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Exercise 1 (Warm-up: self-adjoint maps)
Let V be a finite-dimensional unitary space and ϕ ∈ Hom(V, V ). Show that the following are equivalent:

(a) ϕ is self-adjoint.

(b) 〈v,ϕ(v)〉 ∈ R for all v ∈ V .

Hint: Consider 〈v+w,ϕ(v+w)〉 and 〈v+ iw,ϕ(v+ iw)〉 for the implication (b)⇒(a).

Solution:
(a)⇒(b). Assume that ϕ is self-adjoint. Then for all v ∈ V ,

〈Tv,v〉 − 〈Tv,v〉 = 〈Tv,v〉 − 〈v, Tv〉= 0,

hence 〈Tv,v〉 ∈ R.
(b)⇒ (a). If 〈v,ϕ(v)〉 ∈ R for all v ∈ V , then for any pair of vectors v,w ∈ V :

〈v+w,ϕ(v+w)〉 − 〈v,ϕ(v)〉 − 〈w,ϕ(w)〉= 〈w,ϕ(v)〉+ 〈v,ϕ(w)〉
〈v+ iw,ϕ(v+ iw)〉 − 〈v,ϕ(v)〉 − 〈w,ϕ(w)〉= i

�

〈w,ϕ(v)〉 − 〈v,ϕ(w)〉
�

�

∈ R,

whence im(〈w,ϕ(v)〉) =−im(〈v,ϕ(w)〉) and Re(〈w,ϕ(v)〉) = Re(〈v,ϕ(w)〉). It follows that

〈v,ϕ(w)〉= 〈w,ϕ(v)〉= 〈ϕ(v),w〉= 〈v,ϕ+(w)〉

for all v,w ∈ V , hence ϕ = ϕ+.

Exercise 2 (Eigenvalues)
Let V be a finite dimensional vector space and ϕ,ψ be endomorphisms of V .

Prove that λ is an eigenvalue of ϕ ◦ψ if and only if it is an eigenvalue of ψ ◦ϕ.
Hint: It may help to distinguish cases according to whether λ 6= 0 or λ= 0.
Extra: Can you give a counterexample in case V is infinite dimensional?

Solution:
Let λ be an eigenvalue of ϕ ◦ψ. We have two cases:

a) λ 6= 0:
There is an eigenvector v 6= 0 with (ϕ ◦ψ)(v) = λv. This yields

(ψ ◦ϕ)(ψ(v)) =
�

(ψ ◦ϕ) ◦ψ
�

(v) =
�

ψ ◦ (ϕ ◦ψ)
�

(v) =ψ
�

(ϕ ◦ψ)(v)
�

=ψ(λv) = λψ(v).

Because λ 6= 0 and v 6= 0 we know that ψ(v) 6= 0 as well (otherwise λv = (ϕ ◦ψ)(v) = ϕ(ψ(v)) = ϕ(0) = 0, a
contradiction). Thus ψ(v) is an eigenvector of ψ ◦ϕ with eigenvalue λ.

b) λ= 0:
As V is finite dimensional, the maps ϕ and ψ can be described with respect to a basis of V by matrices A resp. B.
Since λ= 0 is a root of det(AB−λE) = 0, det(AB) = 0. This implies that det(BA) = det(B)det(A) = det(A)det(B) =
det(AB) = 0, and therefore λ= 0 is a solution of det(BA−λE) = 0, i.e. λ is an eigenvalue of ψ ◦ϕ.

Extra: Let V be an infinite dimensional euclidean space and U be a proper subspace of V such that there exists an
isomorphism ϕ : V → U . Take ψ := πU .
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Exercise 3 (Self-adjoint and unitary maps)
Let V be a finite-dimensional unitary space and ϕ ∈ Hom(V, V ) be a normal endomorphism. Show the following.

(a) ϕ is self-adjoint if and only if all the eigenvalues of ϕ are real.

(b) ϕ is unitary if and only if all the eigenvalues of ϕ have absolute value 1.

Solution:

a) ⇒ By Proposition 2.4.5.

⇐ Assume conversely that all the eigenvalues are real. Since ϕ is normal, there exists an orthonormal basis of
eigenvectors of ϕ, which are at the same time eigenvectors of ϕ+. With respect to this basis, both ϕ and ϕ+ are
represented by diagonal matrices. These matrices are identical, since the eigenvalues of ϕ+ are the conjugates of
the eigenvalues of ϕ, and these are real.

b) ⇒ If ϕ is unitary and λ is an eigenvalue of ϕ with corresponding eigenvector v, then

‖v‖= ‖ϕ(v)‖= ‖λv‖= |λ|‖v‖,

hence |λ|= 1.

⇐ Assume conversely that |λ| = 1 for every eigenvalue λ of ϕ. Since ϕ and, hence, ϕ+ are normal, by Exercise
(T 10.2), they have a common orthonormal basis of eigenvectors with respect to which they are represented by
diagonal matrices. Let us denote with D the diagonal matrix representing ϕ and with D+ = D the one representing
ϕ+.

Let i ∈ {1, . . . , dim(V )} be arbitrary. The i-th row of D has the form (0, . . . , 0,λ, 0, . . . , 0), with an eigenvalue
λ ∈ C. Correspondingly, the i-th column of D+ is (0, . . . , 0,λ, 0, . . . , 0)t . It follows that the product DD+ is a
diagonal matrix with |λλ| = 1 as the i-th diagonal entry. Since i was arbitrary, we get that DD+ = E, hence ϕ is
unitary.

