Linear Algebra II
 Exercise Sheet no. 11

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

June 20, 2011

Exercise 1 (Warm-up)

(Exercise 3.1.1 in the notes, see also T7.2.) Show that the relation \approx on $\mathbb{R}^{(n, n)}$ defined as $A \approx A^{\prime}$ iff $A^{\prime}=C^{t} A C$ for some $C \in \mathrm{GL}_{n}(\mathbb{R})$ is an equivalence relation. What are sufficient criteria for $A \not \approx A^{\prime}$?

Solution:

- Reflexivity: $A \approx A$ since $A=E^{t} A E$ and $E \in \mathrm{GL}_{n}(\mathbb{R})$.
- Symmetry: if $A \approx B$, then $B=C^{t} A C$ for some $C \in \mathrm{GL}_{n}(\mathbb{R})$, and $\left(C^{-1}\right)^{t} B C^{-1}=\left(C^{-1}\right)^{t} C^{t} A C C^{-1}=A$.
- Transitivity: Assume $A \approx B$ and $B \approx C$. So $B=F^{t} A F$ for some $F \in \mathrm{GL}_{n}(\mathbb{R})$ and $C=G^{t} B G$ for some $G \in \mathrm{GL}_{n}(\mathbb{R})$. Then $C=(F G)^{t} A F G$, and $F G \in \mathrm{GL}_{n}(\mathbb{R})$, that is, $A \approx C$.

For instance, if two matrices A and A^{\prime} have different ranks, $A \not \approx A^{\prime}$. Another example, if A is symmetric and A^{\prime} is not, $A \not \approx A^{\prime}$.

Exercise 2 (Normal matrices)

Recall that a matrix A is called normal if $A A^{+}=A^{+} A$. We have seen (cf Exercise T11.1) that unitary, hermitian, and skew-hermitian matrices are normal. (Similarly in the real case, orthogonal, symmetric, skew-symmetric matrices are normal.) In this exercise we will see that there are normal matrices that do not belong to any of these classes.
(a) Prove that every real 2×2 normal matrix is either symmetric or a scalar multiple of an orthogonal matrix.
(b) Find a sufficient (and also necessary) condition for a complex 2×2 matrix to be normal. Give an example of such a matrix which is neither hermitian, skew-hermitian, nor a scalar multiple of a unitary matrix.
(c) Let $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$. Show that A is normal, but is neither symmetric, skew-symmetric, nor a scalar multiple of an orthogonal matrix.

Solution:

a) Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. So $A A^{t}=A^{t} A$ iff $b^{2}=c^{2}$ and $(a-d)(c-b)=0$. If $c=-b$ then $a=d$.
b) Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. So $A A^{+}=A^{+} A$ iff $b \bar{b}=c \bar{c}$ and $c(\bar{a}-\bar{d})=\bar{b}(a-d)$. In the case where $a \neq d$, let $b=r e^{i \beta}$ and $c=r e^{i \gamma}$, so $A A^{+}=A^{+} A$ iff $a-d=\rho e^{i \frac{\beta+\gamma}{2}}$ for some $\rho \in \mathbb{R}$. So the matrix $\left(\begin{array}{cc}2+i & i \\ 1 & 1\end{array}\right)$ is normal, but neither hermitian, skew-hermitian, nor a scalar multiple of a unitary matrix. (Why not?)
c) To see that A is not a scalar multiple of any orthogonal matrix, check that at least two of its column (or row) vectors are not orthogonal.

Exercise 3 (Canonical form of an orthogonal map)
Consider the endomorphism $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ represented in the standard basis by the following orthogonal matrix in $\mathbb{R}^{(3,3)}$:

$$
A=\left(\begin{array}{ccc}
-1 / 2 & 1 / 2 & -1 / \sqrt{2} \\
1 / 2 & -1 / 2 & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right)
$$

(a) Regard A as a complex matrix via the inclusion $\mathbb{R}^{(3,3)} \subseteq \mathbb{C}^{(3,3)}$, and find its characteristic polynomial over \mathbb{C}.
(b) Find a basis of complex eigenvectors $\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ of A.
(c) Use this information to find the invariant subspaces of φ regarded again as an endomorphism of \mathbb{R}^{3}. Find an orthonormal basis for \mathbb{R}^{3} such that in this basis, φ is given by a rotation followed by a reflection.

