Linear Algebra II
 Exercise Sheet no. 10

Summer term 2011

Prof. Dr. Otto
 Dr. Le Roux
 Dr. Linshaw

June 15, 2011

Exercise 1 (Warm-up: self-adjoint maps)
Let V be a finite-dimensional unitary space and $\varphi \in \operatorname{Hom}(V, V)$. Show that the following are equivalent:
(a) φ is self-adjoint.
(b) $\langle\mathbf{v}, \varphi(\mathbf{v})\rangle \in \mathbb{R}$ for all $\mathbf{v} \in V$.

Hint: Consider $\langle\mathbf{v}+\mathbf{w}, \varphi(\mathbf{v}+\mathbf{w})\rangle$ and $\langle\mathbf{v}+i \mathbf{w}, \varphi(\mathbf{v}+i \mathbf{w})\rangle$ for the implication (b) \Rightarrow (a).

Solution:

(a) \Rightarrow (b). Assume that φ is self-adjoint. Then for all $\mathbf{v} \in V$,

$$
\langle T \mathbf{v}, \mathbf{v}\rangle-\overline{\langle T \mathbf{v}, \mathbf{v}\rangle}=\langle T \mathbf{v}, \mathbf{v}\rangle-\langle\mathbf{v}, T \mathbf{v}\rangle=0
$$

hence $\langle T \mathbf{v}, \mathbf{v}\rangle \in \mathbb{R}$.
(b) \Rightarrow (a). If $\langle\mathbf{v}, \varphi(\mathbf{v})\rangle \in \mathbb{R}$ for all $\mathbf{v} \in V$, then for any pair of vectors $\mathbf{v}, \mathbf{w} \in V$:
whence $\operatorname{im}(\langle\mathbf{w}, \varphi(\mathbf{v})\rangle)=-\operatorname{im}(\langle\mathbf{v}, \varphi(\mathbf{w})\rangle)$ and $\operatorname{Re}(\langle\mathbf{w}, \varphi(\mathbf{v})\rangle)=\operatorname{Re}(\langle\mathbf{v}, \varphi(\mathbf{w})\rangle)$. It follows that

$$
\langle\mathbf{v}, \varphi(\mathbf{w})\rangle=\overline{\langle\mathbf{w}, \varphi(\mathbf{v})\rangle}=\langle\varphi(\mathbf{v}), \mathbf{w}\rangle=\left\langle\mathbf{v}, \varphi^{+}(\mathbf{w})\right\rangle
$$

for all $\mathbf{v}, \mathbf{w} \in V$, hence $\varphi=\varphi^{+}$.
Exercise 2 (Eigenvalues)
Let V be a finite dimensional vector space and φ, ψ be endomorphisms of V.
Prove that λ is an eigenvalue of $\varphi \circ \psi$ if and only if it is an eigenvalue of $\psi \circ \varphi$.
Hint: It may help to distinguish cases according to whether $\lambda \neq 0$ or $\lambda=0$.
Extra: Can you give a counterexample in case V is infinite dimensional?

Solution:

Let λ be an eigenvalue of $\varphi \circ \psi$. We have two cases:
a) $\lambda \neq 0$:

There is an eigenvector $\mathbf{v} \neq 0$ with $(\varphi \circ \psi)(\mathbf{v})=\lambda \mathbf{v}$. This yields

$$
(\psi \circ \varphi)(\psi(\mathbf{v}))=((\psi \circ \varphi) \circ \psi)(\mathbf{v})=(\psi \circ(\varphi \circ \psi))(\mathbf{v})=\psi((\varphi \circ \psi)(\mathbf{v}))=\psi(\lambda \mathbf{v})=\lambda \psi(\mathbf{v}) .
$$

