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Exercise 1 (Warm-up)
(Exercise 3.1.1 in the notes, see also T7.2.) Show that the relation ~ on R defined as A~ A’ iff A = C'AC for some
C € GL,(R) is an equivalence relation. What are sufficient criteria for A % A’?

Solution:

* Reflexivity: A~ A since A= E'AE and E € GL,(R).
¢ Symmetry: if A~ B, then B = C'AC for some C € GL,(R), and (C™})'BC™! = (C™1)!C'ACC ! = A.

* Transitivity: Assume A~ B and B ~ C. So B = F'AF for some F € GL,(R) and C = G'BG for some G € GL,(R).
Then C = (FG)'AFG, and FG € GL,(R), that is, A~ C.

For instance, if two matrices A and A" have different ranks, A % A’. Another example, if A is symmetric and A’ is not,
AA.

Exercise 2 (Normal matrices)

Recall that a matrix A is called normal if AAT = ATA. We have seen (cf Exercise T11.1) that unitary, hermitian, and
skew-hermitian matrices are normal. (Similarly in the real case, orthogonal, symmetric, skew-symmetric matrices are
normal.) In this exercise we will see that there are normal matrices that do not belong to any of these classes.

(a) Prove that every real 2 x 2 normal matrix is either symmetric or a scalar multiple of an orthogonal matrix.

(b) Find a sufficient (and also necessary) condition for a complex 2 X 2 matrix to be normal. Give an example of such
a matrix which is neither hermitian, skew-hermitian, nor a scalar multiple of a unitary matrix.

1 1 0
(c) LetA=]0 1 1 |.Show thatA isnormal, but is neither symmetric, skew-symmetric, nor a scalar multiple of an
1 0 1

orthogonal matrix.

Solution:
a) LetA= (Z Z) So AAt = A'Aiff b2 =c? and (a —d)(c — b) =0. Ifc=—b thena =d.

b

a
b) LetA = (c d

). So AAT = ATAiff bb = ¢¢ and c(a — d) = b(a — d). In the case where a # d, let b = re'f
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and c = re'”, so AAt = ATAiff a—d = pe' 2 for some p € R. So the matrix ( 1 i) is normal, but neither

hermitian, skew-hermitian, nor a scalar multiple of a unitary matrix. (Why not?)

c¢) To see that A is not a scalar multiple of any orthogonal matrix, check that at least two of its column (or row)
vectors are not orthogonal.




Exercise 3 (Canonical form of an orthogonal map)

Consider the endomorphism ¢ : R® — R® represented in the standard basis by the following orthogonal matrix in
RGA):

-1/2  1/2 -1/V2
A=| 1/2 -1/2 -1//2
1/V2 1/v2 0
(a) Regard A as a complex matrix via the inclusion R©* € C®®), and find its characteristic polynomial over C.
(b) Find a basis of complex eigenvectors (v;,V,,V;) of A.
(c) Use this information to find the invariant subspaces of ¢ regarded again as an endomorphism of R®. Find an

orthonormal basis for R® such that in this basis, ¢ is given by a rotation followed by a reflection.

Solution:

a) Over C, we have p, = (X +1)(X —i)(X +1).

i/vV2 —i/V2 -1/v2
b) The vectorsv, = | i/vV2 |,v,=| —i/v/2 |,andv; = | 1/4/2 | are eigenvectors of A in C3, with eigenvalues
1 1 0

i,—i,—1, respectively.

¢) Note that v, actually lies in R3, and the vector space V C C3 spanned by v; and v, is invariant under A. We
seek a new basis (1;,u,) for V consisting of vectors in R3, such that V is the complexification of the vector space
U C R3 spanned by u; and u,. In fact, we have already seen in Exercise (T5.3) how to find these vectors. Let
u = %(vl +vy), Uy = %(vl —V,). As shown in that exercise, the vectors u; and u, have the desired properties.
The invariant subspaces of ¢ regarded as an endomorphism of R® are therefore U and the one-dimensional space
spanned by v;.

Letting u; = v,, we see that with respect to the basis (u;,u,,u3) for R?, ¢ is given by rotation through the angle
7 in the plane spanned by u;, u,, followed by reflection in this plane. In particular, letting S be the (orthogonal)
matrix whose columns are u;, u,, u;, we have

0 -1 0
s7laAs=|1 0 o
0 0 -1

Exercise 4 (Dual maps)

Let (V, (-,-)¥) and (W, {-,-)") be finite-dimensional euclidean spaces. Recall from Exercise T8.4 that the scalar product
of V induces a canonical (i.e., basis-independent) isomorphism p" : V — V*, where V* = Hom(V, R) is the dual space of
V.

