Linear Algebra II **Exercise Sheet no. 8**

Summer term 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Warm-up: orthogonal complement and orthogonal projection)

Let V be a euclidean or unitary vector space of finite dimension, U be a subspace of V and $\pi_U: V \to U$ be the orthogonal projection onto *U*. Check the following facts.

- (a) U^{\perp} is a subspace of *V*.
- (b) If *B* is a basis of *U*, then $U^{\perp} = \{ \mathbf{v} \in V \mid \mathbf{v} \perp B \}$.
- (c) π_U is linear, surjective and $ker(\pi_U) = U^{\perp}$.
- (d) $\pi_U \circ \pi_U = \pi_U$.
- (e) For any subspace *W* of *V*,

$$\pi_{U}^{-1}(W) = (U \cap W) \oplus U^{\perp}.$$

(f) If $B = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ is an orthonormal basis of U, then

$$\pi_U(\mathbf{v}) = \sum_{i=1}^n \langle \mathbf{v}_i, \mathbf{v} \rangle \mathbf{v}_i.$$

Solution:

In the sequel, \mathbb{F} is \mathbb{C} or \mathbb{R} .

a) Let $\alpha, \beta \in \mathbb{F}$ and $\mathbf{v}, \mathbf{w} \in U^{\perp}$. For every $\mathbf{u} \in U$,

$$\langle \mathbf{u}, \alpha \mathbf{v} + \beta \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle + \beta \langle \mathbf{u}, \mathbf{w} \rangle = \alpha \cdot 0 + \beta \cdot 0 = 0,$$

hence $\alpha \mathbf{v} + \beta \mathbf{w} \in U^{\perp}$.

b) Let B be a basis of U.

" \subseteq " is obvious.

"⊇" Let **v** ⊥ *B*. If **u** ∈ *U* is arbitrary, then **u** = $\sum_{i=1}^{n} \lambda_i \mathbf{v}_i$ for $\lambda_i \in \mathbb{F}$, i = 1, ..., n. It follows that

$$\langle \mathbf{v}, \mathbf{u} \rangle = \left\langle \mathbf{v}, \sum_{i=1}^n \lambda_i \mathbf{v}_i \right\rangle = \sum_{i=1}^n \lambda_i \langle \mathbf{v}, \mathbf{v}_i \rangle = 0,$$

hence $\mathbf{v} \in U^{\perp}$.

c) Let $\alpha, \beta \in \mathbb{F}$ and $\mathbf{v}, \mathbf{w} \in U^{\perp}$. Since, by Lemma 2.3.7, $V = U \oplus U^{\perp}$, there are unique $\mathbf{v}_1, \mathbf{w}_1 \in U$ and $\mathbf{v}_2, \mathbf{w}_2 \in U^{\perp}$ such that

$$\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$$
 and $\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_2$.

It follows that

$$\alpha \mathbf{v} + \beta \mathbf{w} = (\alpha \mathbf{v}_1 + \beta \mathbf{w}_1) + (\alpha \mathbf{v}_2 + \beta \mathbf{w}_2) \text{ with } \alpha \mathbf{v}_1 + \beta \mathbf{w}_1 \in U, \ \alpha \mathbf{v}_2 + \beta \mathbf{w}_2 \in U^{\perp}$$

TECHNISCHE

UNIVERSITÄT DARMSTADT

May 30, 2011

Therefore,

$$\pi_U(\alpha \mathbf{v} + \beta \mathbf{w}) = \alpha \mathbf{v}_1 + \beta \mathbf{w}_1 = \alpha \pi_U(\mathbf{v}) + \beta \pi_U(\mathbf{w}),$$

that is, π_U is linear.

Since $\pi_U(\mathbf{u}) = \mathbf{u}$ for all $\mathbf{u} \in U$, we get that π_U is surjective.

It remains to prove that $\ker(\pi_U) = U^{\perp}$. This follows immediately from the fact that any $\mathbf{v} \in V$ has a unique decomposition as

$$\mathbf{v} = \pi_U(\mathbf{v}) + \mathbf{v}'$$
 where $\mathbf{v}' \in U^{\perp}$.

