Linear Algebra II Exercise Sheet no. 10

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2011 June 15, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Warm-up: self-adjoint maps)

Let *V* be a finite-dimensional unitary space and $\varphi \in \text{Hom}(V, V)$. Show that the following are equivalent:

- (a) φ is self-adjoint.
- (b) $\langle \mathbf{v}, \varphi(\mathbf{v}) \rangle \in \mathbb{R}$ for all $\mathbf{v} \in V$.

Hint: Consider $\langle \mathbf{v} + \mathbf{w}, \varphi(\mathbf{v} + \mathbf{w}) \rangle$ and $\langle \mathbf{v} + i\mathbf{w}, \varphi(\mathbf{v} + i\mathbf{w}) \rangle$ for the implication (b) \Rightarrow (a).

Solution:

(a) \Rightarrow (b). Assume that φ is self-adjoint. Then for all $\mathbf{v} \in V$,

$$\langle T\mathbf{v},\mathbf{v}\rangle - \overline{\langle T\mathbf{v},\mathbf{v}\rangle} = \langle T\mathbf{v},\mathbf{v}\rangle - \langle \mathbf{v},T\mathbf{v}\rangle = 0,$$

hence $\langle T\mathbf{v}, \mathbf{v} \rangle \in \mathbb{R}$.

(b) \Rightarrow (a). If $\langle \mathbf{v}, \varphi(\mathbf{v}) \rangle \in \mathbb{R}$ for all $\mathbf{v} \in V$, then for any pair of vectors $\mathbf{v}, \mathbf{w} \in V$:

$$\begin{array}{l} \langle \mathbf{v} + \mathbf{w}, \varphi(\mathbf{v} + \mathbf{w}) \rangle - \langle \mathbf{v}, \varphi(\mathbf{v}) \rangle - \langle \mathbf{w}, \varphi(\mathbf{w}) \rangle = & \langle \mathbf{w}, \varphi(\mathbf{v}) \rangle + \langle \mathbf{v}, \varphi(\mathbf{w}) \rangle \\ \langle \mathbf{v} + i\mathbf{w}, \varphi(\mathbf{v} + i\mathbf{w}) \rangle - \langle \mathbf{v}, \varphi(\mathbf{v}) \rangle - \langle \mathbf{w}, \varphi(\mathbf{w}) \rangle = i \left(\langle \mathbf{w}, \varphi(\mathbf{v}) \rangle - \langle \mathbf{v}, \varphi(\mathbf{w}) \rangle \right) \end{array} \right\} \in \mathbb{R},$$

whence $\operatorname{im}(\langle \mathbf{w}, \varphi(\mathbf{v}) \rangle) = -\operatorname{im}(\langle \mathbf{v}, \varphi(\mathbf{w}) \rangle)$ and $\operatorname{Re}(\langle \mathbf{w}, \varphi(\mathbf{v}) \rangle) = \operatorname{Re}(\langle \mathbf{v}, \varphi(\mathbf{w}) \rangle)$. It follows that

$$\langle \mathbf{v}, \varphi(\mathbf{w}) \rangle = \overline{\langle \mathbf{w}, \varphi(\mathbf{v}) \rangle} = \langle \varphi(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, \varphi^+(\mathbf{w}) \rangle$$

for all $\mathbf{v}, \mathbf{w} \in V$, hence $\varphi = \varphi^+$.

Exercise 2 (Eigenvalues)

Let *V* be a finite dimensional vector space and φ , ψ be endomorphisms of *V*.

Prove that λ is an eigenvalue of $\varphi \circ \psi$ if and only if it is an eigenvalue of $\psi \circ \varphi$.

Hint: It may help to distinguish cases according to whether $\lambda \neq 0$ or $\lambda = 0$.

Extra: Can you give a counterexample in case *V* is infinite dimensional?

Solution:

Let λ be an eigenvalue of $\varphi \circ \psi$. We have two cases:

a) $\lambda \neq 0$:

There is an eigenvector $\mathbf{v} \neq 0$ with $(\varphi \circ \psi)(\mathbf{v}) = \lambda \mathbf{v}$. This yields

$$(\psi \circ \varphi)(\psi(\mathbf{v})) = ((\psi \circ \varphi) \circ \psi)(\mathbf{v}) = (\psi \circ (\varphi \circ \psi))(\mathbf{v}) = \psi((\varphi \circ \psi)(\mathbf{v})) = \psi(\lambda \mathbf{v}) = \lambda \psi(\mathbf{v}).$$

Because $\lambda \neq 0$ and $\mathbf{v} \neq \mathbf{0}$ we know that $\psi(\mathbf{v}) \neq \mathbf{0}$ as well (otherwise $\lambda \mathbf{v} = (\varphi \circ \psi)(\mathbf{v}) = \varphi(\psi(\mathbf{v})) = \varphi(\mathbf{0}) = \mathbf{0}$, a contradiction). Thus $\psi(\mathbf{v})$ is an eigenvector of $\psi \circ \varphi$ with eigenvalue λ .

b) $\lambda = 0$:

As *V* is finite dimensional, the maps φ and ψ can be described with respect to a basis of *V* by matrices *A* resp. *B*. Since $\lambda = 0$ is a root of det $(AB - \lambda E) = 0$, det(AB) = 0. This implies that det(BA) = det(B)det(A) = det(A)det(B) = det(AB) = 0, and therefore $\lambda = 0$ is a solution of det $(BA - \lambda E) = 0$, i.e. λ is an eigenvalue of $\psi \circ \varphi$.

