Linear Algebra II Exercise Sheet no. 9

Summer term 2011 June 6, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Warm-up: Isomorphisms of unitary (euclidean) spaces)

- (a) Let *V* and *W* be euclidean (unitary) spaces of dimension *n* and $\varphi \in \text{Hom}(V, W)$. Show that the following are equivalent:
 - i. φ is an isomorphism of euclidean (unitary) spaces.
 - ii. $\llbracket \varphi \rrbracket_{B'}^B \in O(n)$ for some choice of orthonormal bases *B* of *V* and *B'* of *W*.
 - iii. $\llbracket \varphi \rrbracket_{B'}^B \in O(n)$ for every orthonormal bases *B* of *V* and *B'* of *W*.
- (b) Conclude that φ ∈ Hom(V, V) is an orthogonal (unitary) endomorphism of the *n*-dimensional euclidean (unitary) space V iff [[φ]]^B_{B'} ∈ O(n) for some (every) combination of orthonormal bases B and B' of V.
 (NB: in one direction this extends Prop. 2.3.15 in the notes.)

Solution:

a) We consider the unitary case; the euclidean case follows similarly.

Let $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be an orthonormal basis of $V, B' = (\mathbf{c}_1, \dots, \mathbf{c}_n)$ be an orthonormal basis of W and $A := \llbracket \varphi \rrbracket_{B'}^B = (a_{ij})$. Then for all $i, j = 1, \dots, n$,

$$\begin{aligned} \langle \varphi(\mathbf{v}_i), \varphi(\mathbf{v}_j) \rangle &= \left\langle \sum_k a_{ki} \mathbf{c}_k, \sum_l a_{lj} \mathbf{c}_l \right\rangle = \sum_{k,l} \overline{a_{ki}} a_{lj} \langle \mathbf{c}_k, \mathbf{c}_l \rangle \\ &= \sum_{k,l} \overline{a_{ki}} a_{lj} \delta_{kl} = \sum_k \overline{a_{ki}} a_{kj} = \sum_k a_{ik}^+ a_{kj} \end{aligned}$$

is the entry in position i, j of A^+A .

By Lemma 2.3.9, we get that:

 φ is an isomorphism of unitary spaces

for some (any) orthonormal basis $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ of V, $\varphi(B) = (\varphi(\mathbf{v}_1), \dots, \varphi(\mathbf{v}_n))$ is an orthonormal basis of Wfor some (any) orthonormal basis $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ of V, $\langle \varphi(\mathbf{v}_i), \varphi(\mathbf{v}_j) \rangle = \delta_{ij}$ for all $i, j = 1, \dots, n$ for some (any) orthonormal bases $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ of V and $B' = (\mathbf{c}_1, \dots, \mathbf{c}_n)$ of W, $\sum_k a_{ik}^+ a_{kj} = \delta_{ij}$ for all $i, j = 1, \dots, n$ where $A = \llbracket \varphi \rrbracket_{B'}^B$ for some (any) orthonormal bases $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ of V and $B' = (\mathbf{c}_1, \dots, \mathbf{c}_n)$ of W, $A^+A = E_n$, where $A = \llbracket \varphi \rrbracket_{B'}^B$

for some (any) orthonormal bases $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ of V and $B' = (\mathbf{c}_1, \dots, \mathbf{c}_n)$ of $W, A = \llbracket \varphi \rrbracket_{B'}^B \in O(n)$.

b) Apply (a) with W := V.

Exercise 2 (Composition of two orthogonal projections)

(*Exercise 2.3.4 on page 68 of the notes.*) Let U and W be two subspaces of a finite dimensional euclidean or unitary vector space V, with orthogonal projections π_U and π_W onto U and W, respectively.

