Linear Algebra II Exercise Sheet no. 11

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011

June 20, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Warm-up)

(Exercise 3.1.1 in the notes, see also T7.2.) Show that the relation \approx on $\mathbb{R}^{(n,n)}$ defined as $A \approx A'$ iff $A' = C^t A C$ for some $C \in \operatorname{GL}_n(\mathbb{R})$ is an equivalence relation. What are sufficient criteria for $A \not\approx A'$? Solution:

- Reflexivity: $A \approx A$ since $A = E^t A E$ and $E \in GL_n(\mathbb{R})$.
- Symmetry: if $A \approx B$, then $B = C^t A C$ for some $C \in GL_n(\mathbb{R})$, and $(C^{-1})^t B C^{-1} = (C^{-1})^t C^t A C C^{-1} = A$.
- Transitivity: Assume $A \approx B$ and $B \approx C$. So $B = F^t A F$ for some $F \in GL_n(\mathbb{R})$ and $C = G^t B G$ for some $G \in GL_n(\mathbb{R})$. Then $C = (FG)^t A F G$, and $FG \in GL_n(\mathbb{R})$, that is, $A \approx C$.

For instance, if two matrices A and A' have different ranks, $A \not\approx A'$. Another example, if A is symmetric and A' is not, $A \not\approx A'$.

Exercise 2 (Normal matrices)

Recall that a matrix *A* is called normal if $AA^+ = A^+A$. We have seen (cf Exercise T11.1) that unitary, hermitian, and skew-hermitian matrices are normal. (Similarly in the real case, orthogonal, symmetric, skew-symmetric matrices are normal.) In this exercise we will see that there are normal matrices that do not belong to any of these classes.

- (a) Prove that every real 2×2 normal matrix is either symmetric or a scalar multiple of an orthogonal matrix.
- (b) Find a sufficient (and also necessary) condition for a complex 2×2 matrix to be normal. Give an example of such a matrix which is neither hermitian, skew-hermitian, nor a scalar multiple of a unitary matrix.
- (c) Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Show that *A* is normal, but is neither symmetric, skew-symmetric, nor a scalar multiple of an orthogonal matrix.

Solution:

a) Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. So $AA^t = A^t A$ iff $b^2 = c^2$ and $(a - d)(c - b) = 0$. If $c = -b$ then $a = d$.

- b) Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. So $AA^+ = A^+A$ iff $b\bar{b} = c\bar{c}$ and $c(\bar{a} \bar{d}) = \bar{b}(a d)$. In the case where $a \neq d$, let $b = re^{i\beta}$ and $c = re^{i\gamma}$, so $AA^+ = A^+A$ iff $a - d = \rho e^{i\frac{\beta+\gamma}{2}}$ for some $\rho \in \mathbb{R}$. So the matrix $\begin{pmatrix} 2+i & i \\ 1 & 1 \end{pmatrix}$ is normal, but neither hermitian, skew-hermitian, nor a scalar multiple of a unitary matrix. (Why not?)
- c) To see that *A* is not a scalar multiple of any orthogonal matrix, check that at least two of its column (or row) vectors are not orthogonal.

Exercise 3 (Canonical form of an orthogonal map)

Consider the endomorphism $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ represented in the standard basis by the following orthogonal matrix in $\mathbb{R}^{(3,3)}$:

$$A = \begin{pmatrix} -1/2 & 1/2 & -1/\sqrt{2} \\ 1/2 & -1/2 & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{pmatrix}.$$

- (a) Regard *A* as a complex matrix via the inclusion $\mathbb{R}^{(3,3)} \subseteq \mathbb{C}^{(3,3)}$, and find its characteristic polynomial over \mathbb{C} .
- (b) Find a basis of complex eigenvectors $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ of *A*.
- (c) Use this information to find the invariant subspaces of φ regarded again as an endomorphism of \mathbb{R}^3 . Find an orthonormal basis for \mathbb{R}^3 such that in this basis, φ is given by a rotation followed by a reflection.