Extra: Let *V* be an infinite dimensional euclidean space and *U* be a proper subspace of *V* such that there exists an isomorphism $\varphi : V \to U$. Take $\psi := \pi_U$.

Exercise 3 (Self-adjoint and unitary maps)

Let *V* be a finite-dimensional unitary space and $\varphi \in \text{Hom}(V, V)$ be a normal endomorphism. Show the following.

- (a) φ is self-adjoint if and only if all the eigenvalues of φ are real.
- (b) φ is unitary if and only if all the eigenvalues of φ have absolute value 1.

Solution:

a) \Rightarrow By Proposition 2.4.5.

 \Leftarrow Assume conversely that all the eigenvalues are real. Since φ is normal, there exists an orthonormal basis of eigenvectors of φ , which are at the same time eigenvectors of φ^+ . With respect to this basis, both φ and φ^+ are represented by diagonal matrices. These matrices are identical, since the eigenvalues of φ^+ are the conjugates of the eigenvalues of φ , and these are real.

b) \Rightarrow If φ is unitary and λ is an eigenvalue of φ with corresponding eigenvector **v**, then

$$\|\mathbf{v}\| = \|\varphi(\mathbf{v})\| = \|\lambda\mathbf{v}\| = |\lambda|\|\mathbf{v}\|,$$

hence $|\lambda| = 1$.

 \Leftarrow Assume conversely that $|\lambda| = 1$ for every eigenvalue λ of φ . Since φ and, hence, φ^+ are normal, by Exercise (T 10.2), they have a common orthonormal basis of eigenvectors with respect to which they are represented by diagonal matrices. Let us denote with *D* the diagonal matrix representing φ and with $D^+ = \overline{D}$ the one representing φ^+ .

Let $i \in \{1, ..., \dim(V)\}$ be arbitrary. The *i*-th row of *D* has the form $(0, ..., 0, \lambda, 0, ..., 0)$, with an eigenvalue $\lambda \in \mathbb{C}$. Correspondingly, the *i*-th column of D^+ is $(0, ..., 0, \overline{\lambda}, 0, ..., 0)^t$. It follows that the product DD^+ is a diagonal matrix with $|\lambda \overline{\lambda}| = 1$ as the *i*-th diagonal entry. Since *i* was arbitrary, we get that $DD^+ = E$, hence φ is unitary.

Exercise 4 (Simultaneous diagonalization)

Let *V* be a finite dimensional unitary space and $\varphi_1, \ldots, \varphi_m$ normal endomorphisms of *V* that pairwise commute, that is $\varphi_i \circ \varphi_i = \varphi_i \circ \varphi_i$ for all $i, j \in \{1, \ldots, m\}$.

Prove that there exists an orthonormal basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of *V* consisting of *simultaneous eigenvectors*, that is there are complex numbers λ_{ij} for $i = 1, \dots, m$ and $j = 1, \dots, n$, such that

$$\varphi_i(\mathbf{v}_j) = \lambda_{ij} \mathbf{v}_j$$

for all i, j.

(a) Let λ be an eigenvalue of φ_1 and $V_{\lambda}(\varphi_1) = \{ \mathbf{v} \in V \mid \varphi_1(\mathbf{v}) = \lambda \mathbf{v} \}$ the corresponding eigenspace. Prove that

$$\varphi_i(V_\lambda(\varphi_1)) \subseteq V_\lambda(\varphi_1)$$

for all *i*.

- (b) Let λ and μ be two different eigenvalues of φ_i . Show that the corresponding eigenspaces are orthogonal.
- (c) Prove now the existence of a basis of *V* with the desired properties. Hint: *Induction on m*.

Solution:

a) Let $v \in V_{\lambda}(\varphi_1)$. Since $\varphi_i \circ \varphi_1 = \varphi_1 \circ \varphi_i$, we get that

$$\varphi_1(\varphi_i(\mathbf{v})) = (\varphi_1 \circ \varphi_i)(\mathbf{v}) = (\varphi_i \circ \varphi_1)(\mathbf{v}) = \varphi_i(\varphi_1(\mathbf{v})) = \varphi_i(\lambda \mathbf{v}) = \lambda \varphi_i(\mathbf{v}),$$

therefore $\varphi_i(\mathbf{v}) \in V_{\lambda}(\varphi_1)$.

b) Let λ and μ be different eigenvalues of φ_i . Let now $\mathbf{v} \in V_{\lambda}(\varphi_i)$ and $\mathbf{w} \in V_{\mu}(\varphi_i)$ be arbitrary. Since φ_i is normal, we can apply Exercise (T 9.1) to get that

$$\mu \langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, \mu \mathbf{w} \rangle = \langle \mathbf{v}, \varphi_i(\mathbf{w}) \rangle = \langle \varphi_i^+(\mathbf{v}), \mathbf{w} \rangle = \langle \lambda \mathbf{v}, \mathbf{w} \rangle = \lambda \langle \mathbf{v}, \mathbf{w} \rangle.$$

As $\lambda \neq \mu$, this is only possible only when $\langle \mathbf{v}, \mathbf{w} \rangle = 0$.

c) We prove the statement by induction on *m*. The case m = 1 is clear, by Theorem 2.4.10.

