Linear Algebra II
 Exercise Sheet no. 9

TECHNISCHE UNIVERSITAT DARMSTADT

Summer term 2011

Prof. Dr. Otto
 Dr. Le Roux
 Dr. Linshaw

June 6, 2011

Exercise 1 (Warm-up: Isomorphisms of unitary (euclidean) spaces)
(a) Let V and W be euclidean (unitary) spaces of dimension n and $\varphi \in \operatorname{Hom}(V, W)$. Show that the following are equivalent:
i. φ is an isomorphism of euclidean (unitary) spaces.
ii. $\llbracket \varphi \rrbracket_{B^{\prime}}^{B} \in O(n)$ for some choice of orthonormal bases B of V and B^{\prime} of W.
iii. $\llbracket \varphi \rrbracket_{B^{\prime}}^{B} \in O(n)$ for every orthonormal bases B of V and B^{\prime} of W.
(b) Conclude that $\varphi \in \operatorname{Hom}(V, V)$ is an orthogonal (unitary) endomorphism of the n-dimensional euclidean (unitary) space V iff $\llbracket \varphi \rrbracket_{B^{\prime}}^{B} \in O(n)$ for some (every) combination of orthonormal bases B and B^{\prime} of V.
(NB: in one direction this extends Prop. 2.3.15 in the notes.)

Solution:

a) We consider the unitary case; the euclidean case follows similarly.

Let $B=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ be an orthonormal basis of $V, B^{\prime}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right)$ be an orthonormal basis of W and $A:=\llbracket \varphi \rrbracket_{B^{\prime}}^{B}=$ ($a_{i j}$). Then for all $i, j=1, \ldots, n$,

$$
\begin{aligned}
\left\langle\varphi\left(\mathbf{v}_{i}\right), \varphi\left(\mathbf{v}_{j}\right)\right\rangle & =\left\langle\sum_{k} a_{k i} \mathbf{c}_{k}, \sum_{l} a_{l j} \mathbf{c}_{l}\right\rangle=\sum_{k, l} \overline{a_{k i}} a_{l j}\left\langle\mathbf{c}_{k}, \mathbf{c}_{l}\right\rangle \\
& =\sum_{k, l} \overline{a_{k i}} a_{l j} \delta_{k l}=\sum_{k} \overline{a_{k i}} a_{k j}=\sum_{k} a_{i k}^{+} a_{k j}
\end{aligned}
$$

is the entry in position i, j of $A^{+} A$.
By Lemma 2.3.9, we get that:
φ is an isomorphism of unitary spaces
for some (any) orthonormal basis $B=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ of $V \underset{\widehat{\Downarrow}}{\boldsymbol{\Downarrow}}(B)=\left(\varphi\left(\mathbf{v}_{1}\right), \ldots, \varphi\left(\mathbf{v}_{n}\right)\right)$ is an orthonormal basis of W for some (any) orthonormal basis $B=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ of $\left.V \underset{\mathbb{\Downarrow}}{\langle\varphi}\left(\mathbf{v}_{i}\right), \varphi\left(\mathbf{v}_{j}\right)\right\rangle=\delta_{i j}$ for all $i, j=1, \ldots, n$
for some (any) orthonormal bases $B=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ of V and $B^{\prime}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right)$ of $W, \sum_{k} a_{i k}^{+} a_{k j}=\delta_{i j}$ for all $i, j=$ $1, \ldots, n$, where $A=\llbracket \varphi \rrbracket_{B^{\prime}}^{B}$

亿
for some (any) orthonormal bases $B=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ of V and $B^{\prime}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right)$ of $W, A^{+} A=E_{n}, \quad$ where $A=\llbracket \varphi \rrbracket_{B^{\prime}}^{B}$ for some (any) orthonormal bases $B=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ of V and $B^{\prime}=\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{n}\right)$ of $W, A=\llbracket \varphi \rrbracket_{B^{\prime}}^{B} \in O(n)$.
b) Apply (a) with $W:=V$.