Because $\lambda \neq 0$ and $\mathbf{v} \neq \mathbf{0}$ we know that $\psi(\mathbf{v}) \neq \mathbf{0}$ as well (otherwise $\lambda \mathbf{v}=(\varphi \circ \psi)(\mathbf{v})=\varphi(\psi(\mathbf{v}))=\varphi(\mathbf{0})=\mathbf{0}$, a contradiction). Thus $\psi(\mathbf{v})$ is an eigenvector of $\psi \circ \varphi$ with eigenvalue λ.
b) $\lambda=0$:

As V is finite dimensional, the maps φ and ψ can be described with respect to a basis of V by matrices A resp. B. Since $\lambda=0$ is a root of $\operatorname{det}(A B-\lambda E)=0, \operatorname{det}(A B)=0$. This implies that $\operatorname{det}(B A)=\operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(A) \operatorname{det}(B)=$ $\operatorname{det}(A B)=0$, and therefore $\lambda=0$ is a solution of $\operatorname{det}(B A-\lambda E)=0$, i.e. λ is an eigenvalue of $\psi \circ \varphi$.
Extra: Let V be an infinite dimensional euclidean space and U be a proper subspace of V such that there exists an isomorphism $\varphi: V \rightarrow U$. Take $\psi:=\pi_{U}$.

Exercise 3 (Self-adjoint and unitary maps)

Let V be a finite-dimensional unitary space and $\varphi \in \operatorname{Hom}(V, V)$ be a normal endomorphism. Show the following.
(a) φ is self-adjoint if and only if all the eigenvalues of φ are real.
(b) φ is unitary if and only if all the eigenvalues of φ have absolute value 1.

Solution:

a) \Rightarrow By Proposition 2.4.5.
\Leftarrow Assume conversely that all the eigenvalues are real. Since φ is normal, there exists an orthonormal basis of eigenvectors of φ, which are at the same time eigenvectors of φ^{+}. With respect to this basis, both φ and φ^{+}are represented by diagonal matrices. These matrices are identical, since the eigenvalues of φ^{+}are the conjugates of the eigenvalues of φ, and these are real.
b) \Rightarrow If φ is unitary and λ is an eigenvalue of φ with corresponding eigenvector \mathbf{v}, then

$$
\|\mathbf{v}\|=\|\varphi(\mathbf{v})\|=\|\lambda \mathbf{v}\|=|\lambda|\|\mathbf{v}\|,
$$

hence $|\lambda|=1$.
\Leftarrow Assume conversely that $|\lambda|=1$ for every eigenvalue λ of φ. Since φ and, hence, φ^{+}are normal, by Exercise (T 10.2), they have a common orthonormal basis of eigenvectors with respect to which they are represented by diagonal matrices. Let us denote with D the diagonal matrix representing φ and with $D^{+}=\bar{D}$ the one representing φ^{+}.
Let $i \in\{1, \ldots, \operatorname{dim}(V)\}$ be arbitrary. The i-th row of D has the form $(0, \ldots, 0, \lambda, 0, \ldots, 0)$, with an eigenvalue $\lambda \in \mathbb{C}$. Correspondingly, the i-th column of D^{+}is $(0, \ldots, 0, \bar{\lambda}, 0, \ldots, 0)^{t}$. It follows that the product $D D^{+}$is a diagonal matrix with $|\lambda \bar{\lambda}|=1$ as the i-th diagonal entry. Since i was arbitrary, we get that $D D^{+}=E$, hence φ is unitary.

Exercise 4 (Simultaneous diagonalization)

Let V be a finite dimensional unitary space and $\varphi_{1}, \ldots, \varphi_{m}$ normal endomorphisms of V that pairwise commute, that is $\varphi_{i} \circ \varphi_{j}=\varphi_{j} \circ \varphi_{i}$ for all $i, j \in\{1, \ldots, m\}$.

