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Exercise 1 (Warm-up)
(Exercise 3.1.1 in the notes, see also T7.2.) Show that the relation ≈ on R(n,n) defined as A≈ A′ iff A′ = C tAC for some

C ∈ GLn(R) is an equivalence relation. What are sufficient criteria for A 6≈ A′?

Solution:

• Reflexivity: A≈ A since A= E tAE and E ∈ GLn(R).

• Symmetry: if A≈ B, then B = C tAC for some C ∈ GLn(R), and (C−1)t BC−1 = (C−1)t C tACC−1 = A.

• Transitivity: Assume A≈ B and B ≈ C . So B = F tAF for some F ∈ GLn(R) and C = G t BG for some G ∈ GLn(R).
Then C = (FG)tAFG, and FG ∈ GLn(R), that is, A≈ C .

For instance, if two matrices A and A′ have different ranks, A 6≈ A′. Another example, if A is symmetric and A′ is not,
A 6≈ A′.

Exercise 2 (Normal matrices)
Recall that a matrix A is called normal if AA+ = A+A. We have seen (cf Exercise T11.1) that unitary, hermitian, and

skew-hermitian matrices are normal. (Similarly in the real case, orthogonal, symmetric, skew-symmetric matrices are
normal.) In this exercise we will see that there are normal matrices that do not belong to any of these classes.

(a) Prove that every real 2× 2 normal matrix is either symmetric or a scalar multiple of an orthogonal matrix.

(b) Find a sufficient (and also necessary) condition for a complex 2× 2 matrix to be normal. Give an example of such
a matrix which is neither hermitian, skew-hermitian, nor a scalar multiple of a unitary matrix.

(c) Let A=







1 1 0
0 1 1
1 0 1






. Show that A is normal, but is neither symmetric, skew-symmetric, nor a scalar multiple of an

orthogonal matrix.

Solution:

a) Let A=
�

a b
c d

�

. So AAt = AtA iff b2 = c2 and (a− d)(c− b) = 0. If c =−b then a = d.

b) Let A =
�

a b
c d

�

. So AA+ = A+A iff bb̄ = cc̄ and c(ā − d̄) = b̄(a − d). In the case where a 6= d, let b = reiβ

and c = reiγ, so AA+ = A+A iff a− d = ρei β+γ2 for some ρ ∈ R. So the matrix
�

2+ i i
1 1

�

is normal, but neither

hermitian, skew-hermitian, nor a scalar multiple of a unitary matrix. (Why not?)

c) To see that A is not a scalar multiple of any orthogonal matrix, check that at least two of its column (or row)
vectors are not orthogonal.
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Exercise 3 (Canonical form of an orthogonal map)
Consider the endomorphism ϕ : R3 → R3 represented in the standard basis by the following orthogonal matrix in
R(3,3):

A=







−1/2 1/2 −1/
p

2
1/2 −1/2 −1/

p
2

1/
p

2 1/
p

2 0






.

(a) Regard A as a complex matrix via the inclusion R(3,3) ⊆ C(3,3), and find its characteristic polynomial over C.

(b) Find a basis of complex eigenvectors (v1,v2,v3) of A.

(c) Use this information to find the invariant subspaces of ϕ regarded again as an endomorphism of R3. Find an
orthonormal basis for R3 such that in this basis, ϕ is given by a rotation followed by a reflection.

Solution:

a) Over C, we have pA = (X + i)(X − i)(X + 1).

b) The vectors v1 =







i/
p

2
i/
p

2
1






, v2 =







−i/
p

2
−i/
p

2
1






, and v3 =







−1/
p

2
1/
p

2
0






are eigenvectors of A in C3, with eigenvalues

i,−i,−1, respectively.

c) Note that v3 actually lies in R3, and the vector space V ⊆ C3 spanned by v1 and v2 is invariant under A. We
seek a new basis (u1,u2) for V consisting of vectors in R3, such that V is the complexification of the vector space
U ⊆ R3 spanned by u1 and u2. In fact, we have already seen in Exercise (T5.3) how to find these vectors. Let
u1 =

1
2
(v1 + v2), u2 =

1
2i
(v1 − v2). As shown in that exercise, the vectors u1 and u2 have the desired properties.

The invariant subspaces of ϕ regarded as an endomorphism of R3 are therefore U and the one-dimensional space
spanned by v3.

Letting u3 = v3, we see that with respect to the basis (u1,u2,u3) for R3, ϕ is given by rotation through the angle
π in the plane spanned by u1,u2, followed by reflection in this plane. In particular, letting S be the (orthogonal)
matrix whose columns are u1,u2,u3, we have

S−1AS =







0 −1 0
1 0 0
0 0 −1






.

Exercise 4 (Dual maps)
Let (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) be finite-dimensional euclidean spaces. Recall from Exercise T8.4 that the scalar product

of V induces a canonical (i.e., basis-independent) isomorphism ρV : V → V ∗, where V ∗ = Hom(V,R) is the dual space of
V .

ρV : V → V ∗

v 7→ 〈v, ·〉V

where

〈v, ·〉V : V → R
u 7→ 〈v,u〉V

Note that ρW : W →W ∗ is defined similarly.