Exercise 2 (Composition of two orthogonal projections)

(Exercise 2.3.4 on page 68 of the notes.) Let U and W be two subspaces of a finite dimensional euclidean or unitary vector space V, with orthogonal projections π_{U} and π_{W} onto U and W, respectively.

Prove that the following statements are equivalent:
(a) π_{U} and π_{W} commute.
(b) $\pi_{W} \circ \pi_{U}=\pi_{U \cap W}$.
(c) $\pi_{W} \circ \pi_{U}$ is an orthogonal projection.
(d) $U=(U \cap W) \oplus\left(U \cap W^{\perp}\right)$.
(e) $W=(U \cap W) \oplus\left(U^{\perp} \cap W\right)$.

Solution:

Firstly, let us remark that, using Exercise E 8.1.(e), we get that

$$
\operatorname{ker}\left(\pi_{W} \circ \pi_{U}\right)=\left(\pi_{W} \circ \pi_{U}\right)^{-1}(\mathbf{0})=\pi_{U}^{-1}\left(\pi_{W}^{-1}(\mathbf{0})\right)=\pi_{U}^{-1}\left(W^{\perp}\right)=\left(U \cap W^{\perp}\right) \oplus U^{\perp}
$$

(a) \Rightarrow (c). Since π_{U} and π_{W} commute, we have that

$$
\left(\pi_{W} \circ \pi_{U}\right) \circ\left(\pi_{W} \circ \pi_{U}\right)=\left(\pi_{W} \circ \pi_{W}\right) \circ\left(\pi_{U} \circ \pi_{U}\right)=\pi_{W} \circ \pi_{U}
$$

By Exercise E 8.4.(b), it is now sufficient to show that $\operatorname{ker}\left(\pi_{W} \circ \pi_{U}\right) \perp$ image $\left(\pi_{W} \circ \pi_{U}\right)$.
Since image $\left(\pi_{W} \circ \pi_{U}\right) \subseteq \operatorname{image}\left(\pi_{W}\right) \subseteq W$ and image $\left(\pi_{W} \circ \pi_{U}\right)=\operatorname{image}\left(\pi_{U} \circ \pi_{W}\right) \subseteq \operatorname{image}\left(\pi_{U}\right) \subseteq U$, we get that

$$
\operatorname{image}\left(\pi_{W} \circ \pi_{U}\right) \subseteq U \cap W
$$

Furthermore,

$$
\operatorname{ker}\left(\pi_{W} \circ \pi_{U}\right)=\left(U \cap W^{\perp}\right) \oplus U^{\perp} \subseteq W^{\perp}+U^{\perp}=U^{\perp}+W^{\perp}
$$

On the other hand, $U^{\perp}+W^{\perp} \perp U \cap W$, since, by Exercise E8.2.(d), $U^{\perp}+W^{\perp}=(U \cap W)^{\perp}$. It follows that $\operatorname{ker}\left(\pi_{W} \circ \pi_{U}\right) \perp$ image $\left(\pi_{W} \circ \pi_{U}\right)$.
(c) \Rightarrow (b). Assume that $\pi_{W} \circ \pi_{U}$ is an orthogonal projection. Then it is an orthogonal projection onto image $\left(\pi_{W} \circ \pi_{U}\right)$. We need to prove that

$$
\operatorname{image}\left(\pi_{W} \circ \pi_{U}\right)=U \cap W
$$

Since $\pi_{W} \circ \pi_{U}$ is the identity on $U \cap W$, it follows that $U \cap W \subseteq$ image $\left(\pi_{W} \circ \pi_{U}\right)$. Furthermore, image $\left(\pi_{W} \circ \pi_{U}\right) \subseteq W$. Thus, it remains to show that image $\left(\pi_{W} \circ \pi_{U}\right) \subseteq U$. Using the fact that $U^{\perp} \subseteq\left(U \cap W^{\perp}\right) \oplus U^{\perp}=\operatorname{ker}\left(\pi_{W} \circ \pi_{U}\right)$, we get that

