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Exercise 1 (Warm-up: orthogonal complement and orthogonal projection)
Let V be a euclidean or unitary vector space of finite dimension, U be a subspace of V and n;; : V — U be the
orthogonal projection onto U. Check the following facts.

(a) U+ is asubspace of V.
(b) If B is a basis of U, then Ut = {ve V |v L B}.
(c) my is linear, surjective and ker(my) = Ut
(d) myomy=my.
(e) For any subspace W of V,
) W)=(Unw)e U™

(f) If B=(vy,...,,V,) is an orthonormal basis of U, then
(V) =Y (v, ..
i=1

Solution:
In the sequel, F is C or R.

a) Leta, €F and v,w e U™L. For everyue U,
(w,av+ w) = a{u,v) + fu,w)=a-0+-0=0,

hence av+ pw e U*.

b) Let B be a basis of U.
“C” is obvious.

“>” Letv L B. If ue U is arbitrary, then u = Z?zl Aiv; for A; €F,i=1,...,n. It follows that

<V, l.l) = <V’i A'ivi> = i Z’i (V’ Vi) = 0:

hence ve UL.

¢) Let a,8 € F and v,w € U*. Since, by Lemma 2.3.7, V = U & U+, there are unique v;,w; € U and v,,w, € U+
such that

v=v;+Vv, and w=w;+w,.
It follows that

av+ Bw= (av, + fw,) + (av, + fw,) with av, + Bw, € U, av, + fw, € U*.




d)
e)

H

Therefore,
nylav+pw) = av;+pw; = any(v) + Bry(w),

that is, mry is linear.
Since 7ty (u) = u for all u € U, we get that 7, is surjective.

It remains to prove that ker(r;) = U*. This follows immediately from the fact that any v € V has a unique
decomposition as

v=mny(v)+V wherev € U".

For any v € V, we have that 7t;;(v) € U, hence 7ty (7t (v)) = my(v).

By double inclusion. If v=w+u’ € (UNW)® U+, then 7, (v) = my(w) € W. Conversely, if m,(v) € W, then
v=n,(V)+V-ny(v)e(UnW)®U".

Letu:=Y (v,v)v,eUandw:=v—u=v— Y. (v;,V)v;. Then
v=u+w, withueUandweU'.

It follows that 7, (v) = u.

Exercise 2 (Orthogonal complements)
(Exercise 2.3.5 on page 68 of the notes.) Let V be a euclidean or unitary vector space of finite dimension. Moreover, let
U, U, U, be subspaces of V. Prove the following facts.

(a) U,CU, implies Uy CU}-.
®) (U, +Uy)t=Uf nU;.
(© (UHt=u.

@ (U;nUY* =UL + UL

Solution:
a)
veU; = vluforallueU,
= vluforallueU,, as U;CU,
= Ve Ull.
b) “C” By (i), since Uy, UyCU, + U,.

c)

“2” Letve Ui NU;, and u € U, + U,, s0 u =1, + u, for some u; € U;. Then
(v,u) = (v,u;) + (v,u,) =0+ 0=0.
Thusve (Ul + Uz)l.

It is easy to see that U C (U+)*. By Lemma 2.3.7, we have that V = W+ @ W for all subspaces W of V. By letting
W :=U"', we get that V = (UY)' @ U, so

dim((UH)Y) = dim(V) — dim(U*) = dim(U).

Since U C (U+)*, the equality follows.

d) Apply (ii) and (iii) to get that

Ul +Uf = ((Ull+Uzl)l)l=((Ull)lﬂ(Uzl)L)Lz(UlﬂUz)L.

Exercise 3 (Stereographic projection)
Let E C R* be the plane spanned by e; and e, and let S € R® be the sphere with radius 1 and centre 0. We denote the
north pole of S by p:=e; and we set S, := S\ {p}.




We define a map 7 : E — S, by letting 7(x) be the point of intersection between S, and the line passing through p and x.
(a) Give an explicit formula for m, i.e., find functions f(x,y), g(x,y), and h(x,y) such that m(x,y,0) =
(f (e, ¥), 8(x, ¥), hx, y)).
(b) Prove that w: E — S, is a bijection.
(c) Let C C S be a circle, i.e., the intersection of S with a plane given by an equation of the form ax + by +cz =d.
Prove that the pre-image n~![C] is either also a circle or a line.

