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Exercise 1 (Warm-up: self-adjoint maps)
Let V be a finite-dimensional unitary space and ¢ € Hom(V, V). Show that the following are equivalent:
(a) o is self-adjoint.
b) (v,p(v))eRforallveV.

Hint: Consider (v+ w, ¢(v+w)) and (v+ iw, ¢(v+ iw)) for the implication (b)=>(a).

Solution:
(a)=(b). Assume that ¢ is self-adjoint. Then for allve V,

(Tv,v) = (Tv,v) = (Tv,v)—{(v,Tv)=0,

hence (Tv,v) € R.
(b) = (a). If (v, ¢(v)) € R for all v € V, then for any pair of vectors v,w € V:

(V+w, o(v+w)) — (v, p(v)) = (w, p(w)) = (W, (V) + (v, p(w)) }GR
(v+iw, p(v+iw)) = (v, (V) — (W, o(w)) = i ((W, p(V)) — (v, p(W))) ’

whence im((w, ¢(v))) = —im({v, ¢(w))) and Re({w, ¢ (v))) = Re((v, ¢(w))). It follows that

(v, p(wW)) = (W, p(v)) = {p(V),w) = (v, " (W))
for all v,w € V, hence p = p*.

Exercise 2 (Eigenvalues)

Let V be a finite dimensional vector space and ¢, be endomorphisms of V.
Prove that A is an eigenvalue of ¢ o1 if and only if it is an eigenvalue of 1 o .
Hint: It may help to distinguish cases according to whether A # 0 or A = 0.

Extra: Can you give a counterexample in case V is infinite dimensional?
Solution:
Let A be an eigenvalue of ¢ o). We have two cases:

a) A#0:
There is an eigenvector v # 0 with (¢ o 4)(v) = Av. This yields

(W o)) = ((Yop)oy) ()= (o (po))(V) =1 ((¢ o)) =p(Av) = Ap(v).

Because A # 0 and v # 0 we know that y)(v) # 0 as well (otherwise Av = (p o )(V) = ¢(¢p(v)) = ¢(0) =0, a
contradiction). Thus v(v) is an eigenvector of 1 o ¢ with eigenvalue A.

b) A=0:
As V is finite dimensional, the maps ¢ and 4 can be described with respect to a basis of V by matrices A resp. B.
Since A = 0 is a root of det(AB—AE) = 0, det(AB) = 0. This implies that det(BA) = det(B) det(A) = det(A) det(B) =
det(AB) = 0, and therefore A = 0 is a solution of det(BA— AE) =0, i.e. A is an eigenvalue of ¢ o ¢.
Extra: Let V be an infinite dimensional euclidean space and U be a proper subspace of V such that there exists an
isomorphism ¢ : V — U. Take ¢ := 7.




Exercise 3 (Self-adjoint and unitary maps)
Let V be a finite-dimensional unitary space and ¢ € Hom(V, V) be a normal endomorphism. Show the following.

(a) ¢ is self-adjoint if and only if all the eigenvalues of ¢ are real.

(b) ¢ is unitary if and only if all the eigenvalues of ¢ have absolute value 1.

Solution:

a) = By Proposition 2.4.5.

< Assume conversely that all the eigenvalues are real. Since ¢ is normal, there exists an orthonormal basis of
eigenvectors of ¢, which are at the same time eigenvectors of ¢*. With respect to this basis, both ¢ and ¢ are
represented by diagonal matrices. These matrices are identical, since the eigenvalues of ¢+ are the conjugates of

the eigenvalues of ¢, and these are real.
b) = If ¢ is unitary and A is an eigenvalue of ¢ with corresponding eigenvector v, then
vl = lleWIl = [Av]l = [Allvll,

hence |A| = 1.

< Assume conversely that |A| = 1 for every eigenvalue A of (. Since ¢ and, hence, p* are normal, by Exercise
(T10.2), they have a common orthonormal basis of eigenvectors with respect to which they are represented by
diagonal matrices. Let us denote with D the diagonal matrix representing ¢ and with D™ = D the one representing

et

Let i € {1,...,dim(V)} be arbitrary. The i-th row of D has the form (0,...,0,2,0,...,0), with an eigenvalue
A € C. Correspondingly, the i-th column of D" is (0,...,0,1,0,...,0). It follows that the product DD is a
diagonal matrix with [AA| = 1 as the i-th diagonal entry. Since i was arbitrary, we get that DD' = E, hence ¢ is

unitary.