- d) For any $\mathbf{v} \in V$, we have that $\pi_U(\mathbf{v}) \in U$, hence $\pi_U(\pi_U(\mathbf{v})) = \pi_U(\mathbf{v})$.
- e) By double inclusion. If $\mathbf{v} = \mathbf{w} + \mathbf{u}' \in (U \cap W) \oplus U^{\perp}$, then $\pi_U(\mathbf{v}) = \pi_U(\mathbf{w}) \in W$. Conversely, if $\pi_U(\mathbf{v}) \in W$, then $\nu = \pi_U(\mathbf{v}) + (\mathbf{v} \pi_U(\mathbf{v})) \in (U \cap W) \oplus U^{\perp}$.
- f) Let $\mathbf{u} := \sum_{i=1}^{n} \langle \mathbf{v}_i, \mathbf{v} \rangle \mathbf{v}_i \in U$ and $\mathbf{w} := \mathbf{v} \mathbf{u} = \mathbf{v} \sum_{i=1}^{n} \langle \mathbf{v}_i, \mathbf{v} \rangle \mathbf{v}_i$. Then

$$\mathbf{v} = \mathbf{u} + \mathbf{w}$$
, with $\mathbf{u} \in U$ and $\mathbf{w} \in U^{\perp}$.

It follows that $\pi_U(\mathbf{v}) = \mathbf{u}$.

Exercise 2 (Orthogonal complements)

(*Exercise 2.3.5 on page 68 of the notes.*) Let V be a euclidean or unitary vector space of finite dimension. Moreover, let U, U_1, U_2 be subspaces of V. Prove the following facts.

- (a) $U_1 \subseteq U_2$ implies $U_2^{\perp} \subseteq U_1^{\perp}$. (b) $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$.
- $(0) (0_1 + 0_2) = 0_1 + 0_1$
- (c) $(U^{\perp})^{\perp} = U.$
- (d) $(U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp}$.

Solution:

a)

 $\mathbf{v} \in U_2^{\perp} \Rightarrow \mathbf{v} \perp \mathbf{u} \text{ for all } \mathbf{u} \in U_2$ $\Rightarrow \mathbf{v} \perp \mathbf{u} \text{ for all } \mathbf{u} \in U_1, \text{ as } U_1 \subseteq U_2$ $\Rightarrow \mathbf{v} \in U_1^{\perp}.$

b) " \subseteq " By (i), since $U_1, U_2 \subseteq U_1 + U_2$. " \supseteq " Let $\mathbf{v} \in U_1^{\perp} \cap U_2^{\perp}$, and $\mathbf{u} \in U_1 + U_2$, so $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$ for some $\mathbf{u}_i \in U_i$. Then

$$\langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{v}, \mathbf{u}_1 \rangle + \langle \mathbf{v}, \mathbf{u}_2 \rangle = 0 + 0 = 0.$$

Thus $\mathbf{v} \in (U_1 + U_2)^{\perp}$.

c) It is easy to see that $U \subseteq (U^{\perp})^{\perp}$. By Lemma 2.3.7, we have that $V = W^{\perp} \oplus W$ for all subspaces W of V. By letting $W := U^{\perp}$, we get that $V = (U^{\perp})^{\perp} \oplus U^{\perp}$, so

$$\dim((U^{\perp})^{\perp}) = \dim(V) - \dim(U^{\perp}) = \dim(U).$$

Since $U \subseteq (U^{\perp})^{\perp}$, the equality follows.

d) Apply (ii) and (iii) to get that

$$U_1^{\perp} + U_2^{\perp} = \left(\left(U_1^{\perp} + U_2^{\perp} \right)^{\perp} \right)^{\perp} = \left(\left(U_1^{\perp} \right)^{\perp} \cap \left(U_2^{\perp} \right)^{\perp} \right)^{\perp} = (U_1 \cap U_2)^{\perp}.$$

Exercise 3 (Stereographic projection)

Let $E \subseteq \mathbb{R}^3$ be the plane spanned by \mathbf{e}_1 and \mathbf{e}_2 and let $S \subseteq \mathbb{R}^3$ be the sphere with radius 1 and centre **0**. We denote the north pole of *S* by $\mathbf{p} := \mathbf{e}_3$ and we set $S_* := S \setminus \{\mathbf{p}\}$.

We define a map $\pi : E \to S_*$ by letting $\pi(\mathbf{x})$ be the point of intersection between S_* and the line passing through \mathbf{p} and \mathbf{x} .

- (a) Give an explicit formula for π , i.e., find functions f(x, y), g(x, y), and h(x, y) such that $\pi(x, y, 0) = (f(x, y), g(x, y), h(x, y))$.
- (b) Prove that $\pi: E \to S_*$ is a bijection.
- (c) Let $C \subseteq S$ be a circle, i.e., the intersection of *S* with a plane given by an equation of the form ax + by + cz = d. Prove that the pre-image $\pi^{-1}[C]$ is either also a circle or a line.
- (d) Let $c : \mathbb{R} \to E$ be a line with parametric description $x\mathbf{e}_1 + t\mathbf{v}$, $t \in \mathbb{R}$, where $\mathbf{v} = (\cos \alpha, \sin \alpha, 0)$. Note that c intersects the \mathbf{e}_1 -axis in the point $x\mathbf{e}_1$ under the angle α . Prove that the image of c under π , i.e., the curve $\pi \circ c : \mathbb{R} \to S_*$, intersects the great circle $\{(u, 0, v) \in S_* : u^2 + v^2 = 1\}$ under the same angle α . (This implies that π preserves angles. Such maps are called *conformal*.)