Solution:

a) Over
$$\mathbb{C}$$
, we have $p_A = (X + i)(X - i)(X + 1)$.

b) The vectors
$$\mathbf{v}_1 = \begin{pmatrix} i/\sqrt{2} \\ i/\sqrt{2} \\ 1 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} -i/\sqrt{2} \\ -i/\sqrt{2} \\ 1 \end{pmatrix}$, and $\mathbf{v}_3 = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}$ are eigenvectors of *A* in \mathbb{C}^3 , with eigenvalues $i, -i, -1$, respectively.

c) Note that \mathbf{v}_3 actually lies in \mathbb{R}^3 , and the vector space $V \subseteq \mathbb{C}^3$ spanned by \mathbf{v}_1 and \mathbf{v}_2 is invariant under *A*. We seek a new basis $(\mathbf{u}_1, \mathbf{u}_2)$ for *V* consisting of vectors in \mathbb{R}^3 , such that *V* is the complexification of the vector space $U \subseteq \mathbb{R}^3$ spanned by \mathbf{u}_1 and \mathbf{u}_2 . In fact, we have already seen in Exercise (T5.3) how to find these vectors. Let $\mathbf{u}_1 = \frac{1}{2}(\mathbf{v}_1 + \mathbf{v}_2)$, $\mathbf{u}_2 = \frac{1}{2i}(\mathbf{v}_1 - \mathbf{v}_2)$. As shown in that exercise, the vectors \mathbf{u}_1 and \mathbf{u}_2 have the desired properties. The invariant subspaces of φ regarded as an endomorphism of \mathbb{R}^3 are therefore *U* and the one-dimensional space spanned by \mathbf{v}_3 .

Letting $\mathbf{u}_3 = \mathbf{v}_3$, we see that with respect to the basis $(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ for \mathbb{R}^3 , φ is given by rotation through the angle π in the plane spanned by $\mathbf{u}_1, \mathbf{u}_2$, followed by reflection in this plane. In particular, letting *S* be the (orthogonal) matrix whose columns are $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$, we have

$$S^{-1}AS = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Exercise 4 (Dual maps)

Let $(V, \langle \cdot, \cdot \rangle^V)$ and $(W, \langle \cdot, \cdot \rangle^W)$ be finite-dimensional euclidean spaces. Recall from Exercise T8.4 that the scalar product of *V* induces a canonical (i.e., basis-independent) isomorphism $\rho^V : V \to V^*$, where $V^* = Hom(V, \mathbb{R})$ is the *dual space* of *V*.

$$\rho^{V}: V \to V^{*}$$
$$\mathbf{v} \mapsto \langle \mathbf{v}, \cdot \rangle^{V}$$

where

$$\langle \mathbf{v}, \cdot \rangle^V : V \to \mathbb{R}$$

 $\mathbf{u} \mapsto \langle \mathbf{v}, \mathbf{u} \rangle^V$

Note that $\rho^W : W \to W^*$ is defined similarly.

(a) Let $\varphi \in Hom(V, W)$ be a linear map. We define the *dual* of φ to be the map $\varphi^* \in Hom(W^*, V^*)$ as follows:

$$\begin{array}{rcl} \varphi^* : & W^* \to V^* \\ & \eta \mapsto \eta \circ \varphi \end{array}$$

Note that everything we have defined so far does not depend on a choice of basis. Now let $B_V = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ be any basis for *V*. We define the *dual basis* $B_V^* = (\mathbf{b}_1^*, \dots, \mathbf{b}_n^*)$ for V^* by the condition $\mathbf{b}_j^*(\mathbf{b}_j) = 0$ for $i \neq j$ and $\mathbf{b}_j^*(\mathbf{b}_j) = 1$ for i = j. Similarly, fix a basis $B_W = (\hat{\mathbf{b}}_1, \dots, \hat{\mathbf{b}}_m)$ for *W*, with associated dual basis B_W^* . Show that the relationship between the matrix representations of φ and φ^* w.r.t. these bases is

$$\llbracket \varphi^* \rrbracket_{B^*_{W}}^{B_W} = (\llbracket \varphi \rrbracket_{B_W}^{B_V})^t.$$