The **Induction Step** (from m - 1 to m) results from (a) and (b): By (a), the eigenspace $V_{\lambda}(\varphi_1)$ is an invariant subspace of φ_i for i = 2, ..., m. It follows that these endomorphisms can be restricted to $V_{\lambda}(\varphi_1)$. The restrictions are normal (with respect to the restriction of the scalar product to $V_{\lambda}(\varphi_1)$). By the induction hypothesis, there exists an orthonormal basis of $V_{\lambda}(\varphi_1)$ consisting of simultaneous eigenvectors of φ_i , i = 2, ..., m, which are obvious eigenvectors of φ_1 (with eigenvalue λ).

Since, by (b), the eigenspaces of φ_1 w.r.t other eigenvalues are orthogonal on $V_{\lambda}(\varphi_1)$, we obtain altogether an orthonormal basis of *V* with the desired properties.

Exercise 5 (Isometries and 'skew-rotations')

We consider the real plane \mathbb{R}^2 with the standard scalar product $\langle ., . \rangle$. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map that is represented by a rotation matrix

$$A = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

with respect to some basis $B = {\mathbf{b}_1, \mathbf{b}_2}$. We assume that $\theta \neq 0, \pi$.

Show that φ is an isometry if and only if *B* is almost an orthonormal basis in the sense that

$$\langle \mathbf{b}_1, \mathbf{b}_2 \rangle = 0$$
 and $\langle \mathbf{b}_1, \mathbf{b}_1 \rangle = \langle \mathbf{b}_2, \mathbf{b}_2 \rangle$.

(So we require the lengths of \mathbf{b}_1 and \mathbf{b}_2 only to be equal, not to be 1.)

Solution:

Let $G := \llbracket \langle ., . \rangle \rrbracket^B$ be the matrix for $\langle ., . \rangle$ with respect to the basis *B*. We have to prove that φ is an isometry if and only if

$$G = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix} = cE_2$$

for some $c \in \mathbb{R}$.

We start by showing that φ is an isometry if and only if the matrices *G* and *A* commute, i.e.,

$$GA = AG$$
.

Note that *A* being orthogonal, we have $A^t = A^{-1}$. Hence, GA = AG implies that

$$\langle \varphi(\mathbf{x}), \varphi(\mathbf{y}) \rangle = (A[[\mathbf{x}]]_B)^t G(A[[\mathbf{y}]]_B) = ([[\mathbf{x}]]_B)^t A^t GA[[\mathbf{y}]]_B$$

= $([[\mathbf{x}]]_B)^t A^t A G[[\mathbf{y}]]_B = ([[\mathbf{x}]]_B)^t G[[\mathbf{y}]]_B = \langle \mathbf{x}, \mathbf{y} \rangle,$

and φ is an isometry. Conversely, if φ is an isometry, then we have

$$(\llbracket \mathbf{x} \rrbracket_B)^t G \llbracket \mathbf{y} \rrbracket_B = \langle \mathbf{x}, \mathbf{y} \rangle = \langle \varphi(\mathbf{x}), \varphi(\mathbf{y}) \rangle = (\llbracket \mathbf{x} \rrbracket_B)^t A^t G A \llbracket \mathbf{y} \rrbracket_B.$$

Since this holds for all vectors **x**, **y**, we have

$$G = A^t G A = A^{-1} G A$$

which implies AG = GA.

It remains to prove that we have AG = GA if and only if $G = cE_2$. Clearly, if $G = cE_2$ then we have AG = GA. Conversely, assume that AG = GA. Since the scalar product is symmetric, so is its matrix. Hence,

$$G = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

for suitable $a, b, c \in \mathbb{R}$. We obtain

$$\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array} \begin{pmatrix} a & b\\ b & c \end{array} = \begin{pmatrix} a & b\\ b & c \end{array} \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array} \right).$$

This gives the following equations:

 $a\cos\theta - b\sin\theta = a\cos\theta + b\sin\theta,$ $b\cos\theta - c\sin\theta = -a\sin\theta + b\cos\theta,$ $a\sin\theta + b\cos\theta = b\cos\theta + c\sin\theta,$ $b\sin\theta + c\cos\theta = -b\sin\theta + c\cos\theta.$

The last equation simplifies to $2b \sin \theta = 0$. Since $\theta \neq 0, \pi$ this implies that b = 0. Hence, the second equation simplifies to $c \sin \theta = a \sin \theta$. Since $\sin \theta \neq 0$ it follows that a = c. As desired, we obtain

$$G = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix} \, .$$