Prove that the following statements are equivalent:

- (a) π_U and π_W commute.
- (b) $\pi_W \circ \pi_U = \pi_{U \cap W}$.
- (c) $\pi_W \circ \pi_U$ is an orthogonal projection.
- (d) $U = (U \cap W) \oplus (U \cap W^{\perp}).$
- (e) $W = (U \cap W) \oplus (U^{\perp} \cap W).$

Solution:

Firstly, let us remark that, using Exercise E 8.1.(e), we get that

$$\ker(\pi_W \circ \pi_U) = (\pi_W \circ \pi_U)^{-1}(\mathbf{0}) = \pi_U^{-1}(\pi_W^{-1}(\mathbf{0})) = \pi_U^{-1}(W^{\perp}) = (U \cap W^{\perp}) \oplus U^{\perp}.$$

(a) \Rightarrow (c). Since π_U and π_W commute, we have that

$$(\pi_W \circ \pi_U) \circ (\pi_W \circ \pi_U) = (\pi_W \circ \pi_W) \circ (\pi_U \circ \pi_U) = \pi_W \circ \pi_U.$$

By Exercise E 8.4.(b), it is now sufficient to show that $\ker(\pi_W \circ \pi_U) \perp \operatorname{image}(\pi_W \circ \pi_U)$.

Since $\operatorname{image}(\pi_W \circ \pi_U) \subseteq \operatorname{image}(\pi_W) \subseteq W$ and $\operatorname{image}(\pi_W \circ \pi_U) = \operatorname{image}(\pi_U \circ \pi_W) \subseteq \operatorname{image}(\pi_U) \subseteq U$, we get that

$$\operatorname{image}(\pi_W \circ \pi_U) \subseteq U \cap W$$

Furthermore,

$$\ker(\pi_W \circ \pi_U) = (U \cap W^{\perp}) \oplus U^{\perp} \subseteq W^{\perp} + U^{\perp} = U^{\perp} + W^{\perp}$$

On the other hand, $U^{\perp} + W^{\perp} \perp U \cap W$, since, by Exercise E 8.2.(d), $U^{\perp} + W^{\perp} = (U \cap W)^{\perp}$. It follows that ker $(\pi_W \circ \pi_U) \perp$ image($\pi_W \circ \pi_U$).

(c) \Rightarrow (b). Assume that $\pi_W \circ \pi_U$ is an orthogonal projection. Then it is an orthogonal projection onto image($\pi_W \circ \pi_U$). We need to prove that

$$\operatorname{image}(\pi_W \circ \pi_U) = U \cap W.$$

Since $\pi_W \circ \pi_U$ is the identity on $U \cap W$, it follows that $U \cap W \subseteq \text{image}(\pi_W \circ \pi_U)$. Furthermore, $\text{image}(\pi_W \circ \pi_U) \subseteq W$. Thus, it remains to show that image $(\pi_W \circ \pi_U) \subseteq U$. Using the fact that $U^{\perp} \subseteq (U \cap W^{\perp}) \oplus U^{\perp} = \ker(\pi_W \circ \pi_U)$, we get that

> $\operatorname{image}(\pi_W \circ \pi_U) = (\operatorname{image}(\pi_W \circ \pi_U)^{\perp})^{\perp} \quad \text{by Exercise E 8.2.(c)} \\ = \ker(\pi_W \circ \pi_U)^{\perp} \qquad \text{by Exercise E 8.1} \\ \subseteq (U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(a)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \qquad \text{by Exercise E 8.2.(c)} \\ U = \operatorname{End}(U^{\perp})^{\perp} \qquad \text{by Exercise E 8.2.(c)} \qquad \text{by Exercise$ by Exercise E 8.2.(a), as $U^{\perp} \subseteq \ker(\pi_W \circ \pi_U)$ by Exercise E 8.2.(c).

(b) \Rightarrow (d). Let us remark that the sum $(U \cap W) + (U \cap W^{\perp})$ is direct, as $W \cap W^{\perp} = \{0\}$. "⊇" is obvious.