$$
\begin{aligned}
\operatorname{image}\left(\pi_{W} \circ \pi_{U}\right) & =\left(\operatorname{image}\left(\pi_{W} \circ \pi_{U}\right)^{\perp}\right)^{\perp} & & \text { by Exercise E 8.2.(c) } \\
& =\operatorname{ker}\left(\pi_{W} \circ \pi_{U}\right)^{\perp} & & \text { by Exercise E 8.1 } \\
& \subseteq\left(U^{\perp}\right)^{\perp} & & \text { by Exercise E 8.2.(a), as } U^{\perp} \subseteq \operatorname{ker}\left(\pi_{W} \circ \pi_{U}\right) \\
& =U & & \text { by Exercise E 8.2.(c). }
\end{aligned}
$$

(b) \Rightarrow (d). Let us remark that the sum $(U \cap W)+\left(U \cap W^{\perp}\right)$ is direct, as $W \cap W^{\perp}=\{\mathbf{0}\}$.
" 2 " is obvious.
" \supseteq " Let $\mathbf{u} \in U$. Then $\pi_{U}(\mathbf{u})=\mathbf{u}$, hence

$$
\pi_{W}(\mathbf{u})=\left(\pi_{W} \circ \pi_{U}\right)(\mathbf{u}) \in U \cap W
$$

Furthermore, $\mathbf{u}-\pi_{W}(\mathbf{u}) \in U \cap W^{\perp}$, since $\mathbf{u}, \pi_{W}(\mathbf{u}) \in U$ and $\mathbf{u}-\pi_{W}(\mathbf{u}) \perp W$ by Exercise E 8.4.(d). It follows that

$$
\mathbf{u}=\pi_{W}(\mathbf{u})+\left(\mathbf{u}-\pi_{W}(\mathbf{u})\right) \in(U \cap W) \oplus\left(U \cap W^{\perp}\right)
$$

(d) \Rightarrow (e). Assume that $U=(U \cap W) \oplus\left(U \cap W^{\perp}\right)$. Then

$$
V=U \oplus U^{\perp}=(U \cap W) \oplus\left(U \cap W^{\perp}\right) \oplus U^{\perp}
$$

It follows that every $\mathbf{w} \in W$ can be written uniquely as $\mathbf{w}=\mathbf{w}_{1}+\mathbf{w}_{2}+\mathbf{w}_{3}$ with $\mathbf{w}_{1} \in U \cap W, \mathbf{w}_{2} \in U \cap W^{\perp}$ and $\mathbf{w}_{3} \in U^{\perp}$. As $\mathbf{w}_{2} \in W^{\perp}$, we get that

$$
0=\left\langle\mathbf{w}_{2}, \mathbf{w}\right\rangle=\left\langle\mathbf{w}_{2}, \mathbf{w}_{1}\right\rangle+\left\langle\mathbf{w}_{2}, \mathbf{w}_{2}\right\rangle+\left\langle\mathbf{w}_{2}, \mathbf{w}_{3}\right\rangle=0+\left\langle\mathbf{w}_{2}, \mathbf{w}_{2}\right\rangle+0=\left\langle\mathbf{w}_{2}, \mathbf{w}_{2}\right\rangle,
$$

hence $\mathbf{w}_{2}=\mathbf{0}$. Since $\mathbf{w}, \mathbf{w}_{1} \in W$, we have that $\mathbf{w}_{3}=\mathbf{w}-\mathbf{w}_{1} \in W$ too. Therefore,

$$
\mathbf{w}=\mathbf{w}_{1}+\mathbf{w}_{3} \in(U \cap W) \oplus\left(U^{\perp} \cap W\right) .
$$