Prove that there exists an orthonormal basis $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ of V consisting of simultaneous eigenvectors, that is there are complex numbers $\lambda_{i j}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$, such that

$$
\varphi_{i}\left(\mathbf{v}_{j}\right)=\lambda_{i j} \mathbf{v}_{j}
$$

for all i, j.
(a) Let λ be an eigenvalue of φ_{1} and $V_{\lambda}\left(\varphi_{1}\right)=\left\{\mathbf{v} \in V \mid \varphi_{1}(\mathbf{v})=\lambda \mathbf{v}\right\}$ the corresponding eigenspace. Prove that

$$
\varphi_{i}\left(V_{\lambda}\left(\varphi_{1}\right)\right) \subseteq V_{\lambda}\left(\varphi_{1}\right)
$$

for all i.
(b) Let λ and μ be two different eigenvalues of φ_{i}. Show that the corresponding eigenspaces are orthogonal.
(c) Prove now the existence of a basis of V with the desired properties.

Hint: Induction on m.

Solution:

a) Let $v \in V_{\lambda}\left(\varphi_{1}\right)$. Since $\varphi_{i} \circ \varphi_{1}=\varphi_{1} \circ \varphi_{i}$, we get that

$$
\varphi_{1}\left(\varphi_{i}(\mathbf{v})\right)=\left(\varphi_{1} \circ \varphi_{i}\right)(\mathbf{v})=\left(\varphi_{i} \circ \varphi_{1}\right)(\mathbf{v})=\varphi_{i}\left(\varphi_{1}(\mathbf{v})\right)=\varphi_{i}(\lambda \mathbf{v})=\lambda \varphi_{i}(\mathbf{v})
$$

therefore $\varphi_{i}(\mathbf{v}) \in V_{\lambda}\left(\varphi_{1}\right)$.
b) Let λ and μ be different eigenvalues of φ_{i}. Let now $\mathbf{v} \in V_{\lambda}\left(\varphi_{i}\right)$ and $\mathbf{w} \in V_{\mu}\left(\varphi_{i}\right)$ be arbitrary. Since φ_{i} is normal, we can apply Exercise (T 9.1) to get that

$$
\mu\langle\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{v}, \mu \mathbf{w}\rangle=\left\langle\mathbf{v}, \varphi_{i}(\mathbf{w})\right\rangle=\left\langle\varphi_{i}^{+}(\mathbf{v}), \mathbf{w}\right\rangle=\langle\bar{\lambda} \mathbf{v}, \mathbf{w}\rangle=\lambda\langle\mathbf{v}, \mathbf{w}\rangle .
$$

As $\lambda \neq \mu$, this is only possible only when $\langle\mathbf{v}, \mathbf{w}\rangle=0$.
c) We prove the statement by induction on m. The case $m=1$ is clear, by Theorem 2.4.10.

The Induction Step (from $m-1$ to m) results from (a) and (b): By (a), the eigenspace $V_{\lambda}\left(\varphi_{1}\right)$ is an invariant subspace of φ_{i} for $i=2, \ldots, m$. It follows that these endomorphisms can be restricted to $V_{\lambda}\left(\varphi_{1}\right)$. The restrictions are normal (with respect to the restriction of the scalar product to $V_{\lambda}\left(\varphi_{1}\right)$). By the induction hypothesis, there exists an orthonormal basis of $V_{\lambda}\left(\varphi_{1}\right)$ consisting of simultaneous eigenvectors of $\varphi_{i}, i=2, \ldots, m$, which are obvious eigenvectors of φ_{1} (with eigenvalue λ).
Since, by (b), the eigenspaces of φ_{1} w.r.t other eigenvalues are orthogonal on $V_{\lambda}\left(\varphi_{1}\right)$, we obtain altogether an orthonormal basis of V with the desired properties.