(*Hint*. Find the angle between the tangent vectors of the two curves. The tangent vector of a curve *c* at the point $c(t_0)$ is given by its derivative $\frac{d}{dt}c\Big|_{t_0}$.)

Solution:

a) Intersecting the line with parametric description $\mathbf{p} + \lambda(\mathbf{x} - \mathbf{p})$ with *S* we obtain the equation

$$\|\mathbf{p} + \lambda(\mathbf{x} - \mathbf{p})\| = 1,$$

which has the solution

$$\lambda = \frac{2}{x^2 + y^2 + 1}$$

Hence,

$$\pi(\mathbf{x}) = \begin{pmatrix} 0\\0\\1 \end{pmatrix} + \frac{2}{x^2 + y^2 + 1} \begin{pmatrix} x\\y\\-1 \end{pmatrix} = \frac{1}{x^2 + y^2 + 1} \begin{pmatrix} 2x\\2y\\x^2 + y^2 - 1 \end{pmatrix}$$

b) To show that π is injective, suppose that $\mathbf{x}_1 = (x_1, y_1, 0)$ and $\mathbf{x}_2 = (x_2, y_2, 0)$ are two points with $\pi(\mathbf{x}_1) = \pi(\mathbf{x}_2)$. Looking at the third coordinate, we obtain the equation

$$\frac{(x_1)^2 + (y_1)^2 - 1}{(x_1)^2 + (y_1)^2 + 1} = \frac{(x_2)^2 + (y_2)^2 - 1}{(x_2)^2 + (y_2)^2 + 1},$$

which implies that $(x_1)^2 + (y_1)^2 = (x_2)^2 + (y_2)^2$. Looking at the first coordinate, we obtain

$$\frac{2x_1}{(x_1)^2 + (y_1)^2 + 1} = \frac{2x_2}{(x_2)^2 + (y_2)^2 + 1}$$

Since the denominators are equal, it follows that $x_1 = x_2$. In the same way we can show that $y_1 = y_2$. Hence, $\mathbf{x}_1 = \mathbf{x}_2$.

It remains to show that π is surjective. Instead of doing the calculations, let us argue geometrically. Let $\mathbf{y} \in S_*$ be an arbitrary point. We construct the line passing through \mathbf{p} and \mathbf{y} . Since $\mathbf{y} \neq \mathbf{p}$ this line is not parallel to the plane *E*. Hence, it intersects *E* in some points \mathbf{x} . By definition of π it follows that $\pi(\mathbf{x}) = \mathbf{y}$.

c) *C* is given by the two equations

$$ax + by + cz = d$$
 and $x^2 + y^2 + z^2 = 1$.

To obtain the equations for its pre-image under π we substitute the functions from (i).

$$\frac{2ax + 2by + c(x^2 + y^2 - 1)}{x^2 + y^2 + 1} = d \text{ and } \frac{4x^2 + 4y^2 + (x^2 + y^2 - 1)^2}{(x^2 + y^2 + 1)^2} = 1.$$

The second equation is automatically satisfied, since $\pi(\mathbf{x}) \in S_*$. Hence, we only need to consider the first one. Simplifying it yields

$$2ax + 2by + cx^{2} + cy^{2} - c = dx^{2} + dy^{2} + dy^{2}$$

which is equivalent to

$$2ax + 2by + (c - d)x^{2} + (c - d)y^{2} = c + d$$

If c = d then we obtain

$$2ax + 2by = 2d,$$

which is the equation of a line. Otherwise, we get

$$0 = x^{2} + y^{2} + 2\frac{a}{c-d}x + 2\frac{b}{c-d}y - \frac{c+d}{c-d}$$
$$= \left(x + \frac{a}{(c-d)}\right)^{2} + \left(y + \frac{b}{(c-d)}\right)^{2} - \frac{a^{2}}{(c-d)^{2}} - \frac{b^{2}}{(c-d)^{2}} - \frac{c+d}{c-d}$$

This equation is of the form

$$(x-\alpha)^2 + (y-\beta)^2 = \gamma.$$

If $\gamma < 0$ then it has no solution. Otherwise, it describes a circle of radius $\sqrt{\gamma}$ with centre (α, β) .