- (b) What is the status of the map $\varphi^+ := (\rho^V)^{-1} \circ \varphi^* \circ \rho^W$ w.r.t. $\langle \cdot, \cdot \rangle^W$ and $\langle \cdot, \cdot \rangle^V$? Discuss its matrix representations w.r.t. the orthonormal bases B_V and B_W .
- (c) In the special case of $V = W = (V, \langle \cdot, \cdot \rangle)$, consider the map $\varphi^+ = (\rho^V)^{-1} \circ \varphi^* \circ \rho^W$ and try to interpret the adjoint of the endomorphism φ in terms of an isomorphic copy of the dual φ^* via canonical identifications of V with V^* via ρ^V .

Analyse the change of basis transformations w.r.t. changes from an onb $B_V(=B_W)$ to another onb $B'_V(=B'_W)$.

Solution:

a) By definition, $\llbracket \varphi \rrbracket_{B_W}^{B_V}$ is the matrix *A* whose entries are given by $\varphi(\mathbf{b}_i) = \sum_{j=1}^m a_{ji} \hat{\mathbf{b}}_j$. Hence $\hat{\mathbf{b}}_j^*(\varphi(\mathbf{b}_i)) = a_{ji}$.

Next, we calculate the matrix $\llbracket \varphi^* \rrbracket_{B_V^*}^{B_W^*}$. By definition, $\varphi^*(\hat{\mathbf{b}}_i^*) = \hat{\mathbf{b}}_i^* \circ \varphi$, so

$$\varphi^*(\hat{\mathbf{b}}_i^*)(\mathbf{b}_j) = \hat{\mathbf{b}}_i^*(\varphi(\mathbf{b}_j)) = \hat{\mathbf{b}}_i^*(\sum_{k=1}^m a_{kj}\hat{\mathbf{b}}_k) = a_{ij}$$

The claim follows.

b) Let $B_V = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ and $B_W = (\hat{\mathbf{b}}_1, \dots, \hat{\mathbf{b}}_m)$ now be orthonormal bases for *V* and *W*, respectively. It follows from the definition of ρ^V and ρ^W that $\rho^V(\mathbf{b}_i) = \mathbf{b}_i^*$ and $\rho^W(\hat{\mathbf{b}}_i) = \hat{\mathbf{b}}_i^*$. Hence

$$\varphi^{+}(\hat{\mathbf{b}}_{i}) = (\rho^{V})^{-1} \circ \varphi^{*} \circ \rho^{W}(\hat{\mathbf{b}}_{i}) = (\rho^{V})^{-1} \circ \varphi^{*}(\hat{\mathbf{b}}_{i}^{*}) = (\rho^{V})^{-1}(\sum_{j=1}^{n} a_{ij}\mathbf{b}_{j}^{*}) = \sum_{j=1}^{n} a_{ij}\mathbf{b}_{j}.$$

The equality $\llbracket \varphi^+ \rrbracket_{B_V}^{B_W} = (\llbracket \varphi \rrbracket_{B_W}^{B_V})^t$ follows.

c) If V = W and we identify V with V^* via ρ^V , it follows from (a) and (b) that φ^+ corresponds to φ^* under this identification.

Exercise 5 (Positive definiteness and compactness of the unit surface)

(a) Let σ_A be a bilinear form on \mathbb{R}^n , which in the standard basis is represented by a symmetric matrix A, whose ijth entry $a_{ij} = \sigma_A(\mathbf{e}_i, \mathbf{e}_j)$. Define the *unit surface*

$$S_A = \{ \mathbf{v} \in \mathbb{R}^n : \sigma_A(\mathbf{v}, \mathbf{v}) = 1 \}.$$

Suppose that S_A is non-empty. Prove that S_A is compact if and only if σ_A is positive definite.