(e) \Rightarrow (d) follows by symmetry.
(d) \Rightarrow (c). Again, when $U=(U \cap W) \oplus\left(U \cap W^{\perp}\right)$, then

$$
V=(U \cap W) \oplus\left(U \cap W^{\perp}\right) \oplus U^{\perp} .
$$

We shall prove that $\pi_{W} \circ \pi_{U}$ is an orthogonal projection using Exercise E8.4.(c). Let $\mathbf{v} \in V$ be arbitrary. Then \mathbf{v} can be written uniquely as $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}$ with $\mathbf{v}_{1} \in U \cap W, \mathbf{v}_{2} \in U \cap W^{\perp}$ and $\mathbf{v}_{3} \in U^{\perp}$. It follows that

$$
\begin{aligned}
\left(\pi_{W} \circ \pi_{U}\right)(\mathbf{v}) & =\pi_{W}\left(\pi_{U}\left(\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right)\right)=\pi_{W}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=\mathbf{v}_{1} \\
\left(\pi_{W} \circ \pi_{U}\right)\left(\mathbf{v}_{1}\right) & =\pi_{W}\left(\pi_{U}\left(\mathbf{v}_{1}\right)\right)=\pi_{W}\left(\mathbf{v}_{1}\right)=\mathbf{v}_{1}
\end{aligned}
$$

hence

$$
\begin{aligned}
\left(\left(\pi_{W} \circ \pi_{U}\right) \circ\left(\pi_{W} \circ \pi_{U}\right)\right)(\mathbf{v}) & =\left(\pi_{W} \circ \pi_{U}\right)\left(\left(\pi_{W} \circ \pi_{U}\right)(\mathbf{v})\right)=\left(\pi_{W} \circ \pi_{U}\right)\left(\mathbf{v}_{1}\right) \\
& =\mathbf{v}_{1}=\left(\pi_{W} \circ \pi_{U}\right)(\mathbf{v}) .
\end{aligned}
$$

On the other hand,

$$
\left\langle\mathbf{v}-\left(\pi_{W} \circ \pi_{U}\right)(\mathbf{v}),\left(\pi_{W} \circ \pi_{U}\right)(\mathbf{v})\right\rangle=\left\langle\mathbf{v}-\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle=\left\langle\mathbf{v}_{2}, \mathbf{v}_{1}\right\rangle+\left\langle\mathbf{v}_{3}, \mathbf{v}_{1}\right\rangle=0+0=0
$$

Hence, $\pi_{W} \circ \pi_{U}$ is an orthogonal projection by Exercise E 8.4.(c).
(d) \Rightarrow (a). Since (d) \Rightarrow (c) \Rightarrow (b), it follows that (d) implies that $\pi_{W} \circ \pi_{U}=\pi_{U n W}$. But then (e) implies $\pi_{U} \circ \pi_{W}=$ $\pi_{U \cap W}$, by symmetry. Since (d) is equivalent with (e), we get that (d) implies that $\pi_{W} \circ \pi_{U}=\pi_{U \cap W}=\pi_{U} \circ \pi_{W}$, and, in particular, that π_{U} and π_{W} commute.

Exercise 3 (Endomorphisms that preserve orthogonality)
Let V be a finite dimensional euclidean space. Determine all endomorphisms φ of V that preserve orthogonality, that is for which:

$$
\mathbf{v} \perp \mathbf{w} \Rightarrow \varphi(\mathbf{v}) \perp \varphi(\mathbf{w}) \quad \text { for all } \mathbf{v}, \mathbf{w} \in V .
$$

Solution:

Let $\varphi: V \rightarrow V$ be an endomorphism that preserves orthogonality. Let $B=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ be an orthonormal basis of V and $\mathbf{c}_{j}=\varphi\left(\mathbf{v}_{j}\right)$ for all $j \in\{1, \ldots, n\}$. Assume $j, k \in\{1, \ldots, n\}$ with $j \neq k$. Then $\mathbf{c}_{j} \perp \mathbf{c}_{k}$ and, since $\mathbf{v}_{j}+\mathbf{v}_{k} \perp \mathbf{v}_{j}-\mathbf{v}_{k}$, we have also that $\mathbf{c}_{j}+\mathbf{c}_{k} \perp \mathbf{c}_{j}-\mathbf{c}_{k}$ and, therefore,

$$
0=\left\langle\mathbf{c}_{j}+\mathbf{c}_{k}, \mathbf{c}_{j}-\mathbf{c}_{k}\right\rangle=\left\langle\mathbf{c}_{j}, \mathbf{c}_{j}\right\rangle-\left\langle\mathbf{c}_{k}, \mathbf{c}_{k}\right\rangle,
$$

thus $\left\|\mathbf{c}_{j}\right\|=\left\|\mathbf{c}_{k}\right\|$. Hence all vectors \mathbf{c}_{j} have the same length $s \geq 0$. If $s=0$, then $\varphi=0$. Otherwise, vectors $\frac{1}{s} \mathbf{c}_{1}, \ldots, \frac{1}{s} \mathbf{c}_{n}$ form an orthonormal basis of V, since $n=\operatorname{dim}(V)$. Lemma 2.3.9 shows that $\frac{1}{s} \varphi$ is an orthogonal map.

Thus, every endomorphism that preserves orthogonality is a scalar multiple of an orthogonal map. Conversely, it is obvious that any scalar multiple of an orthogonal map preserves orthogonality.

Exercise 4 (Jordan normal form and real matrices)
Let $A \in \mathbb{R}^{(n, n)}$ where $n=2 m$ is even. Assume that the characteristic polynomial of A is $p_{A}=p_{0}^{m}$, where $p_{0} \in \mathbb{R}[X]$ is an irreducible polynomial of degree 2 in $\mathbb{R}[X]$ (e.g., $p_{0}=X^{2}+1$). Hence p_{0} splits into linear factors $(\lambda-X)(\bar{\lambda}-X)$ in $\mathbb{C}[X]$, with $\lambda \in \mathbb{C} \backslash \mathbb{R}$.
(a) Show that if \mathbf{v} is a generalised eigenvector for λ with height k, then $\overline{\mathbf{v}}$ is a generalised eigenvector for $\bar{\lambda}$ with height k, and $\llbracket \mathbf{v} \rrbracket \cap \llbracket \overline{\mathbf{v}} \rrbracket=0$. (Hint. Use Lemma 1.5.6.)
(b) Show that A is similar to a real matrix $K \in \mathbb{R}^{(n, n)}$ composed of just three kinds of (2×2)-blocks: $\mathbf{0} \in \mathbb{R}^{(2,2)}, E_{2} \in \mathbb{R}^{(2,2)}$ and some $A_{0}=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right) \in \mathbb{R}^{(2,2)}$ with $b \neq 0$, where A_{0} occurs along the diagonal, E_{n} and $\mathbf{0}$ immediately above the diagonal and just $\mathbf{0}$ everywhere else (a "block Jordan normal form").
Hint. Put A into Jordan normal form over \mathbb{C} w.r.t. basis consisting of complex conjugate vector pairs; then combine such pairs to find a real basis.
(c) Give examples of $A_{k} \in \mathbb{R}^{(6,6)}$ with characteristic polynomial $\left(X^{2}+1\right)^{3}$ and minimal polynomials $q_{A_{k}}=\left(X^{2}+1\right)^{k}$ for $k=1,2,3$.