Solution:

a) Over \mathbb{C}, we have $p_{A}=(X+i)(X-i)(X+1)$.
b) The vectors $\mathbf{v}_{1}=\left(\begin{array}{c}i / \sqrt{2} \\ i / \sqrt{2} \\ 1\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}-i / \sqrt{2} \\ -i / \sqrt{2} \\ 1\end{array}\right)$, and $\mathbf{v}_{3}=\left(\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0\end{array}\right)$ are eigenvectors of A in \mathbb{C}^{3}, with eigenvalues $i,-i,-1$, respectively.
c) Note that \mathbf{v}_{3} actually lies in \mathbb{R}^{3}, and the vector space $V \subseteq \mathbb{C}^{3}$ spanned by \mathbf{v}_{1} and \mathbf{v}_{2} is invariant under A. We seek a new basis $\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$ for V consisting of vectors in \mathbb{R}^{3}, such that V is the complexification of the vector space $U \subseteq \mathbb{R}^{3}$ spanned by \mathbf{u}_{1} and \mathbf{u}_{2}. In fact, we have already seen in Exercise (T5.3) how to find these vectors. Let $\mathbf{u}_{1}=\frac{1}{2}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right), \mathbf{u}_{2}=\frac{1}{2 i}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)$. As shown in that exercise, the vectors \mathbf{u}_{1} and \mathbf{u}_{2} have the desired properties. The invariant subspaces of φ regarded as an endomorphism of \mathbb{R}^{3} are therefore U and the one-dimensional space spanned by v_{3}.
Letting $\mathbf{u}_{3}=\mathbf{v}_{3}$, we see that with respect to the basis $\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$ for \mathbb{R}^{3}, φ is given by rotation through the angle π in the plane spanned by $\mathbf{u}_{1}, \mathbf{u}_{2}$, followed by reflection in this plane. In particular, letting S be the (orthogonal) matrix whose columns are $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$, we have

$$
S^{-1} A S=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Exercise 4 (Dual maps)

Let $\left(V,\langle\cdot, \cdot\rangle^{V}\right)$ and $\left(W,\langle\cdot, \cdot\rangle^{W}\right)$ be finite-dimensional euclidean spaces. Recall from Exercise T8.4 that the scalar product of V induces a canonical (i.e., basis-independent) isomorphism $\rho^{V}: V \rightarrow V^{*}$, where $V^{*}=\operatorname{Hom}(V, \mathbb{R})$ is the dual space of V.

$$
\begin{aligned}
\rho^{V}: & V \rightarrow V^{*} \\
& \mathbf{v} \mapsto\langle\mathbf{v}, \cdot\rangle^{V}
\end{aligned}
$$

where

$$
\begin{aligned}
\langle\mathbf{v}, \cdot\rangle^{V}: & V \rightarrow \mathbb{R} \\
& \mathbf{u} \mapsto\langle\mathbf{v}, \mathbf{u}\rangle^{V}
\end{aligned}
$$

Note that $\rho^{W}: W \rightarrow W^{*}$ is defined similarly.
(a) Let $\varphi \in \operatorname{Hom}(V, W)$ be a linear map. We define the dual of φ to be the map $\varphi^{*} \in \operatorname{Hom}\left(W^{*}, V^{*}\right)$ as follows:

$$
\begin{array}{ll}
\varphi^{*}: & W^{*} \rightarrow V^{*} \\
& \eta \mapsto \eta \circ \varphi
\end{array}
$$

Note that everything we have defined so far does not depend on a choice of basis. Now let $B_{V}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ be any basis for V. We define the dual basis $B_{V}^{*}=\left(\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}\right)$ for V^{*} by the condition $\mathbf{b}_{j}^{*}\left(\mathbf{b}_{j}\right)=0$ for $i \neq j$ and $\mathbf{b}_{j}^{*}\left(\mathbf{b}_{j}\right)=1$ for $i=j$. Similarly, fix a basis $B_{W}=\left(\hat{\mathbf{b}}_{1}, \ldots, \hat{\mathbf{b}}_{m}\right)$ for W, with associated dual basis B_{W}^{*}. Show that the relationship between the matrix representations of φ and φ^{*} w.r.t. these bases is
$\llbracket \varphi^{*} \rrbracket_{B_{V}^{*}}^{B_{W}^{*}}=\left(\llbracket \varphi \rrbracket_{B_{W}}^{B_{V}}\right)^{t}$.
(b) What is the status of the map $\varphi^{+}:=\left(\rho^{V}\right)^{-1} \circ \varphi^{*} \circ \rho^{W}$ w.r.t. $\langle\cdot, \cdot\rangle^{W}$ and $\langle\cdot, \cdot\rangle^{V}$? Discuss its matrix representations w.r.t. the orthonormal bases B_{V} and B_{W}.
(c) In the special case of $V=W=(V,\langle\cdot, \cdot\rangle)$, consider the map $\varphi^{+}=\left(\rho^{V}\right)^{-1} \circ \varphi^{*} \circ \rho^{W}$ and try to interpret the adjoint of the endomorphism φ in terms of an isomorphic copy of the dual φ^{*} via canonical identifications of V with V^{*} via ρ^{V}.
Analyse the change of basis transformations w.r.t. changes from an onb $B_{V}\left(=B_{W}\right)$ to another onb $B_{V}^{\prime}\left(=B_{W}^{\prime}\right)$.