d) We abbreviate $s := \sin \alpha$ and $c := \cos \alpha$. Note that $c^2 + s^2 = 1$. The image is the curve

$$\pi(c(t)) = \frac{2(x+tc)}{(x+tc)^2 + t^2s^2 + 1} \mathbf{e}_1$$

+ $\frac{2ts}{(x+tc)^2 + t^2s^2 + 1} \mathbf{e}_2$
+ $\frac{(x+tc)^2 + t^2s^2 - 1}{(x+tc)^2 + t^2s^2 + 1} \mathbf{e}_3$
= $\frac{2(x+tc)\mathbf{e}_1 + 2ts\mathbf{e}_2 + ((x+tc)^2 + t^2s^2 - 1)\mathbf{e}_3}{(x+tc)^2 + t^2s^2 + 1}$

Its derivative at t = 0 is

$$\frac{\mathrm{d}}{\mathrm{d}t}\pi(c(t))\Big|_{t=0} = \frac{(2c\mathbf{e}_1 + 2s\mathbf{e}_2 + 2xc\mathbf{e}_3)(x^2 + 1) - (2x\mathbf{e}_1 + (x^2 - 1)\mathbf{e}_3)(2xc)}{(x^2 + 1)^2}$$
$$= \frac{2c(1 - x^2)\mathbf{e}_1 + 2s(x^2 + 1)\mathbf{e}_2 + 4cx\mathbf{e}_3}{(x^2 + 1)^2}$$

The tangent vector of the great circle at the point $u\mathbf{e}_1 + v\mathbf{e}_3$ is $-v\mathbf{e}_1 + u\mathbf{e}_3$. Since

$$\pi(c(0)) = \frac{2x\mathbf{e}_1 + (x^2 - 1)\mathbf{e}_3}{x^2 + 1}$$

we compute

$$\left(\frac{-(x^2-1)\mathbf{e}_1+2x\mathbf{e}_3}{x^2+1}, \frac{\mathrm{d}}{\mathrm{d}t}\pi(c(t))\right|_{t=0}\right) = \frac{2c(1-x^2)^2+8cx^2}{(x^2+1)^3} = \frac{2c(x^2+1)^2}{(x^2+1)^3} = \frac{2c}{x^2+1}$$

Furthermore, we have

$$\begin{split} \|\frac{\mathrm{d}}{\mathrm{d}t}\pi(c(t))\Big|_{t=0}\| &= \frac{\sqrt{4c^2(1-x^2)^2 + 4s^2(x^2+1)^2 + 16c^2x^2}}{(x^2+1)^2} \\ &= \frac{\sqrt{4c^2 - 8c^2x^2 + 4c^2x^4 + 4s^2(x^2+1)^2 + 16c^2x^2}}{(x^2+1)^2} \\ &= \frac{\sqrt{4c^2 + 8c^2x^2 + 4c^2x^4 + 4s^2(x^2+1)^2}}{(x^2+1)^2} \\ &= \frac{\sqrt{4c^2(x^2+1)^2 + 4s^2(x^2+1)^2}}{(x^2+1)^2} \\ &= \frac{2(x^2+1)}{(x^2+1)^2} \\ &= \frac{2}{x^2+1}, \\ \|\frac{-(x^2-1)\mathbf{e}_1 + 2x\mathbf{e}_3}{x^2+1}\| &= \frac{\sqrt{(x^2-1)^2 + 4x^2}}{x^2+1} = \frac{\sqrt{(x^2+1)^2}}{x^2+1} = 1. \end{split}$$

Consequently, the angle β between the two curves is

$$\cos \beta = \frac{2c}{x^2 + 1} \cdot \frac{x^2 + 1}{2} = c = \cos \alpha$$

Exercise 4 (Characterisations of orthogonal projections)

(*Exercise 2.3.2 on page 68 of the notes.*) Let φ be an endomorphism of a finite dimensional euclidean or unitary vector space *V*.

Show the equivalence of the following:

- (a) φ is an orthogonal projection.
- (b) $\varphi \circ \varphi = \varphi$ and ker $(\varphi) \perp \text{image}(\varphi)$.
- (c) $\varphi \circ \varphi = \varphi$ and $\mathbf{v} \varphi(\mathbf{v}) \perp \varphi(\mathbf{v})$ for all $\mathbf{v} \in V$.
- (d) $\mathbf{v} \varphi(\mathbf{v}) \perp \operatorname{image}(\varphi)$ for all $\mathbf{v} \in V$.

