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Exercise 1 (Warm-up: orthogonal complement and orthogonal projection)
Let V be a euclidean or unitary vector space of finite dimension, U be a subspace of V and πU : V → U be the

orthogonal projection onto U . Check the following facts.

(a) U⊥ is a subspace of V .

(b) If B is a basis of U , then U⊥ = {v ∈ V | v⊥ B}.

(c) πU is linear, surjective and ker(πU) = U⊥.

(d) πU ◦πU = πU .

(e) For any subspace W of V ,

π−1
U (W ) = (U ∩W )⊕ U⊥.

(f) If B = (v1, . . . , ,vn) is an orthonormal basis of U , then

πU(v) =
n
∑

i=1

〈vi ,v〉vi .

Solution:
In the sequel, F is C or R.

a) Let α,β ∈ F and v,w ∈ U⊥. For every u ∈ U ,

〈u,αv+ βw〉= α〈u,v〉+ β〈u,w〉= α · 0+ β · 0= 0,

hence αv+ βw ∈ U⊥.

b) Let B be a basis of U .

“⊆” is obvious.

“⊇” Let v⊥ B. If u ∈ U is arbitrary, then u=
∑n

i=1λivi for λi ∈ F, i = 1, . . . , n. It follows that

〈v,u〉 =

*

v,
n
∑

i=1

λivi

+

=
n
∑

i=1

λi〈v,vi〉= 0,

hence v ∈ U⊥.

c) Let α,β ∈ F and v,w ∈ U⊥. Since, by Lemma 2.3.7, V = U ⊕ U⊥, there are unique v1,w1 ∈ U and v2,w2 ∈ U⊥

such that

v= v1 + v2 and w=w1 +w2.

It follows that

αv+ βw=
�

αv1 + βw1
�

+
�

αv2 + βw2
�

with αv1 + βw1 ∈ U , αv2 + βw2 ∈ U⊥.
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Therefore,

πU(αv+ βw) = αv1 + βw1 = απU(v) + βπU(w),

that is, πU is linear.

Since πU(u) = u for all u ∈ U , we get that πU is surjective.

It remains to prove that ker(πU) = U⊥. This follows immediately from the fact that any v ∈ V has a unique
decomposition as

v= πU(v) + v′ where v′ ∈ U⊥.

d) For any v ∈ V , we have that πU(v) ∈ U , hence πU(πU(v)) = πU(v).

e) By double inclusion. If v = w+ u′ ∈ (U ∩W )⊕ U⊥, then πU(v) = πU(w) ∈ W . Conversely, if πU(v) ∈ W , then
v = πU(v) + (v−πU(v)) ∈ (U ∩W )⊕ U⊥.

f) Let u :=
∑n

i=1〈vi ,v〉vi ∈ U and w := v− u= v−
∑n

i=1〈vi ,v〉vi . Then

v= u+w, with u ∈ U and w ∈ U⊥.

It follows that πU(v) = u.

Exercise 2 (Orthogonal complements)
(Exercise 2.3.5 on page 68 of the notes.) Let V be a euclidean or unitary vector space of finite dimension. Moreover, let

U , U1, U2 be subspaces of V . Prove the following facts.

(a) U1⊆U2 implies U⊥2 ⊆U⊥1 .

(b) (U1 + U2)⊥ = U⊥1 ∩ U⊥2 .

(c) (U⊥)⊥ = U .

(d) (U1 ∩ U2)⊥ = U⊥1 + U⊥2 .

Solution:

a)
v ∈ U⊥2 ⇒ v⊥ u for all u ∈ U2

⇒ v⊥ u for all u ∈ U1, as U1⊆U2

⇒ v ∈ U⊥1 .

b) “⊆” By (i), since U1, U2⊆U1 + U2.

“⊇” Let v ∈ U⊥1 ∩ U⊥2 , and u ∈ U1 + U2, so u= u1 + u2 for some ui ∈ Ui . Then

〈v,u〉= 〈v,u1〉+ 〈v,u2〉= 0+ 0= 0.

Thus v ∈ (U1 + U2)⊥.

c) It is easy to see that U ⊆ (U⊥)⊥. By Lemma 2.3.7, we have that V =W⊥ ⊕W for all subspaces W of V . By letting
W := U⊥, we get that V = (U⊥)⊥ ⊕ U⊥, so

dim((U⊥)⊥) = dim(V )− dim(U⊥) = dim(U).

Since U ⊆ (U⊥)⊥, the equality follows.

d) Apply (ii) and (iii) to get that

U⊥1 + U⊥2 =
�

�

U⊥1 + U⊥2
�⊥�⊥

=
�

�

U⊥1
�⊥
∩
�

U⊥2
�⊥�⊥

= (U1 ∩ U2)
⊥.

Exercise 3 (Stereographic projection)
Let E ⊆ R3 be the plane spanned by e1 and e2 and let S ⊆ R3 be the sphere with radius 1 and centre 0. We denote the

north pole of S by p := e3 and we set S∗ := S \ {p}.
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We define a map π : E→ S∗ by letting π(x) be the point of intersection between S∗ and the line passing through p and x.