Solution:

a) By definition, $\llbracket \varphi \rrbracket_{B_{W}}^{B_{V}}$ is the matrix A whose entries are given by $\varphi\left(\mathbf{b}_{i}\right)=\sum_{j=1}^{m} a_{j i} \hat{\mathbf{b}}_{j}$. Hence $\hat{\mathbf{b}}_{j}^{*}\left(\varphi\left(\mathbf{b}_{i}\right)\right)=a_{j i}$. Next, we calculate the matrix $\llbracket \varphi^{*} \rrbracket_{B_{V}^{*}}^{B_{W}^{*}}$. By definition, $\varphi^{*}\left(\hat{\mathbf{b}}_{i}^{*}\right)=\hat{\mathbf{b}}_{i}^{*} \circ \varphi$, so

$$
\varphi^{*}\left(\hat{\mathbf{b}}_{i}^{*}\right)\left(\mathbf{b}_{j}\right)=\hat{\mathbf{b}}_{i}^{*}\left(\varphi\left(\mathbf{b}_{j}\right)\right)=\hat{\mathbf{b}}_{i}^{*}\left(\sum_{k=1}^{m} a_{k j} \hat{\mathbf{b}}_{k}\right)=a_{i j}
$$

The claim follows.
b) Let $B_{V}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ and $B_{W}=\left(\hat{\mathbf{b}}_{1}, \ldots, \hat{\mathbf{b}}_{m}\right)$ now be orthonormal bases for V and W, respectively. It follows from the definition of ρ^{V} and ρ^{W} that $\rho^{V}\left(\mathbf{b}_{i}\right)=\mathbf{b}_{i}^{*}$ and $\rho^{W}\left(\hat{\mathbf{b}}_{i}\right)=\hat{\mathbf{b}}_{i}^{*}$. Hence

$$
\varphi^{+}\left(\hat{\mathbf{b}}_{i}\right)=\left(\rho^{V}\right)^{-1} \circ \varphi^{*} \circ \rho^{W}\left(\hat{\mathbf{b}}_{i}\right)=\left(\rho^{V}\right)^{-1} \circ \varphi^{*}\left(\hat{\mathbf{b}}_{i}^{*}\right)=\left(\rho^{V}\right)^{-1}\left(\sum_{j=1}^{n} a_{i j} \mathbf{b}_{j}^{*}\right)=\sum_{j=1}^{n} a_{i j} \mathbf{b}_{j}
$$

The equality $\llbracket \varphi^{+} \rrbracket_{B_{V}}^{B_{W}}=\left(\llbracket \varphi \rrbracket_{B_{W}}^{B_{V}}\right)^{t}$ follows.
c) If $V=W$ and we identify V with V^{*} via ρ^{V}, it follows from (a) and (b) that φ^{+}corresponds to φ^{*} under this identification.

Exercise 5 (Positive definiteness and compactness of the unit surface)
(a) Let σ_{A} be a bilinear form on \mathbb{R}^{n}, which in the standard basis is represented by a symmetric matrix A, whose $i j$ th entry $a_{i j}=\sigma_{A}\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)$. Define the unit surface

$$
S_{A}=\left\{\mathbf{v} \in \mathbb{R}^{n}: \sigma_{A}(\mathbf{v}, \mathbf{v})=1\right\}
$$

Suppose that S_{A} is non-empty. Prove that S_{A} is compact if and only if σ_{A} is positive definite.
(b) Let A and B be matrices representing scalar products $\langle\cdot, \cdot\rangle_{A}$ and $\langle\cdot, \cdot\rangle_{B}$ on \mathbb{R}^{n}. Show that the corresponding norms are equivalent in the sense that there exist positive real numbers m and M satisfying

$$
m\langle\mathbf{v}, \mathbf{v}\rangle_{A} \leqslant\langle\mathbf{v}, \mathbf{v}\rangle_{B} \leqslant M\langle\mathbf{v}, \mathbf{v}\rangle_{A}
$$

for all $\mathbf{v} \in \mathbb{R}^{n}$.