(b) Let *A* and *B* be matrices representing scalar products $\langle \cdot, \cdot \rangle_A$ and $\langle \cdot, \cdot \rangle_B$ on \mathbb{R}^n . Show that the corresponding norms are equivalent in the sense that there exist positive real numbers *m* and *M* satisfying

$$m\langle \mathbf{v}, \mathbf{v} \rangle_A \leq \langle \mathbf{v}, \mathbf{v} \rangle_B \leq M \langle \mathbf{v}, \mathbf{v} \rangle_A$$

for all $\mathbf{v} \in \mathbb{R}^n$.

Solution:

a) Let $S = {\mathbf{v} : \|\mathbf{v}\| = 1}$ denote the unit sphere in \mathbb{R}^n with respect to the standard inner product, and let $f : \mathbb{R}^n \to \mathbb{R}$ denote the quadratic function $f(\mathbf{v}) = \sigma_A(\mathbf{v}, \mathbf{v})$, which is clearly continuous. Since $S_A = f^{-1}(1)$ is closed by continuity, S_A is compact if and only if it is bounded.

Suppose first that σ_A is positive definite. Since *S* is compact, *f* achieves a minimum value *m* on *S*, and since σ_A is positive definite, we have m > 0. Let $\mathbf{v} \in S_A$. Since $\frac{\mathbf{v}}{\|\mathbf{v}\|} \in S$, we have

$$f(\frac{\mathbf{v}}{\|\mathbf{v}\|}) = \sigma_A(\frac{\mathbf{v}}{\|\mathbf{v}\|}, \frac{\mathbf{v}}{\|\mathbf{v}\|}) = \frac{1}{\|\mathbf{v}\|^2} \sigma_A(\mathbf{v}, \mathbf{v}) = \frac{1}{\|\mathbf{v}\|^2} \ge m.$$

Finally, since m > 0 we have $||\mathbf{v}|| \leq \frac{1}{\sqrt{m}}$, so S_A is bounded.

Conversely, suppose that σ_A is not positive definite, so there exists $\mathbf{u} \in S$ such that $f(\mathbf{u}) \leq 0$. Since S_A is not empty, there exists $\mathbf{w} \in S$ for which $f(\mathbf{w}) > 0$. The two vectors \mathbf{u} and \mathbf{w} are therefore independent, so for all $\lambda \in [0, 1]$ the vector $\frac{\lambda \mathbf{u} + (1-\lambda)\mathbf{w}}{\|\lambda \mathbf{u} + (1-\lambda)\mathbf{w}\|}$ is well-defined, and in S. So for any $\varepsilon > 0$ there exists $\lambda \in [0, 1]$ such that $\mathbf{v} = \frac{\lambda \mathbf{u} + (1-\lambda)\mathbf{w}}{\|\lambda \mathbf{u} + (1-\lambda)\mathbf{w}\|}$ satisfies $0 < f(\mathbf{v}) < \varepsilon$, by the intermediate value theorem. It follows that $\mathbf{w} = \frac{\mathbf{v}}{\sqrt{|f(\mathbf{v})|}} \in S_A$ and $\|\mathbf{w}\| > \frac{1}{\sqrt{\varepsilon}}$. Since ε was arbitrary, it follows that S_A is not bounded.

b) Let m_A and M_A be the minimum and maximum values achieved by the function f_A defined by $f_A(\mathbf{v}) = \langle \mathbf{v}, \mathbf{v} \rangle_A$ on the sphere *S*. Clearly m_A and M_A are positive real numbers. Similarly, let m_B and M_B be the minimum and maximum values achieved by the function f_B defined by $f_B(\mathbf{v}) = \langle \mathbf{v}, \mathbf{v} \rangle_B$ on *S*. Define $M = \frac{M_B}{m_a}$ and $m = \frac{m_B}{M_A}$. The desired inequality

$$m\langle \mathbf{v}, \mathbf{v} \rangle_A \leq \langle \mathbf{v}, \mathbf{v} \rangle_B \leq M \langle \mathbf{v}, \mathbf{v} \rangle_A$$

follows for all $\mathbf{v} \in S$. The fact that this holds for all $\mathbf{v} \in \mathbb{R}^n$ follows.