" \supseteq " Let $\mathbf{u} \in U$. Then $\pi_U(\mathbf{u}) = \mathbf{u}$, hence

$$\pi_W(\mathbf{u}) = (\pi_W \circ \pi_U)(\mathbf{u}) \in U \cap W.$$

Furthermore, $\mathbf{u} - \pi_W(\mathbf{u}) \in U \cap W^{\perp}$, since $\mathbf{u}, \pi_W(\mathbf{u}) \in U$ and $\mathbf{u} - \pi_W(\mathbf{u}) \perp W$ by Exercise E.8.4.(d). It follows that

$$\mathbf{u} = \pi_W(\mathbf{u}) + (\mathbf{u} - \pi_W(\mathbf{u})) \in (U \cap W) \oplus (U \cap W^{\perp}).$$

(d) \Rightarrow (e). Assume that $U = (U \cap W) \oplus (U \cap W^{\perp})$. Then

$$V = U \oplus U^{\perp} = (U \cap W) \oplus (U \cap W^{\perp}) \oplus U^{\perp}.$$

It follows that every $\mathbf{w} \in W$ can be written uniquely as $\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_2 + \mathbf{w}_3$ with $\mathbf{w}_1 \in U \cap W$, $\mathbf{w}_2 \in U \cap W^{\perp}$ and $\mathbf{w}_3 \in U^{\perp}$. As $\mathbf{w}_2 \in W^{\perp}$, we get that

$$0 = \langle \mathbf{w}_2, \mathbf{w} \rangle = \langle \mathbf{w}_2, \mathbf{w}_1 \rangle + \langle \mathbf{w}_2, \mathbf{w}_2 \rangle + \langle \mathbf{w}_2, \mathbf{w}_3 \rangle = 0 + \langle \mathbf{w}_2, \mathbf{w}_2 \rangle + 0 = \langle \mathbf{w}_2, \mathbf{w}_2 \rangle,$$

hence $\mathbf{w}_2 = \mathbf{0}$. Since $\mathbf{w}, \mathbf{w}_1 \in W$, we have that $\mathbf{w}_3 = \mathbf{w} - \mathbf{w}_1 \in W$ too. Therefore,

$$\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_3 \in (U \cap W) \oplus (U^{\perp} \cap W).$$

(e) \Rightarrow (d) follows by symmetry.

(d) \Rightarrow (c). Again, when $U = (U \cap W) \oplus (U \cap W^{\perp})$, then

$$V = (U \cap W) \oplus (U \cap W^{\perp}) \oplus U^{\perp}.$$

We shall prove that $\pi_W \circ \pi_U$ is an orthogonal projection using Exercise E 8.4.(c). Let $\mathbf{v} \in V$ be arbitrary. Then \mathbf{v} can be written uniquely as $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3$ with $\mathbf{v}_1 \in U \cap W$, $\mathbf{v}_2 \in U \cap W^{\perp}$ and $\mathbf{v}_3 \in U^{\perp}$. It follows that

$$(\pi_W \circ \pi_U)(\mathbf{v}) = \pi_W (\pi_U(\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3)) = \pi_W(\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{v}_1, (\pi_W \circ \pi_U)(\mathbf{v}_1) = \pi_W (\pi_U(\mathbf{v}_1)) = \pi_W(\mathbf{v}_1) = \mathbf{v}_1,$$

hence

$$((\pi_W \circ \pi_U) \circ (\pi_W \circ \pi_U))(\mathbf{v}) = (\pi_W \circ \pi_U)((\pi_W \circ \pi_U)(\mathbf{v})) = (\pi_W \circ \pi_U)(\mathbf{v}_1)$$

= $\mathbf{v}_1 = (\pi_W \circ \pi_U)(\mathbf{v}).$

On the other hand,

$$\langle \mathbf{v} - (\pi_W \circ \pi_U)(\mathbf{v}), (\pi_W \circ \pi_U)(\mathbf{v}) \rangle = \langle \mathbf{v} - \mathbf{v}_1, \mathbf{v}_1 \rangle = \langle \mathbf{v}_2, \mathbf{v}_1 \rangle + \langle \mathbf{v}_3, \mathbf{v}_1 \rangle = 0 + 0 = 0,$$

Hence, $\pi_W \circ \pi_U$ is an orthogonal projection by Exercise E 8.4.(c).