(d) Letc:R — E be aline with parametric description xe; +tv, t € R, where v = (cos a, sin a, 0). Note that c intersects
the e;-axis in the point xe; under the angle a. Prove that the image of ¢ under 7, i.e., the curve moc: R — S,,
intersects the great circle {(u,0,v) € S, : u?> + v?> = 1} under the same angle a. (This implies that 7 preserves
angles. Such maps are called conformal.)

(Hint. Find the angle between the tangent vectors of the two curves. The tangent vector of a curve c¢ at the

point c(t,) is given by its derivative %c| to')

Solution:
a) Intersecting the line with parametric description p + A(x — p) with S we obtain the equation
Ilp+Ax-plll=1,

which has the solution

A 2
X2 y241
Hence,
0 9 X 1 2x
x)=|0|+———7+—| ¥y |=———— 2y
1 x2+y2+1 1 x2+y2+1 X24y2o1

b) To show that m is injective, suppose that x; = (x;,¥;,0) and x, = (x5, y,,0) are two points with m(x;) = 7(x,).
Looking at the third coordinate, we obtain the equation

(x> +(n)?*-1 _ (x)* + (y2)* -1
()2 + ()2 41 ()2 + ()2 +1°




)

d)

which implies that (x;)? + (y;)? = (x,)? + (¥,)?. Looking at the first coordinate, we obtain

2x 2X4

(x1)2 + (.)’1)2 +1 (X2)2 + (}’2)2 +1°

Since the denominators are equal, it follows that x; = x,. In the same way we can show that y; = y,. Hence,
X1 = Xz.

It remains to show that 1 is surjective. Instead of doing the calculations, let us argue geometrically. Lety € S,
be an arbitrary point. We construct the line passing through p and y. Since y # p this line is not parallel to the
plane E. Hence, it intersects E in some points x. By definition of 7 it follows that 7(x) =y.

C is given by the two equations

ax+by+cz=d and x?>+y’+z2=1.

To obtain the equations for its pre-image under 7 we substitute the functions from (i).

2ax +2by +c(x* +y* - 1) 4%+ 4y% + (x% + y* — 1)?
=d and =1.
x?+y*+1 (2 +y>+1)

The second equation is automatically satisfied, since (x) € S,. Hence, we only need to consider the first one.
Simplifying it yields

2ax +2by +cx?*+cy? —c=dx* +dy*+d,
which is equivalent to
2ax +2by +(c—d)x*+ (c —d)y*=c+d.
If ¢ = d then we obtain
2ax +2by =2d,

which is the equation of a line. Otherwise, we get

0=x*+y*+2 T x42 b y—c+d

c—d c—d c—d
=(x+L)2+(y+ b )2_ a? _ b2 _C+d
(c—d) (c—d) (c—d)? (c—d)? c—-d

This equation is of the form
(x—ay+(-BP=y.
If y < 0 then it has no solution. Otherwise, it describes a circle of radius ,/y with centre (a, ).

We abbreviate s := sina and ¢ := cos a. Note that c? +s2 = 1. The image is the curve

2(x + tc)
(x+tc)?+t2s2 + 1€
2ts
+ (x +tc)*+ 2211
(x+tc)?+t%%—1
(x+tc)?+t2s2 + 1€

m(c(t)) =

1

2

3

_ 20x +tc)ey +2tsey + ((x + tc)’ + t%5% — 1)e;
B (x+tc)®+t%2+1




Its derivative at t = 0 is

_ (2ce; +2se, + 2xce;)(x* + 1) — (2xe; + (x* — 1)e;)(2xc)
B (x2+1)?
_2¢(1—x?)eq +2s(x* +1)e, +4cxe;

(x?+1)?

d
)|

The tangent vector of the great circle at the point ue; + ve; is —ve; + ue;. Since

xe; + (x% —1)e,
x2+1

2
n(c(0)) =

>

we compute

_(x2 - 1)e1 + er3
x2+1

d 20(1 —x2) +8cx?  2c(x?+1)? 2
] —TC(C(t))‘ >= 2 3 = 2 3 = 2 .
dt t=0 (x*+1) (x*+1) x“+1

Furthermore, we have

V4c2(1 — x2)2 + 4s2(x2 4 1) + 16¢2x2
N (2 +1)?