Solution:

- (a) \Rightarrow (b). By Exercise E 8.1.
- (b) \Rightarrow (c) and (b) \Rightarrow (d) follow immediately from the fact that $\varphi \circ \varphi = \varphi$ implies $\mathbf{v} \varphi(\mathbf{v}) \in \ker(\varphi)$ for all $\mathbf{v} \in V$.

(c) \Rightarrow (b). Let $\mathbf{a} \in \ker(\varphi)$ and $\mathbf{v} \in \operatorname{image}(\varphi)$, hence $\varphi(\mathbf{a}) = \mathbf{0}$ and $\varphi(\mathbf{v}) = \mathbf{v}$, as $\varphi \circ \varphi = \varphi$. By letting $\mathbf{w} := \mathbf{a} + \mathbf{v}$, it follows that $\varphi(\mathbf{w}) = \varphi(\mathbf{a}) + \varphi(\mathbf{v}) = \mathbf{0} + \mathbf{v} = \mathbf{v}$. Therefore,

$$\mathbf{a} = \mathbf{w} - \mathbf{v} = \mathbf{w} - \varphi(\mathbf{w}) \perp \varphi(\mathbf{w}) = \mathbf{v}$$

(d) \Rightarrow (a). Let $U := \text{image}(\varphi)$. We shall prove that $\varphi = \pi_U$, the orthogonal projection on U. If $\mathbf{v} \in V$ is arbitrary, then $\mathbf{v} = \mathbf{u} + \mathbf{u}'$ for unique $\mathbf{u} \in U$ and $\mathbf{u}' \in U^{\perp}$, by Lemma 2.3.7. We have to show that $\varphi(\mathbf{v}) = \mathbf{u} = \pi_U(\mathbf{v})$. Let us remark first that $\mathbf{u} - \varphi(\mathbf{v}) \in U$. On the other hand,

$$\mathbf{u} - \varphi(\mathbf{v}) = (\mathbf{v} - \varphi(\mathbf{v})) - \mathbf{u}' \in U^{\perp}$$
, as $\mathbf{v} - \varphi(\mathbf{v}) \in U^{\perp}$ by hypothesis.

Therefore, we must have $\mathbf{u} - \varphi(\mathbf{v}) = \mathbf{0}$, that is $\varphi(\mathbf{v}) = \mathbf{u}$.

Exercise 5 (More on orthogonal projections)

(*Exercise 2.3.3 on page 68 of the notes.*) Show that the orthogonal projections of an *n*-dimensional euclidean or unitary vector space *V* are precisely those endomorphisms φ of *V* that are represented w.r.t. a suitable orthonormal basis by a diagonal matrix with ones and zeroes on the diagonal.

Solution:

Suppose first that there exists an orthonormal basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ in which φ is represented by a diagonal matrix with ones and zeroes on the diagonal, so $\varphi \circ \varphi = \varphi$. Letting V_0 and V_1 be the eigenspaces corresponding to eigenvalues 0 and 1, respectively, it is immediate that $V = V_0 \oplus V_1$ and $V_1^{\perp} = V_0$. Moreover, $\varphi|_{V_1}$ is the identity map and $\varphi|_{V_0}$ is the zero map, so $V_1 = \text{image}(\varphi)$ and $V_0 = \text{ker}(\varphi)$. Therefore $\text{ker}(\varphi) \perp \text{image}(\varphi)$. By condition (b) of the previous exercise, we see that φ is an orthogonal projection.

Conversely, suppose that φ is an orthogonal projection. By the same exercise, we have $\varphi \circ \varphi = \varphi$ and ker $(\varphi) \perp$ image (φ) . Note that $V = \text{ker}(\varphi) \oplus \text{image}(\varphi)$. This follows from the fact that dim $(V) = \text{dim}(\text{ker}(\varphi)) + \text{dim}(\text{image}(\varphi))$ and the fact that ker $(\varphi) \perp$ image (φ) , which implies that ker $(\varphi) \cap \text{image}(\varphi) = \{0\}$. Let $k = \text{dim}(\text{image}(\varphi))$. Choose an orthonormal basis ($\mathbf{b}_1, \dots, \mathbf{b}_k$) for image (φ) and an orthonormal basis ($\mathbf{b}_{k+1}, \dots, \mathbf{b}_k$) for ker (φ) . Since $\varphi \circ \varphi = \varphi$, it follows that $\varphi|_{\text{image}(\varphi)}$ is the identity map, and $\varphi|_{\text{ker}(\varphi)}$ is the zero map. Hence with respect to the orthonormal basis ($\mathbf{b}_1, \dots, \mathbf{b}_n$) for V, φ is represented by the diagonal matrix whose first k entries are 1 and remaining entries are 0.