(d) \Rightarrow (a). Since (d) \Rightarrow (c) \Rightarrow (b), it follows that (d) implies that $\pi_W \circ \pi_U = \pi_{U \cap W}$. But then (e) implies $\pi_U \circ \pi_W = \pi_{U \cap W}$, by symmetry. Since (d) is equivalent with (e), we get that (d) implies that $\pi_W \circ \pi_U = \pi_{U \cap W} = \pi_U \circ \pi_W$, and, in particular, that π_U and π_W commute.

Exercise 3 (Endomorphisms that preserve orthogonality)

Let *V* be a finite dimensional euclidean space. Determine all endomorphisms φ of *V* that preserve orthogonality, that is for which:

$$\mathbf{v} \perp \mathbf{w} \Rightarrow \varphi(\mathbf{v}) \perp \varphi(\mathbf{w}) \quad \text{for all } \mathbf{v}, \mathbf{w} \in V.$$

Solution:

Let $\varphi : V \to V$ be an endomorphism that preserves orthogonality. Let $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be an orthonormal basis of V and $\mathbf{c}_j = \varphi(\mathbf{v}_j)$ for all $j \in \{1, \dots, n\}$. Assume $j, k \in \{1, \dots, n\}$ with $j \neq k$. Then $\mathbf{c}_j \perp \mathbf{c}_k$ and, since $\mathbf{v}_j + \mathbf{v}_k \perp \mathbf{v}_j - \mathbf{v}_k$, we have also that $\mathbf{c}_j + \mathbf{c}_k \perp \mathbf{c}_j - \mathbf{c}_k$ and, therefore,

$$0 = \langle \mathbf{c}_i + \mathbf{c}_k, \mathbf{c}_i - \mathbf{c}_k \rangle = \langle \mathbf{c}_i, \mathbf{c}_i \rangle - \langle \mathbf{c}_k, \mathbf{c}_k \rangle,$$

thus $\|\mathbf{c}_j\| = \|\mathbf{c}_k\|$. Hence all vectors \mathbf{c}_j have the same length $s \ge 0$. If s = 0, then $\varphi = 0$. Otherwise, vectors $\frac{1}{s}\mathbf{c}_1, \dots, \frac{1}{s}\mathbf{c}_n$ form an orthonormal basis of *V*, since $n = \dim(V)$. Lemma 2.3.9 shows that $\frac{1}{s}\varphi$ is an orthogonal map.

Thus, every endomorphism that preserves orthogonality is a scalar multiple of an orthogonal map. Conversely, it is obvious that any scalar multiple of an orthogonal map preserves orthogonality.

Exercise 4 (Jordan normal form and real matrices)

Let $A \in \mathbb{R}^{(n,n)}$ where n = 2m is even. Assume that the characteristic polynomial of A is $p_A = p_0^m$, where $p_0 \in \mathbb{R}[X]$ is an irreducible polynomial of degree 2 in $\mathbb{R}[X]$ (e.g., $p_0 = X^2 + 1$). Hence p_0 splits into linear factors $(\lambda - X)(\overline{\lambda} - X)$ in $\mathbb{C}[X]$, with $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

- (a) Show that if v is a generalised eigenvector for λ with height k, then v is a generalised eigenvector for λ with height k, and [[v]] ∩ [[v]] = 0. (*Hint.* Use Lemma 1.5.6.)
- (b) Show that *A* is similar to a real matrix $K \in \mathbb{R}^{(n,n)}$ composed of just three kinds of (2×2) -blocks: $\mathbf{0} \in \mathbb{R}^{(2,2)}$, $E_2 \in \mathbb{R}^{(2,2)}$ and some $A_0 = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathbb{R}^{(2,2)}$ with $b \neq 0$, where A_0 occurs along the diagonal, E_n and $\mathbf{0}$ immediately above the diagonal and just $\mathbf{0}$ everywhere else (a "block Jordan normal form").

Hint. Put *A* into Jordan normal form over \mathbb{C} w.r.t. basis consisting of complex conjugate vector pairs; then combine such pairs to find a real basis.