(a) Let ϕ ∈ Hom(V, W ) be a linear map. We define the dual of ϕ to be the map ϕ∗ ∈ Hom(W ∗, V ∗) as follows:

ϕ∗ : W ∗→ V ∗

η 7→ η ◦ϕ

Note that everything we have defined so far does not depend on a choice of basis. Now let BV = (b1, . . . ,bn) be any
basis for V . We define the dual basis B∗V = (b

∗
1, . . . ,b∗n) for V ∗ by the condition b∗j (b j) = 0 for i 6= j and b∗j (b j) = 1

for i = j. Similarly, fix a basis BW = (b̂1, . . . , b̂m) for W , with associated dual basis B∗W . Show that the relationship
between the matrix representations of ϕ and ϕ∗ w.r.t. these bases is

¹ϕ∗º
B∗W
B∗V
= (¹ϕºBV

BW
)t .
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(b) What is the status of the map ϕ+ := (ρV )−1 ◦ϕ∗ ◦ ρW w.r.t. 〈·, ·〉W and 〈·, ·〉V ? Discuss its matrix representations
w.r.t. the orthonormal bases BV and BW .

(c) In the special case of V =W = (V, 〈·, ·〉), consider the map ϕ+ = (ρV )−1 ◦ϕ∗ ◦ρW and try to interpret the adjoint of
the endomorphism ϕ in terms of an isomorphic copy of the dual ϕ∗ via canonical identifications of V with V ∗ via
ρV .
Analyse the change of basis transformations w.r.t. changes from an onb BV (= BW ) to another onb B′V (= B′W ).

Solution:

a) By definition, ¹ϕºBV
BW

is the matrix A whose entries are given by ϕ(bi) =
∑m

j=1 a ji b̂ j . Hence b̂∗j (ϕ(bi)) = a ji .

Next, we calculate the matrix ¹ϕ∗º
B∗W
B∗V

. By definition, ϕ∗(b̂∗i ) = b̂∗i ◦ϕ, so

ϕ∗(b̂∗i )(b j) = b̂∗i (ϕ(b j)) = b̂∗i (
m
∑

k=1

ak j b̂k) = ai j .

The claim follows.

b) Let BV = (b1, . . . ,bn) and BW = (b̂1, . . . , b̂m) now be orthonormal bases for V and W , respectively. It follows from
the definition of ρV and ρW that ρV (bi) = b∗i and ρW (b̂i) = b̂∗i . Hence

ϕ+(b̂i) = (ρ
V )−1 ◦ϕ∗ ◦ρW (b̂i) = (ρ

V )−1 ◦ϕ∗(b̂∗i ) = (ρ
V )−1(

n
∑

j=1

ai jb
∗
j ) =

n
∑

j=1

ai jb j .

The equality ¹ϕ+ºBW
BV
= (¹ϕºBV

BW
)t follows.

c) If V = W and we identify V with V ∗ via ρV , it follows from (a) and (b) that ϕ+ corresponds to ϕ∗ under this
identification.

Exercise 5 (Positive definiteness and compactness of the unit surface)
(a) Let σA be a bilinear form on Rn, which in the standard basis is represented by a symmetric matrix A, whose i jth

entry ai j = σA(ei ,e j). Define the unit surface

SA = {v ∈ Rn : σA(v,v) = 1}.

Suppose that SA is non-empty. Prove that SA is compact if and only if σA is positive definite.

(b) Let A and B be matrices representing scalar products 〈·, ·〉A and 〈·, ·〉B on Rn. Show that the corresponding norms
are equivalent in the sense that there exist positive real numbers m and M satisfying

m〈v,v〉A ¶ 〈v,v〉B ¶ M〈v,v〉A

for all v ∈ Rn.

Solution:

a) Let S = {v : ‖v‖ = 1} denote the unit sphere in Rn with respect to the standard inner product, and let f : Rn →
R denote the quadratic function f (v) = σA(v,v), which is clearly continuous. Since SA = f −1(1) is closed by
continuity, SA is compact if and only if it is bounded.

Suppose first that σA is positive definite. Since S is compact, f achieves a minimum value m on S, and since σA is
positive definite, we have m> 0. Let v ∈ SA. Since v

‖v‖ ∈ S, we have

f (
v

‖v‖
) = σA(

v

‖v‖
,

v

‖v‖
) =

1

‖v‖2σA(v,v) =
1

‖v‖2 ¾ m.

Finally, since m> 0 we have ‖v‖¶ 1p
m

, so SA is bounded.

Conversely, suppose that σA is not positive definite, so there exists u ∈ S such that f (u)¶ 0. Since SA is not empty,
there exists w ∈ S for which f (w) > 0. The two vectors u and w are therefore independent, so for all λ ∈ [0,1]
the vector λu+(1−λ)w

‖λu+(1−λ)w‖ is well-defined, and in S. So for any ε > 0 there exists λ ∈ [0,1] such that v = λu+(1−λ)w
‖λu+(1−λ)w‖

satisfies 0 < f (v) < ε, by the intermediate value theorem. It follows that w = vp
| f (v)|

∈ SA and ‖w‖ > 1p
ε
. Since ε

was arbitrary, it follows that SA is not bounded.
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b) Let mA and MA be the minimum and maximum values achieved by the function fA defined by fA(v) = 〈v,v〉A on the
sphere S. Clearly mA and MA are positive real numbers. Similarly, let mB and MB be the minimum and maximum
values achieved by the function fB defined by fB(v) = 〈v,v〉B on S. Define M = MB

ma
and m = mB

MA
. The desired

inequality

m〈v,v〉A ¶ 〈v,v〉B ¶ M〈v,v〉A

follows for all v ∈ S. The fact that this holds for all v ∈ Rn follows.
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