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Exercise 1 (Warm-up: Isomorphisms of unitary (euclidean) spaces)
(a) Let V and W be euclidean (unitary) spaces of dimension n and ¢ € Hom(V,W). Show that the following are
equivalent:

i. ¢ is an isomorphism of euclidean (unitary) spaces.
ii. [[(p]]g, € 0(n) for some choice of orthonormal bases B of V and B’ of W.
iii. [[(pj]g, € O(n) for every orthonormal bases B of V and B of W.

(b) Conclude that ¢ € Hom(V,V) is an orthogonal (unitary) endomorphism of the n-dimensional euclidean (unitary)
space V iff [[(p]]g, € O(n) for some (every) combination of orthonormal bases B and B’ of V.

(NB: in one direction this extends Prop. 2.3.15 in the notes.)
Solution:

a) We consider the unitary case; the euclidean case follows similarly.

Let B =(vq,...,V,) be an orthonormal basis of V, B’ = (¢,, ..., ¢,) be an orthonormal basis of W and A := I]:Lp]]g, =
(a;;)- Then foralli,j=1,...,n,

(v, o(v)) = <Zakick,2aucz>=Za—kiaw<ck,cz>

l k,l

%
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is the entry in position i, j of ATA.
By Lemma 2.3.9, we get that:

(p is an isomorphism of unitary spaces
for some (any) orthonormal basis B = (vy,...,v,) of V, ¢(B) = (¢(v1),...,¢(v,)) is an orthonormal basis of W
for some (any) orthonormal basis B = (v;,...,v,) of V, (p(v;), p(v;)) = §;; foralli,j=1,...,n

for some (any) orthonormal bases B = (vy,...,v,) of V and B’ = (cy,...,¢,) of W, 3, ajay; = &;; for all i, j =
1,...,n, whereA= [[90]]§/

for some (any) orthonormal bases B = (v4,...,v,) of V and B’ = (¢;,...,¢c,) of W,ATA=E,, where A= [90]]51
for some (any) orthonormal bases B = (vy,...,v,) of V and B’ = (¢;,...,¢,) of W, A= [[cp]]g, € 0(n).
b) Apply (a) with W :=V.
Exercise 2 (Composition of two orthogonal projections)
(Exercise 2.3.4 on page 68 of the notes.) Let U and W be two subspaces of a finite dimensional euclidean or unitary

vector space V, with orthogonal projections 7ty and 7y, onto U and W, respectively.
Prove that the following statements are equivalent:




(a) my and 7y, commute.

(b) 7y °o Ty = Tyaw-

(c) my o my is an orthogonal projection.
@ U=Unw)eUnwHh).

e W=Unw)eUtnw).

Solution:
Firstly, let us remark that, using Exercise E8.1.(e), we get that

ker(my, o ) = (my 0 my)H(0) = 7'5[_]1 (n;vl(O)) = nal(WL) =(UnNnwHeU" .
(a) = (). Since ny and my, commute, we have that
(mty o wy) o (7T o Ty ) = (7T © Ty ) © (7T © 7Tyy) = Ty © Ty

By Exercise E 8.4.(b), it is now sufficient to show that ker(my, o 7ty;) L image(ry, o Ty).
Since image(my, o ;) € image(my,) € W and image(7tyy, o 7ty) = image(mty; o ) € image(ny) € U, we get that

image(my o) CUNW.
Furthermore,
ker(myomy) = WUnwhHeuvutcwt+ut=vut+wh

On the other hand, U+ + W+ L UNW, since, by Exercise E8.2.(d), Ut + W+ = (UnW)*. It follows that ker(r,, o 7ry;) L
image(mtyy, o 7y).

(c) = (b). Assume that 7,y o 7, is an orthogonal projection. Then it is an orthogonal projection onto image(7y, o 7).
We need to prove that

image(my o ty) =UNW.

Since 7y, o 7y is the identity on U N W, it follows that U N W C image(mty, o 7ty ). Furthermore, image(7y, o wy) S W.
Thus, it remains to show that image(r,, o ;) € U. Using the fact that U+ C (UNnW!)@® U = ker(my, o 7r;), we get that

image(7my, o 7y) (image(myy, © rrU)l)L by Exercise E 8.2.(c)

= ker(my o my)*t by Exercise E 8.1
c (UuHt by Exercise E8.2.(a), as U+ C ker(my, o 7y)
= U by Exercise E 8.2.(c).

(b) = (d). Let us remark that the sum (U NW) + (U NW+) is direct, as W N W+ = {0}.
“D” is obvious.
“2” Letu € U. Then 7y (u) = u, hence
() =(nyony)(W)eUnNW.
Furthermore, u — 1y, (u) € UN W+, since u, y,(u) € U and u — 7y, (u) L W by Exercise E 8.4.(d). It follows that
u=ny W)+ (u-ny)) e UNW)®UNW?).
(d) = (e). Assume that U = (UNW) & (UNW). Then

V=UeU'=UnW)eUnwHeU".

It follows that every w € W can be written uniquely as w = w; +w, +w; withw;, e UNW, w, € UNn W+ and w; € U~.
As w, € W, we get that

0 = (Wy, W) = (W, Wy) + (Wy, W) + (W5, W3) = 0+ (Wy, Wy) + 0 = (wy, wy),
hence w, = 0. Since w,w; € W, we have that w3 = w —w; € W too. Therefore,

w=w,+w; € UnW)® U nw).