pV: Vv
v (v, )Y
where
v,V: V-R
u— (v,u)’
Note that p" : W — W* is defined similarly.
(a) Let ¢ € Hom(V,W) be a linear map. We define the dual of ¢ to be the map ¢* € Hom(W*,V*) as follows:

' Wr-V*
n—mnoy
Note that everything we have defined so far does not depend on a choice of basis. Now let By, = (b,,...,b,) be any

basis for V. We define the dual basis B, = (b],...,b}) for V* by the condition b;f(bj) =0fori# jand bj(bj) =1

for i = j. Similarly, fix a basis By, = (b, ...,b,,) for W, with associated dual basis B;,. Show that the relationship
between the matrix representations of ¢ and ¢* w.r.t. these bases is

LoD, = ([eT5, )"




(b) What is the status of the map ¢+ := (p") Lo ¢*op" wrt. (-,-)" and (-,-)V ? Discuss its matrix representations
w.r.t. the orthonormal bases By, and By, .

(c) In the special case of V. = W = (V, (-,-)), consider the map ¢ = (p") o ¢*op" and try to interpret the adjoint of

the endomorphism ¢ in terms of an isomorphic copy of the dual ¢* via canonical identifications of V with V* via

p".

Analyse the change of basis transformations w.r.t. changes from an onb By, (= By ) to another onb B;,(= B;,,).

Solution:
a) By definition, [[go]] By 1S the matrix A whose entries are given by ¢(b;) =" =1 Jlb Hence b*((p(b ) =aj

Next, we calculate the matrix [¢*] B‘,C’. By definition, go*(f);‘) = B:‘ o, so
\4

*(B7)(b;) = b;((b))) = B> a;be) = ay;.
k=1

The claim follows.
b) Let B, = (by,...,b,) and B, = (b,,...,b,,) now be orthonormal bases for V and W, respectively. It follows from
the definition of p” and p" that p¥(b;) = b} and p"(b;) = b}. Hence

@) =(p ) og o p™ (b)) =(p") o (b)) =(p") 1(2 a;b) = a;b;.

j= j=1
The equality [[Lpﬂ]ﬁ& = ([[cp]]ﬁn)t follows.

c) If V. =W and we identify V with V* via pV, it follows from (a) and (b) that p* corresponds to ¢* under this
identification.

Exercise 5 (Positive definiteness and compactness of the unit surface)
(a) Let o, be a bilinear form on R", which in the standard basis is represented by a symmetric matrix A, whose ijth
entry a;; = o ,(e;, e;). Define the unit surface

Sy={veR":0,(v,v) =1}
Suppose that S, is non-empty. Prove that S, is compact if and only if o, is positive definite.
(b) Let A and B be matrices representing scalar products (-,-), and (-,-); on R". Show that the corresponding norms
are equivalent in the sense that there exist positive real numbers m and M satisfying
m<v’ v)A s (V, V)B s M<V; v)A
for all ve R™.

Solution:

a) Let S = {v:||v|| = 1} denote the unit sphere in R" with respect to the standard inner product, and let f : R" —
R denote the quadratic function f(v) = o ,(v,v), which is clearly continuous. Since S, = f~!(1) is closed by
continuity, S, is compact if and only if it is bounded.

Suppose first that o, is positive definite. Since S is compact f achieves a minimum value m on S, and since g, is

positive definite, we have m > 0. Let ve S,. Since - i ” € S, we have

v

Flm) = op(e) ) =
v e T T v ||2

so S, is bounded.

——0,(v,v) = ||V||2 >m.

Finally, since m > 0 we have ||v|| < r’

Conversely, suppose that o, is not positive definite, so there exists u € S such that f (u) < 0. Since S, is not empty,
there exists w € S for which f(w) > 0. The two vectors u and w are therefore independent, so for all A € [0, 1]

Au+(1-)w . B 3 : . _ Aut+(Q-A)w

the vector Tt (] 8 well-defined, and in S. So for any ¢ > 0 there exists A € [O 1] such that v= —H et (L= w]

satisfies 0 < f(v) < ¢, by the intermediate value theorem. It follows that w = ——— ‘f( 5 €Sy and |lwl| > —=. Since ¢
isfies O (v) by the i di lue th It foll h S, and ||wl| . Si

was arbitrary, it follows that S, is not bounded.




b) Let m, and M, be the minimum and maximum values achieved by the function f, defined by f,(v) = (v, v), on the
sphere S. Clearly m, and M, are positive real numbers. Similarly, let mz and My be the minimum and maximum
B mp

values achieved by the function f; defined by fz(v) = (v,v)z on S. Define M = 1:— and m = M, The desired

inequality

m<v: V)A < (V, V)B < M(V, V)A

follows for all v € S. The fact that this holds for all v e R" follows.