Exercise 4 (Simultaneous diagonalization)

Let V be a finite dimensional unitary space and ¢, ..., ¢, normal endomorphisms of V that pairwise commute, that

ispiop;=¢p;op foralli,je{l,...,m}.

Prove that there exists an orthonormal basis B = (b4, ...,b, ) of V consisting of simultaneous eigenvectors, that is there

are complex numbers A;; fori =1,...,mand j =1,...,n, such that
<Pi(Vj) = Aijvj

for all i, j.
(a) Let A be an eigenvalue of ¢, and V,(¢,) = {ve V | p;(v) = Av} the corresponding eigenspace. Prove that

©i(Va(p1)) € Valey)

for all i.
(b) Let A and u be two different eigenvalues of ¢;. Show that the corresponding eigenspaces are orthogonal.

(c) Prove now the existence of a basis of V with the desired properties.
Hint: Induction on m.

Solution:
a) Let v € V;(p;). Since g, 0 p; = p; 0 p;, we get that
¢1(0i() = (10 9) (V) = (¥; © 91)(V) = ¢; (91(V)) = 9, (AV) = Ap;(v),

therefore ;(v) € V; (7).

b) Let A and u be different eigenvalues of ;. Let now v € V;(y;) and w € V,(¢;) be arbitrary. Since ¢; is normal,

we can apply Exercise (T 9.1) to get that
(v, w) = (v, uw) = (v, p;(w)) = (o (v), W) = (v, w) = A(v, w).

As A # u, this is only possible only when (v,w) = 0.




¢) We prove the statement by induction on m. The case m =1 is clear, by Theorem 2.4.10.

The Induction Step (from m — 1 to m) results from (a) and (b): By (a), the eigenspace V,(y;) is an invariant
subspace of ¢; fori =2,...,m. It follows that these endomorphisms can be restricted to V,(¢;). The restrictions
are normal (with respect to the restriction of the scalar product to V,(¢;)). By the induction hypothesis, there
exists an orthonormal basis of V, () consisting of simultaneous eigenvectors of ¢;, i = 2,..., m, which are obvious
eigenvectors of ¢, (with eigenvalue A).

Since, by (b), the eigenspaces of ¢; w.r.t other eigenvalues are orthogonal on V;(¢;), we obtain altogether an
orthonormal basis of V with the desired properties.

Exercise 5 (Isometries and ‘skew-rotations’)
We consider the real plane R? with the standard scalar product {.,.). Let ¢ : R> — R? be a linear map that is

represented by a rotation matrix
A= [Cos 8 —sin6
~ \sinf cos6

with respect to some basis B = {b;,b,}. We assume that 8 # 0, .
Show that ¢ is an isometry if and only if B is almost an orthonormal basis in the sense that

(by,by) =0 and (by,b;) = (by,b,).
(So we require the lengths of b; and b, only to be equal, not to be 1.)

Solution:
Let G := [[{.,.)]® be the matrix for (.,.) with respect to the basis B. We have to prove that ¢ is an isometry if and only if

c 0
G= (0 c) =cE,
for some ¢ € R.

We start by showing that ¢ is an isometry if and only if the matrices G and A commute, i.e.,
GA=AG.
Note that A being orthogonal, we have A" = A~. Hence, GA = AG implies that
(p(x), p(y)) = (Allx] ) G(Allyls) = ([x] 5)'A"GAlLyI s
= ([x1p)'A'AG [yl = ([x]p) Gyl = (x,5),
and ¢ is an isometry. Conversely, if ¢ is an isometry, then we have
([x1p)'GIyls = (x,y) = (p(x), ¢(y)) = ([x]5)'A'GALy] 5 -
Since this holds for all vectors x,y, we have
G=A'GA=A"'GA,
which implies AG = GA.

It remains to prove that we have AG = GA if and only if G = cE,. Clearly, if G = cE, then we have AG = GA. Conversely,
assume that AG = GA. Since the scalar product is symmetric, so is its matrix. Hence,

a b
(s )
for suitable a, b, c € R. We obtain

(cos@ —sinG) (a b)_(a b) (cos@ —sin@)
sin® cosfH b ¢) \b c¢J)\sinf cosh |-
This gives the following equations:

acos —bsinf = acosO + bsinb,

bcosO —csinf = —asin6 + bcosH,

asin® +bcos® = bcosH +csinb,

bsinf +ccos® = —bsin6 +ccos b .

The last equation simplifies to 2bsin 8 = 0. Since 0 # 0, 7 this implies that b = 0. Hence, the second equation simplifies
to csinf = asin O. Since sin 6 # 0 it follows that a = c. As desired, we obtain

Gz(g S).