Exercise 4 (Simultaneous diagonalization)
Let V be a finite dimensional unitary space and ϕ1, . . . ,ϕm normal endomorphisms of V that pairwise commute, that

is ϕi ◦ϕ j = ϕ j ◦ϕi for all i, j ∈ {1, . . . , m}.
Prove that there exists an orthonormal basis B = (b1, . . . ,bn) of V consisting of simultaneous eigenvectors, that is there

are complex numbers λi j for i = 1, . . . , m and j = 1, . . . , n, such that

ϕi(v j) = λi jv j

for all i, j.

(a) Let λ be an eigenvalue of ϕ1 and Vλ(ϕ1) = {v ∈ V | ϕ1(v) = λv} the corresponding eigenspace. Prove that

ϕi(Vλ(ϕ1))⊆ Vλ(ϕ1)

for all i.

(b) Let λ and µ be two different eigenvalues of ϕi . Show that the corresponding eigenspaces are orthogonal.

(c) Prove now the existence of a basis of V with the desired properties.
Hint: Induction on m.

Solution:

a) Let v ∈ Vλ(ϕ1). Since ϕi ◦ϕ1 = ϕ1 ◦ϕi , we get that

ϕ1
�

ϕi(v)
�

= (ϕ1 ◦ϕi)(v) = (ϕi ◦ϕ1)(v) = ϕi
�

ϕ1(v)
�

= ϕi(λv) = λϕi(v),

therefore ϕi(v) ∈ Vλ(ϕ1).

b) Let λ and µ be different eigenvalues of ϕi . Let now v ∈ Vλ(ϕi) and w ∈ Vµ(ϕi) be arbitrary. Since ϕi is normal,
we can apply Exercise (T 9.1) to get that

µ〈v,w〉= 〈v,µw〉= 〈v,ϕi(w)〉= 〈ϕ+i (v),w〉= 〈λv,w〉= λ〈v,w〉.

As λ 6= µ, this is only possible only when 〈v,w〉= 0.
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c) We prove the statement by induction on m. The case m= 1 is clear, by Theorem 2.4.10.

The Induction Step (from m− 1 to m) results from (a) and (b): By (a), the eigenspace Vλ(ϕ1) is an invariant
subspace of ϕi for i = 2, . . . , m. It follows that these endomorphisms can be restricted to Vλ(ϕ1). The restrictions
are normal (with respect to the restriction of the scalar product to Vλ(ϕ1)). By the induction hypothesis, there
exists an orthonormal basis of Vλ(ϕ1) consisting of simultaneous eigenvectors ofϕi , i = 2, . . . , m, which are obvious
eigenvectors of ϕ1 (with eigenvalue λ).

Since, by (b), the eigenspaces of ϕ1 w.r.t other eigenvalues are orthogonal on Vλ(ϕ1), we obtain altogether an
orthonormal basis of V with the desired properties.

Exercise 5 (Isometries and ‘skew-rotations’)
We consider the real plane R2 with the standard scalar product 〈. , .〉. Let ϕ : R2 → R2 be a linear map that is

represented by a rotation matrix

A=
�

cosθ − sinθ
sinθ cosθ

�

with respect to some basis B = {b1,b2}. We assume that θ 6= 0,π.
Show that ϕ is an isometry if and only if B is almost an orthonormal basis in the sense that

〈b1,b2〉= 0 and 〈b1,b1〉= 〈b2,b2〉 .

(So we require the lengths of b1 and b2 only to be equal, not to be 1.)

Solution:
Let G := ¹〈. , .〉ºB be the matrix for 〈. , .〉 with respect to the basis B. We have to prove that ϕ is an isometry if and only if

G =
�

c 0
0 c

�

= cE2

for some c ∈ R.
We start by showing that ϕ is an isometry if and only if the matrices G and A commute, i.e.,

GA= AG .

Note that A being orthogonal, we have At = A−1. Hence, GA= AG implies that

〈ϕ(x),ϕ(y)〉= (A¹xºB)
t G(A¹yºB) = (¹xºB)

tAt GA¹yºB

= (¹xºB)
tAtAG¹yºB = (¹xºB)

t G¹yºB = 〈x,y〉 ,

and ϕ is an isometry. Conversely, if ϕ is an isometry, then we have

(¹xºB)
t G¹yºB = 〈x,y〉= 〈ϕ(x),ϕ(y)〉= (¹xºB)

tAt GA¹yºB .

Since this holds for all vectors x,y, we have

G = At GA= A−1GA ,

which implies AG = GA.
It remains to prove that we have AG = GA if and only if G = cE2. Clearly, if G = cE2 then we have AG = GA. Conversely,

assume that AG = GA. Since the scalar product is symmetric, so is its matrix. Hence,

G =
�

a b
b c

�

,

for suitable a, b, c ∈ R. We obtain
�

cosθ − sinθ
sinθ cosθ

��

a b
b c

�

=
�

a b
b c

��

cosθ − sinθ
sinθ cosθ

�

.

This gives the following equations:

a cosθ − b sinθ = a cosθ + b sinθ ,

b cosθ − c sinθ = −a sinθ + b cosθ ,

a sinθ + b cosθ = b cosθ + c sinθ ,

b sinθ + c cosθ =−b sinθ + c cosθ .

The last equation simplifies to 2b sinθ = 0. Since θ 6= 0,π this implies that b = 0. Hence, the second equation simplifies
to c sinθ = a sinθ . Since sinθ 6= 0 it follows that a = c. As desired, we obtain

G =
�

c 0
0 c

�

.
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