(a) Give an explicit formula for π, i.e., find functions f (x , y), g(x , y), and h(x , y) such that π(x , y, 0) =
( f (x , y), g(x , y), h(x , y)).

(b) Prove that π : E→ S∗ is a bijection.

(c) Let C ⊆ S be a circle, i.e., the intersection of S with a plane given by an equation of the form ax + b y + cz = d.
Prove that the pre-image π−1[C] is either also a circle or a line.

(d) Let c : R→ E be a line with parametric description xe1+ tv, t ∈ R, where v= (cosα, sinα, 0). Note that c intersects
the e1-axis in the point xe1 under the angle α. Prove that the image of c under π, i.e., the curve π ◦ c : R→ S∗,
intersects the great circle {(u, 0, v ) ∈ S∗ : u2 + v 2 = 1} under the same angle α. (This implies that π preserves
angles. Such maps are called conformal.)
(Hint. Find the angle between the tangent vectors of the two curves. The tangent vector of a curve c at the
point c(t0) is given by its derivative d

dt
c
�

�

t0
.)

Solution:

a) Intersecting the line with parametric description p+λ(x− p) with S we obtain the equation

‖p+λ(x− p)‖= 1 ,

which has the solution

λ=
2

x2 + y2 + 1
.

Hence,

π(x) =







0
0
1






+

2

x2 + y2 + 1







x
y
−1






=

1

x2 + y2 + 1







2x
2y

x2 + y2 − 1






.

b) To show that π is injective, suppose that x1 = (x1, y1, 0) and x2 = (x2, y2, 0) are two points with π(x1) = π(x2).
Looking at the third coordinate, we obtain the equation

(x1)2 + (y1)2 − 1

(x1)2 + (y1)2 + 1
=
(x2)2 + (y2)2 − 1

(x2)2 + (y2)2 + 1
,
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which implies that (x1)2 + (y1)2 = (x2)2 + (y2)2. Looking at the first coordinate, we obtain

2x1

(x1)2 + (y1)2 + 1
=

2x2

(x2)2 + (y2)2 + 1
.

Since the denominators are equal, it follows that x1 = x2. In the same way we can show that y1 = y2. Hence,
x1 = x2.

It remains to show that π is surjective. Instead of doing the calculations, let us argue geometrically. Let y ∈ S∗
be an arbitrary point. We construct the line passing through p and y. Since y 6= p this line is not parallel to the
plane E. Hence, it intersects E in some points x. By definition of π it follows that π(x) = y.

c) C is given by the two equations

ax + b y + cz = d and x2 + y2 + z2 = 1 .

To obtain the equations for its pre-image under π we substitute the functions from (i).

2ax + 2b y + c(x2 + y2 − 1)
x2 + y2 + 1

= d and
4x2 + 4y2 + (x2 + y2 − 1)2

(x2 + y2 + 1)2
= 1 .

The second equation is automatically satisfied, since π(x) ∈ S∗. Hence, we only need to consider the first one.
Simplifying it yields

2ax + 2b y + cx2 + c y2 − c = d x2 + d y2 + d ,

which is equivalent to

2ax + 2b y + (c− d)x2 + (c − d)y2 = c+ d .

If c = d then we obtain

2ax + 2b y = 2d ,

which is the equation of a line. Otherwise, we get

0= x2 + y2 + 2
a

c− d
x + 2

b

c− d
y −

c+ d

c− d

=
�

x +
a

(c− d)

�2
+
�

y +
b

(c− d)

�2
−

a2

(c− d)2
−

b2

(c− d)2
−

c+ d

c− d
.

This equation is of the form

(x −α)2 + (y − β)2 = γ .

If γ < 0 then it has no solution. Otherwise, it describes a circle of radius
p
γ with centre (α,β).

d) We abbreviate s := sinα and c := cosα. Note that c2 + s2 = 1. The image is the curve

π(c(t)) =
2(x + tc)

(x + tc)2 + t2s2 + 1
e1

+
2ts

(x + tc)2 + t2s2 + 1
e2

+
(x + tc)2 + t2s2 − 1

(x + tc)2 + t2s2 + 1
e3

=
2(x + tc)e1 + 2tse2 + ((x + tc)2 + t2s2 − 1)e3

(x + tc)2 + t2s2 + 1
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Its derivative at t = 0 is

d

dt
π(c(t))

�

�

�

t=0
=
(2ce1 + 2se2 + 2xce3)(x2 + 1)− (2xe1 + (x2 − 1)e3)(2xc)

(x2 + 1)2

=
2c(1− x2)e1 + 2s(x2 + 1)e2 + 4cxe3

(x2 + 1)2

The tangent vector of the great circle at the point ue1 + v e3 is −v e1 + ue3. Since

π(c(0)) =
2xe1 + (x2 − 1)e3

x2 + 1
,

we compute

〈
−(x2 − 1)e1 + 2xe3

x2 + 1
,

d

dt
π(c(t))

�

�

�

t=0
〉=

2c(1− x2)2 + 8cx2

(x2 + 1)3
=

2c(x2 + 1)2

(x2 + 1)3
=

2c

x2 + 1
.