Solution:

a) The first statement follows from the equivalence

$$
(A-\lambda E)^{k} \mathbf{v}=\mathbf{0} \Leftrightarrow(A-\bar{\lambda} E)^{k} \overline{\mathbf{v}}=\mathbf{0}
$$

To prove that $\llbracket \mathbf{v} \rrbracket \cap \llbracket \overline{\mathbf{v}} \rrbracket=0$, observe that if $\mathbf{w} \in \llbracket \mathbf{v} \rrbracket \cap \llbracket \overline{\mathbf{v}} \rrbracket$, then $\mathbf{w} \in \operatorname{ker}(\varphi-\lambda \mathrm{id})^{k}$ and $\mathbf{w} \in \operatorname{ker}(\varphi-\bar{\lambda} \mathrm{id})^{k}$. As the polynomials $(X-\lambda)^{k}$ and $(X-\bar{\lambda})^{k}$ are relatively prime, this can only happen for $\mathbf{w}=\mathbf{0}$, by Lemma 1.5.6.
b) By (a), we may assume that if \mathbf{v} generates a Jordan block for eigenvalue λ, then $\overline{\mathbf{v}}$ generates a Jordan block of the same size for eigenvalue $\bar{\lambda}$. So, in fact, when

$$
\left(\begin{array}{llll}
\lambda & 1 & & 0 \\
& \lambda & \ddots & \\
& & \ddots & 1 \\
0 & & & \lambda
\end{array}\right)
$$

is a certain Jordan block of the matrix associated to vectors $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$, then also the Jordan block

$$
\left(\begin{array}{llll}
\bar{\lambda} & 1 & & 0 \\
& \bar{\lambda} & \ddots & \\
& & \ddots & 1 \\
0 & & & \frac{1}{\lambda}
\end{array}\right)
$$

appears, and we may assume it is associated to the vectors ($\overline{\mathbf{b}}_{1}, \ldots, \overline{\mathbf{b}}_{n}$) (proof: if the last vector for this basis is $\overline{\mathbf{b}}_{n}$, then the $(n-1)$ th vector is $(A-\bar{\lambda}) \overline{\mathbf{b}}_{n}=\overline{(A-\lambda) \mathbf{b}_{n}}=\overline{\mathbf{b}}_{n-1}$, and so on.).
We may rearrange these vectors as

$$
\left(\mathbf{b}_{1}+\overline{\mathbf{b}}_{1}, i\left(\mathbf{b}_{1}-\overline{\mathbf{b}}_{1}\right), \ldots, \mathbf{b}_{n}+\overline{\mathbf{b}}_{n}, i\left(\mathbf{b}_{n}-\overline{\mathbf{b}}_{n}\right)\right)
$$

With respect to this basis of real vectors, the matrix looks as follows:
$\left(\begin{array}{cc|cc|cc|cc}a & -b & 1 & 0 & & & & 0 \\ b & a & 0 & 1 & & & & \\ \hline & & a & -b & \ddots & \ddots & & \\ & b & a & \ddots & \ddots & & \\ \hline & & & \ddots & \ddots & 1 & 0 \\ & & & \ddots & \ddots & 0 & 1 \\ \hline & & & & & a & -b \\ 0 & & & & & a\end{array}\right)$,
where $\lambda=a+i b$. From this the statement in the exercise follows.
c) We have, for example:

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{cc|c|cc}
0 & -1 & & & 0 \\
1 & 0 & & & \\
\hline & & 0 & -1 & \\
\hline & 1 & 0 & & \\
\hline 0 & & & 0 & -1 \\
1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc|cc|c}
0 & -1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & \\
\hline & & 0 & -1 & \\
& & 1 & 0 & \\
\hline 0 & & & 0 & -1 \\
\hline & & \\
A_{3} & =\left(\begin{array}{cc|cc|cc}
0 & -1 & 1 & 0 & & 0 \\
1 & 0 & 0 & 1 & & \\
\hline & & 0 & -1 & 1 & 0 \\
& 1 & 0 & 0 & 1 \\
\hline & & & 0 & -1 \\
0 & & 1 & 0
\end{array}\right)
\end{array} .\right.
\end{aligned}
$$