(c) Give examples of $A_k \in \mathbb{R}^{(6,6)}$ with characteristic polynomial $(X^2 + 1)^3$ and minimal polynomials $q_{A_k} = (X^2 + 1)^k$ for k = 1, 2, 3.

Solution:

a) The first statement follows from the equivalence

$$(A - \lambda E)^k \mathbf{v} = \mathbf{0} \iff (A - \overline{\lambda} E)^k \overline{\mathbf{v}} = \mathbf{0}$$

To prove that $\llbracket \mathbf{v} \rrbracket \cap \llbracket \overline{\mathbf{v}} \rrbracket = 0$, observe that if $\mathbf{w} \in \llbracket \mathbf{v} \rrbracket \cap \llbracket \overline{\mathbf{v}} \rrbracket$, then $\mathbf{w} \in \ker(\varphi - \lambda \mathrm{id})^k$ and $\mathbf{w} \in \ker(\varphi - \overline{\lambda} \mathrm{id})^k$. As the polynomials $(X - \lambda)^k$ and $(X - \overline{\lambda})^k$ are relatively prime, this can only happen for $\mathbf{w} = \mathbf{0}$, by Lemma 1.5.6.

b) By (a), we may assume that if v generates a Jordan block for eigenvalue λ , then \overline{v} generates a Jordan block of the same size for eigenvalue $\overline{\lambda}$. So, in fact, when

$$\begin{pmatrix} \lambda & 1 & 0 \\ \lambda & \ddots & \\ & \ddots & 1 \\ 0 & & \lambda \end{pmatrix}$$

is a certain Jordan block of the matrix associated to vectors $(\mathbf{b}_1, \dots, \mathbf{b}_n)$, then also the Jordan block

$$\begin{pmatrix} \overline{\lambda} & 1 & & 0 \\ & \overline{\lambda} & \ddots & \\ & & \ddots & 1 \\ 0 & & & \overline{\lambda} \end{pmatrix}$$

appears, and we may assume it is associated to the vectors $(\overline{\mathbf{b}}_1, \dots, \overline{\mathbf{b}}_n)$ (proof: if the last vector for this basis is $\overline{\mathbf{b}}_n$, then the (n-1)th vector is $(A - \overline{\lambda})\overline{\mathbf{b}}_n = \overline{(A - \lambda)\mathbf{b}_n} = \overline{\mathbf{b}}_{n-1}$, and so on.).

We may rearrange these vectors as

$$(\mathbf{b}_1 + \overline{\mathbf{b}}_1, i(\mathbf{b}_1 - \overline{\mathbf{b}}_1), \dots, \mathbf{b}_n + \overline{\mathbf{b}}_n, i(\mathbf{b}_n - \overline{\mathbf{b}}_n)).$$

With respect to this basis of real vectors, the matrix looks as follows:

ſ	а	-b	1	0				0)
	b	а	0	1					
			а	-b	·	·			
			b	а	·	·			
					·	·	1	0	
					·	·	0	1	
							а	-b	
ſ	0						b	а	J

where $\lambda = a + ib$. From this the statement in the exercise follows.

c) We have, for example:

$$A_{1} = \begin{pmatrix} 0 & -1 & | & 0 & | \\ 1 & 0 & | & | \\ \hline & 0 & -1 & | \\ 1 & 0 & | \\ \hline & 1 & 0 & | \\ \hline & 0 & -1 & | \\ \hline & 0 & -1 & | \\ \hline & 0 & | \\ \hline & 0 & -1 & | \\ \hline & 0 & 0 & -1 \\ \hline & 0 & 0 & 1 \\ \hline & 0 & -1 & 1 & 0 \\ \hline & 0 & -1 & 1 & 0 \\ \hline & 0 & -1 & 1 & 0 \\ \hline & 0 & -1 & 1 & 0 \\ \hline & 1 & 0 & 0 & 1 \\ \hline & 0 & 0 & -1 \\ \hline$$