Solution:

a) Let $S=\{\mathbf{v}:\|\mathbf{v}\|=1\}$ denote the unit sphere in \mathbb{R}^{n} with respect to the standard inner product, and let $f: \mathbb{R}^{n} \rightarrow$ \mathbb{R} denote the quadratic function $f(\mathbf{v})=\sigma_{A}(\mathbf{v}, \mathbf{v})$, which is clearly continuous. Since $S_{A}=f^{-1}(1)$ is closed by continuity, S_{A} is compact if and only if it is bounded.
Suppose first that σ_{A} is positive definite. Since S is compact, f achieves a minimum value m on S, and since σ_{A} is positive definite, we have $m>0$. Let $\mathbf{v} \in S_{A}$. Since $\frac{\mathbf{v}}{\|\mathbf{v}\|} \in S$, we have

$$
f\left(\frac{\mathbf{v}}{\|\mathbf{v}\|}\right)=\sigma_{A}\left(\frac{\mathbf{v}}{\|\mathbf{v}\|}, \frac{\mathbf{v}}{\|\mathbf{v}\|}\right)=\frac{1}{\|\mathbf{v}\|^{2}} \sigma_{A}(\mathbf{v}, \mathbf{v})=\frac{1}{\|\mathbf{v}\|^{2}} \geqslant m
$$

Finally, since $m>0$ we have $\|\mathbf{v}\| \leqslant \frac{1}{\sqrt{m}}$, so S_{A} is bounded.
Conversely, suppose that σ_{A} is not positive definite, so there exists $\mathbf{u} \in S$ such that $f(\mathbf{u}) \leqslant 0$. Since S_{A} is not empty, there exists $\mathbf{w} \in S$ for which $f(\mathbf{w})>0$. The two vectors \mathbf{u} and \mathbf{w} are therefore independent, so for all $\lambda \in[0,1]$ the vector $\frac{\lambda \mathbf{u}+(1-\lambda) \mathbf{w}}{\|\lambda \mathbf{u}+(1-\lambda) \mathbf{w}\|}$ is well-defined, and in S. So for any $\varepsilon>0$ there exists $\lambda \in[0,1]$ such that $\mathbf{v}=\frac{\lambda \mathbf{u}+(1-\lambda) \mathbf{w}}{\|\lambda \mathbf{u}+(1-\lambda) \mathbf{w}\|}$ satisfies $0<f(\mathbf{v})<\varepsilon$, by the intermediate value theorem. It follows that $\mathbf{w}=\frac{\mathbf{v}}{\sqrt{|f(\mathbf{v})|}} \in S_{A}$ and $\|\mathbf{w}\|>\frac{1}{\sqrt{\varepsilon}}$. Since ε was arbitrary, it follows that S_{A} is not bounded.
b) Let m_{A} and M_{A} be the minimum and maximum values achieved by the function f_{A} defined by $f_{A}(\mathbf{v})=\langle\mathbf{v}, \mathbf{v}\rangle_{A}$ on the sphere S. Clearly m_{A} and M_{A} are positive real numbers. Similarly, let m_{B} and M_{B} be the minimum and maximum values achieved by the function f_{B} defined by $f_{B}(\mathbf{v})=\langle\mathbf{v}, \mathbf{v}\rangle_{B}$ on S. Define $M=\frac{M_{B}}{m_{a}}$ and $m=\frac{m_{B}}{M_{A}}$. The desired inequality

$$
m\langle\mathbf{v}, \mathbf{v}\rangle_{A} \leqslant\langle\mathbf{v}, \mathbf{v}\rangle_{B} \leqslant M\langle\mathbf{v}, \mathbf{v}\rangle_{A}
$$

follows for all $\mathbf{v} \in S$. The fact that this holds for all $\mathbf{v} \in \mathbb{R}^{n}$ follows.

