}\right\rangle^{2}}{\left\|\mathbf{a}_{1}\right\|^{2}}=\frac{\left\langle\mathbf{b}, \mathbf{a}_{2}\right\rangle^{2}}{\left\|\mathbf{a}_{2}\right\|^{2}}
$$

which is equivalent to

$$
\frac{\left(x y(x+e)+\left(1-x^{2}\right) y\right)^{2}}{(x+e)^{2}+y^{2}}=\frac{\left(x y(x-e)+\left(1-x^{2}\right) y\right)^{2}}{(x-e)^{2}+y^{2}}
$$

which in turn, after some lengthy but standard calculations, can be seen to be equivalent to the defining equation $x^{2}\left(1-e^{2}\right)+y^{2}=1-e^{2}$.
c) Congruence of the triangles ($\mathbf{x}, \mathbf{v}, \mathbf{w}$) and ($\mathbf{x}, \mathbf{v}, \mathbf{e}$) follows from the fact that (a) they share the common side $\mathbf{x v}$, (b) t is perpendicular to l, so the angles $\angle \mathbf{x v w}$ and $\angle \mathbf{x v e}$ are both straight, and (c) the angles $\angle \mathbf{v x w}$ and $\angle \mathbf{v x e}$ are equal by (ii).
Therefore $d(-\mathbf{e}, \mathbf{w})=d(-\mathbf{e}, \mathbf{x})+d(\mathbf{x}, \mathbf{e})=2$, from which it follows that $\|\mathbf{v}\|=d(\mathbf{0}, \mathbf{v})=\frac{1}{2} d(-\mathbf{e}, \mathbf{w})=1$.