Furthermore, we have

‖
d

dt
π(c(t))

�

�

�

t=0
‖=

p

4c2(1− x2)2 + 4s2(x2 + 1)2 + 16c2 x2

(x2 + 1)2

=

p

4c2 − 8c2 x2 + 4c2 x4 + 4s2(x2 + 1)2 + 16c2 x2

(x2 + 1)2

=

p

4c2 + 8c2 x2 + 4c2 x4 + 4s2(x2 + 1)2

(x2 + 1)2

=

p

4c2(x2 + 1)2 + 4s2(x2 + 1)2

(x2 + 1)2

=
2(x2 + 1)
(x2 + 1)2

=
2

x2 + 1
,

‖
−(x2 − 1)e1 + 2xe3

x2 + 1
‖=

p

(x2 − 1)2 + 4x2

x2 + 1
=

p

(x2 + 1)2

x2 + 1
= 1 .

Consequently, the angle β between the two curves is

cosβ =
2c

x2 + 1
·

x2 + 1

2
= c = cosα .

Exercise 4 (Characterisations of orthogonal projections)
(Exercise 2.3.2 on page 68 of the notes.) Let ϕ be an endomorphism of a finite dimensional euclidean or unitary vector

space V .
Show the equivalence of the following:

(a) ϕ is an orthogonal projection.

(b) ϕ ◦ϕ = ϕ and ker(ϕ)⊥ image(ϕ).

(c) ϕ ◦ϕ = ϕ and v−ϕ(v)⊥ ϕ(v) for all v ∈ V .

(d) v−ϕ(v)⊥ image(ϕ) for all v ∈ V .

Solution:
(a)⇒ (b). By Exercise E 8.1.
(b)⇒ (c) and (b)⇒ (d) follow immediately from the fact that ϕ ◦ϕ = ϕ implies v−ϕ(v) ∈ ker(ϕ) for all v ∈ V .
(c) ⇒ (b). Let a ∈ ker(ϕ) and v ∈ image(ϕ), hence ϕ(a) = 0 and ϕ(v) = v, as ϕ ◦ϕ = ϕ. By letting w := a+ v, it

follows that ϕ(w) = ϕ(a) +ϕ(v) = 0+ v= v. Therefore,

a=w− v=w−ϕ(w) ⊥ ϕ(w) = v.
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(d)⇒ (a). Let U := image(ϕ). We shall prove that ϕ = πU , the orthogonal projection on U . If v ∈ V is arbitrary, then
v = u+ u′ for unique u ∈ U and u′ ∈ U⊥, by Lemma 2.3.7. We have to show that ϕ(v) = u = πU(v). Let us remark first
that u−ϕ(v) ∈ U . On the other hand,

u−ϕ(v) =
�

v−ϕ(v)
�

− u′ ∈ U⊥, as v−ϕ(v) ∈ U⊥ by hypothesis.

Therefore, we must have u−ϕ(v) = 0, that is ϕ(v) = u.

Exercise 5 (More on orthogonal projections)
(Exercise 2.3.3 on page 68 of the notes.) Show that the orthogonal projections of an n-dimensional euclidean or unitary

vector space V are precisely those endomorphisms ϕ of V that are represented w.r.t. a suitable orthonormal basis by a
diagonal matrix with ones and zeroes on the diagonal.

Solution:
Suppose first that there exists an orthonormal basis B = (b1, . . . ,bn) in which ϕ is represented by a diagonal matrix

with ones and zeroes on the diagonal, so ϕ ◦ϕ = ϕ. Letting V0 and V1 be the eigenspaces corresponding to eigenvalues
0 and 1, respectively, it is immediate that V = V0 ⊕ V1 and V⊥1 = V0. Moreover, ϕ|V1

is the identity map and ϕ|V0
is the

zero map, so V1 = image(ϕ) and V0 = ker(ϕ). Therefore ker(ϕ) ⊥ image(ϕ). By condition (b) of the previous exercise,
we see that ϕ is an orthogonal projection.

Conversely, suppose that ϕ is an orthogonal projection. By the same exercise, we have ϕ ◦ ϕ = ϕ and ker(ϕ) ⊥
image(ϕ). Note that V = ker(ϕ)⊕ image(ϕ). This follows from the fact that dim(V ) = dim(ker(ϕ)) + dim(image(ϕ))
and the fact that ker(ϕ) ⊥ image(ϕ), which implies that ker(ϕ) ∩ image(ϕ) = {0}. Let k = dim(image(ϕ)). Choose
an orthonormal basis (b1, . . . ,bk) for image(ϕ) and an orthonormal basis (bk+1, . . . ,bk) for ker(ϕ). Since ϕ ◦ ϕ = ϕ,
it follows that ϕ|image(ϕ) is the identity map, and ϕ|ker(ϕ) is the zero map. Hence with respect to the orthonormal basis
(b1, . . . ,bn) for V , ϕ is represented by the diagonal matrix whose first k entries are 1 and remaining entries are 0.
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