(e) = (d) follows by symmetry.
(d) = (0). Again, when U = (UNW)® (UNW™1), then

V=Unw)eUnwHeU.

We shall prove that 7y, o 7y, is an orthogonal projection using Exercise E 8.4.(c). Let v € V be arbitrary. Then v can be
written uniquely as v=v; + v, +v; withv; e UNW, v, € UNW+ and v, € U*. It follows that

(mwonry)v) = my(ry(vy+vy+vs)) =1y (v, +vy)=vy,

(7TW o ”U)(Vl) Tw (”U(Vl)) =my(v) =vy,

hence

(mwomy)o(nyony))(v) = (mwony)((mwomy)W) = (mw o my)(vy)
vi = (7 o ty) (V).

On the other hand,
(v— (o)), (my o my)(V)) = (Vv—vy,vy) =(Vy,Vq) +(v3,v1) =0+ 0=0,

Hence, 7y, o mry is an orthogonal projection by Exercise E 8.4.(c).

(d) = (a). Since (d) = (c) = (b), it follows that (d) implies that 7}, o Ty = 7yaw - But then (e) implies 7ty o Ty =
Tlyaw, DY symmetry. Since (d) is equivalent with (e), we get that (d) implies that my, o Ty = Tyw = 7Ty © Ty, and, in
particular, that 7r; and 7y, commute.

Exercise 3 (Endomorphisms that preserve orthogonality)
Let V be a finite dimensional euclidean space. Determine all endomorphisms ¢ of V that preserve orthogonality, that
is for which:

viw= ¢(v)Lplw) forallvweV.

Solution:
Let ¢ : V — V be an endomorphism that preserves orthogonality. Let B = (vy,...,V,) be an orthonormal basis of V and
¢; = p(v;) forall j € {1,...,n}. Assume j,k € {1,...,n} with j # k. Then ¢; L ¢, and, since v; +v; L v; — v, we have

also that ¢; + ¢ L ¢; — ¢, and, therefore,

0= (Cj +c¢, ¢ — ) = (cj’cj> — (e, e)s
thus ||c;|| = ||cc|l. Hence all vectors c; have the same length s > 0. If s = 0, then ¢ = 0. Otherwise, vectors 1c;,..., ¢
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form an orthonormal basis of V, since n = dim(V). Lemma 2.3.9 shows that %t,o is an orthogonal map.
Thus, every endomorphism that preserves orthogonality is a scalar multiple of an orthogonal map. Conversely, it is
obvious that any scalar multiple of an orthogonal map preserves orthogonality.

Exercise 4 (Jordan normal form and real matrices)
Let A € R™™ where n = 2m is even. Assume that the characteristic polynomial of A is p, = Py, where py € R[X] is

an irreducible polynomial of degree 2 in R[X] (e.g., po = X2 + 1). Hence p, splits into linear factors (A — X YA —X)in
C[X], with A € C\R.
(a) Show that if v is a generalised eigenvector for A with height k, then v is a generalised eigenvector for 2 with height
k, and [[v] n [[v] = 0. (Hint. Use Lemma 1.5.6.)

(b) Show that A is similar to a real matrix K € R™™ composed of just three kinds of (2x 2)-blocks: 0 € R®*?, E, € R>?

and some A, = g _ab € R?? with b # 0, where A, occurs along the diagonal, E, and 0 immediately above

the diagonal and just O everywhere else (a “block Jordan normal form”).

Hint. Put A into Jordan normal form over C w.r.t. basis consisting of complex conjugate vector pairs; then combine
such pairs to find a real basis.

(c) Give examples of A, € R®®) with characteristic polynomial (X? + 1)* and minimal polynomials g, = (X +1)* for
k=1,2,3.

Solution:




a) The first statement follows from the equivalence

(A-AE)v=0& (A— AE)v=0.

To prove that [v]] N [v] = 0, observe that if w € [v] N [V], then w € ker(y — Aid)* and w € ker(p — Aid)*. As
the polynomials (X — A)¥ and (X — 1) are relatively prime, this can only happen for w = 0, by Lemma 1.5.6.

b) By (a), we may assume that if v generates a Jordan block for eigenvalue A, then v generates a Jordan block of the
same size for eigenvalue A. So, in fact, when

Al 0
A
1
0 A
is a certain Jordan block of the matrix associated to vectors (b4,...,b,), then also the Jordan block
A1 0
A
!
0 A
appears, and we may assume it is associated to the vectors (b,..., Bn) (proof: if the last vector for this basis is I_)n,

then the (n — 1)th vector is (A— X)Bn =A-A)b,= I_)n_l, and so on.).

We may rearrange these vectors as

(b, + by, i(b; —=by), ...,b, +b,, i(b, —b,)).

With respect to this basis of real vectors, the matrix looks as follows:

¢) We have, for example:

(a -b|1 © 0 )
b a |0 1
a -b
b a
1 0
0 1
a —-b
\0 b a )
where A = a +ib. From this the statement in the exercise follows.
[0 -1 0 ) 0 —-1]1 o0 0
1 0 1 0|0 1
0 -1 0 -1
1 0 o A= 1 0 ’
0 -1 -1
\ 0 1 0 0 0
[0 -1]|1 o0 0
1 0 (0 1
0O —-1|1 O
1 0|0 1
0 -1
\ 0 1 0 )