V4c? — 8c2x2 + 4c2x* 4 452(x? + 1) 4 16¢2x2
B (2 + 12

V4c? + 8c2x2 + 4c2xt + 4s2(x2 + 1)2
N (2 + 1)

VAc2(x2 + 1) + 4s2(x2 4 1)2
N (x2 £ 1)?

2(x2+1)
T 1)y

2
T2t
—(x?—1)e; +2xe; Vx2—124+4x2  /(x2+1)2
x2+1 = x?+1 RS =1

d
=]

Consequently, the angle 8 between the two curves is

2c  x%+1
x2+1 2

cosff = =c=cosa.

Exercise 4 (Characterisations of orthogonal projections)

(Exercise 2.3.2 on page 68 of the notes.) Let ¢ be an endomorphism of a finite dimensional euclidean or unitary vector
space V.

Show the equivalence of the following:

(a) ¢ is an orthogonal projection.
(b) ¢ oy = and ker(p) L image(p).
(© pop=pandv—p(v)Lpv)forallveV.
(d) v—¢(v) L image(p) forallve V.
Solution:
(a) = (b). By Exercise E8.1.
(b) = (c) and (b) = (d) follow immediately from the fact that ¢ o ¢ = ¢ implies v — p(v) € ker(p) forallve V.

(c) = (b). Let a € ker(y) and v € image(), hence p(a) =0 and ¢(v) =V, as p o p = ¢. By letting w:=a+v, it
follows that ¢ (w) = ¢(a) + ¢(v) = 0 4+ v = v. Therefore,

a=w—v=w—pWw) L p(w)=v.




(d) = (a). Let U := image(y). We shall prove that ¢ = 7y, the orthogonal projection on U. If v € V is arbitrary, then
v =u+ 1’ for unique u € U and u’ € U+, by Lemma 2.3.7. We have to show that ¢(v) = u = 7m;;(v). Let us remark first
that u — ¢(v) € U. On the other hand,

u—pWV)=(v-—p) —u €U, asv-—p(v)e U by hypothesis.

Therefore, we must have u — ¢(v) =0, that is p(v) =u.

Exercise 5 (More on orthogonal projections)

(Exercise 2.3.3 on page 68 of the notes.) Show that the orthogonal projections of an n-dimensional euclidean or unitary
vector space V are precisely those endomorphisms ¢ of V that are represented w.r.t. a suitable orthonormal basis by a
diagonal matrix with ones and zeroes on the diagonal.

Solution:

Suppose first that there exists an orthonormal basis B = (b, ...,b,) in which ¢ is represented by a diagonal matrix
with ones and zeroes on the diagonal, so ¢ o ¢ = ¢. Letting V}, and V; be the eigenspaces corresponding to eigenvalues
0 and 1, respectively, it is immediate that V =V, @ V; and Vll = V. Moreover, ¢|y, is the identity map and ¢|y, is the
zero map, so V; = image(y) and V,, = ker(y). Therefore ker(¢) L image(y). By condition (b) of the previous exercise,
we see that ¢ is an orthogonal projection.

Conversely, suppose that ¢ is an orthogonal projection. By the same exercise, we have ¢ o ¢ = ¢ and ker(p) L
image(). Note that V = ker(y) @ image(y). This follows from the fact that dim(V) = dim(ker(¢)) + dim(image(¢))
and the fact that ker(¢) L image(y), which implies that ker(¢) Nnimage(¢) = {0}. Let k = dim(image(y)). Choose
an orthonormal basis (by,...,b;) for image(y) and an orthonormal basis (by,,...,b;) for ker(y). Since ¢ o p = o,
it follows that ¢|image(y) is the identity map, and ¢|ier(y) is the zero map. Hence with respect to the orthonormal basis
(by,...,b,) for V, ¢ is represented by the diagonal matrix whose first k entries are 1 and remaining entries are 0.