Exercise 5 (Isometries and 'skew-rotations')
We consider the real plane \mathbb{R}^{2} with the standard scalar product $\langle.,$.$\rangle . Let \varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map that is represented by a rotation matrix

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

with respect to some basis $B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. We assume that $\theta \neq 0, \pi$.
Show that φ is an isometry if and only if B is almost an orthonormal basis in the sense that

$$
\left\langle\mathbf{b}_{1}, \mathbf{b}_{2}\right\rangle=0 \quad \text { and } \quad\left\langle\mathbf{b}_{1}, \mathbf{b}_{1}\right\rangle=\left\langle\mathbf{b}_{2}, \mathbf{b}_{2}\right\rangle .
$$

(So we require the lengths of \mathbf{b}_{1} and \mathbf{b}_{2} only to be equal, not to be 1.)

Solution:

Let $G:=\llbracket\langle.,.\rangle \rrbracket^{B}$ be the matrix for $\langle.,$.$\rangle with respect to the basis B$. We have to prove that φ is an isometry if and only if

$$
G=\left(\begin{array}{ll}
c & 0 \\
0 & c
\end{array}\right)=c E_{2}
$$

for some $c \in \mathbb{R}$.
We start by showing that φ is an isometry if and only if the matrices G and A commute, i.e.,

$$
G A=A G .
$$

Note that A being orthogonal, we have $A^{t}=A^{-1}$. Hence, $G A=A G$ implies that

$$
\begin{aligned}
\langle\varphi(\mathbf{x}), \varphi(\mathbf{y})\rangle=\left(A \llbracket \mathbf{x} \rrbracket_{B}\right)^{t} G\left(A \llbracket \mathbf{y} \rrbracket_{B}\right) & =\left(\llbracket \mathbf{x} \rrbracket_{B}\right)^{t} A^{t} G A \llbracket \mathbf{y} \rrbracket_{B} \\
& =\left(\llbracket \mathbf{x} \rrbracket_{B}\right)^{t} A^{t} A G \llbracket \mathbf{y} \rrbracket_{B}=\left(\llbracket \mathbf{x} \rrbracket_{B}\right)^{t} G \llbracket \mathbf{y} \rrbracket_{B}=\langle\mathbf{x}, \mathbf{y}\rangle,
\end{aligned}
$$

and φ is an isometry. Conversely, if φ is an isometry, then we have

$$
\left(\llbracket \mathbf{x} \rrbracket_{B}\right)^{t} G \llbracket \mathbf{y} \rrbracket_{B}=\langle\mathbf{x}, \mathbf{y}\rangle=\langle\varphi(\mathbf{x}), \varphi(\mathbf{y})\rangle=\left(\llbracket \mathbf{x} \rrbracket_{B}\right)^{t} A^{t} G A \llbracket \mathbf{y} \rrbracket_{B} .
$$

Since this holds for all vectors \mathbf{x}, \mathbf{y}, we have

$$
G=A^{t} G A=A^{-1} G A,
$$

which implies $A G=G A$.
It remains to prove that we have $A G=G A$ if and only if $G=c E_{2}$. Clearly, if $G=c E_{2}$ then we have $A G=G A$. Conversely, assume that $A G=G A$. Since the scalar product is symmetric, so is its matrix. Hence,

$$
G=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right),
$$

for suitable $a, b, c \in \mathbb{R}$. We obtain

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

This gives the following equations:

$$
\begin{aligned}
a \cos \theta-b \sin \theta & =a \cos \theta+b \sin \theta, \\
b \cos \theta-c \sin \theta & =-a \sin \theta+b \cos \theta, \\
a \sin \theta+b \cos \theta & =b \cos \theta+c \sin \theta, \\
b \sin \theta+c \cos \theta & =-b \sin \theta+c \cos \theta .
\end{aligned}
$$

The last equation simplifies to $2 b \sin \theta=0$. Since $\theta \neq 0, \pi$ this implies that $b=0$. Hence, the second equation simplifies to $c \sin \theta=a \sin \theta$. Since $\sin \theta \neq 0$ it follows that $a=c$. As desired, we obtain

$$
G=\left(\begin{array}{ll}
c & 0 \\
0 & c
\end{array}\right) .
$$

