Linear Algebra II
 Exercise Sheet no. 8

Prof. Dr. Otto
 Dr. Le Roux

May 30, 2011
Dr. Linshaw

Exercise 1 (Warm-up: orthogonal complement and orthogonal projection)
Let V be a euclidean or unitary vector space of finite dimension, U be a subspace of V and $\pi_{U}: V \rightarrow U$ be the orthogonal projection onto U. Check the following facts.
(a) U^{\perp} is a subspace of V.
(b) If B is a basis of U, then $U^{\perp}=\{\mathbf{v} \in V \mid \mathbf{v} \perp B\}$.
(c) π_{U} is linear, surjective and $\operatorname{ker}\left(\pi_{U}\right)=U^{\perp}$.
(d) $\pi_{U} \circ \pi_{U}=\pi_{U}$.
(e) For any subspace W of V,

$$
\pi_{U}^{-1}(W)=(U \cap W) \oplus U^{\perp}
$$

(f) If $B=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ is an orthonormal basis of U, then

$$
\pi_{U}(\mathbf{v})=\sum_{i=1}^{n}\left\langle\mathbf{v}_{i}, \mathbf{v}\right\rangle \mathbf{v}_{i}
$$

Solution:

In the sequel, \mathbb{F} is \mathbb{C} or \mathbb{R}.
a) Let $\alpha, \beta \in \mathbb{F}$ and $\mathbf{v}, \mathbf{w} \in U^{\perp}$. For every $\mathbf{u} \in U$,

$$
\langle\mathbf{u}, \alpha \mathbf{v}+\beta \mathbf{w}\rangle=\alpha\langle\mathbf{u}, \mathbf{v}\rangle+\beta\langle\mathbf{u}, \mathbf{w}\rangle=\alpha \cdot 0+\beta \cdot 0=0
$$

hence $\alpha \mathbf{v}+\beta \mathbf{w} \in U^{\perp}$.
b) Let B be a basis of U.
" \subseteq " is obvious.
" \supseteq " Let $\mathbf{v} \perp B$. If $\mathbf{u} \in U$ is arbitrary, then $\mathbf{u}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i}$ for $\lambda_{i} \in \mathbb{F}, i=1, \ldots, n$. It follows that

$$
\langle\mathbf{v}, \mathbf{u}\rangle=\left\langle\mathbf{v}, \sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i}\right\rangle=\sum_{i=1}^{n} \lambda_{i}\left\langle\mathbf{v}, \mathbf{v}_{i}\right\rangle=0
$$

hence $\mathbf{v} \in U^{\perp}$.
c) Let $\alpha, \beta \in \mathbb{F}$ and $\mathbf{v}, \mathbf{w} \in U^{\perp}$. Since, by Lemma $2.3 .7, V=U \oplus U^{\perp}$, there are unique $\mathbf{v}_{1}, \mathbf{w}_{1} \in U$ and $\mathbf{v}_{2}, \mathbf{w}_{2} \in U^{\perp}$ such that

$$
\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2} \quad \text { and } \quad \mathbf{w}=\mathbf{w}_{1}+\mathbf{w}_{2} .
$$

It follows that

$$
\alpha \mathbf{v}+\beta \mathbf{w}=\left(\alpha \mathbf{v}_{1}+\beta \mathbf{w}_{1}\right)+\left(\alpha \mathbf{v}_{2}+\beta \mathbf{w}_{2}\right) \quad \text { with } \alpha \mathbf{v}_{1}+\beta \mathbf{w}_{1} \in U, \alpha \mathbf{v}_{2}+\beta \mathbf{w}_{2} \in U^{\perp}
$$

Therefore,

$$
\pi_{U}(\alpha \mathbf{v}+\beta \mathbf{w})=\alpha \mathbf{v}_{1}+\beta \mathbf{w}_{1}=\alpha \pi_{U}(\mathbf{v})+\beta \pi_{U}(\mathbf{w})
$$

that is, π_{U} is linear.
Since $\pi_{U}(\mathbf{u})=\mathbf{u}$ for all $\mathbf{u} \in U$, we get that π_{U} is surjective.
It remains to prove that $\operatorname{ker}\left(\pi_{U}\right)=U^{\perp}$. This follows immediately from the fact that any $\mathbf{v} \in V$ has a unique decomposition as

$$
\mathbf{v}=\pi_{U}(\mathbf{v})+\mathbf{v}^{\prime} \quad \text { where } \mathbf{v}^{\prime} \in U^{\perp}
$$

d) For any $\mathbf{v} \in V$, we have that $\pi_{U}(\mathbf{v}) \in U$, hence $\pi_{U}\left(\pi_{U}(\mathbf{v})\right)=\pi_{U}(\mathbf{v})$.
e) By double inclusion. If $\mathbf{v}=\mathbf{w}+\mathbf{u}^{\prime} \in(U \cap W) \oplus U^{\perp}$, then $\pi_{U}(\mathbf{v})=\pi_{U}(\mathbf{w}) \in W$. Conversely, if $\pi_{U}(\mathbf{v}) \in W$, then $v=\pi_{U}(\mathbf{v})+\left(\mathbf{v}-\pi_{U}(\mathbf{v})\right) \in(U \cap W) \oplus U^{\perp}$.
f) Let $\mathbf{u}:=\sum_{i=1}^{n}\left\langle\mathbf{v}_{i}, \mathbf{v}\right\rangle \mathbf{v}_{i} \in U$ and $\mathbf{w}:=\mathbf{v}-\mathbf{u}=\mathbf{v}-\sum_{i=1}^{n}\left\langle\mathbf{v}_{i}, \mathbf{v}\right\rangle \mathbf{v}_{i}$. Then

$$
\mathbf{v}=\mathbf{u}+\mathbf{w}, \quad \text { with } \mathbf{u} \in U \text { and } \mathbf{w} \in U^{\perp} .
$$

It follows that $\pi_{U}(\mathbf{v})=\mathbf{u}$.
Exercise 2 (Orthogonal complements)
(Exercise 2.3 .5 on page 68 of the notes.) Let V be a euclidean or unitary vector space of finite dimension. Moreover, let U, U_{1}, U_{2} be subspaces of V. Prove the following facts.
(a) $U_{1} \subseteq U_{2}$ implies $U_{2}^{\perp} \subseteq U_{1}^{\perp}$.
(b) $\left(U_{1}+U_{2}\right)^{\perp}=U_{1}^{\perp} \cap U_{2}^{\perp}$.
(c) $\left(U^{\perp}\right)^{\perp}=U$.
(d) $\left(U_{1} \cap U_{2}\right)^{\perp}=U_{1}^{\perp}+U_{2}^{\perp}$.

Solution:

a)

$$
\begin{aligned}
\mathbf{v} \in U_{2}^{\perp} & \Rightarrow \mathbf{v} \perp \mathbf{u} \text { for all } \mathbf{u} \in U_{2} \\
& \Rightarrow \mathbf{v} \perp \mathbf{u} \text { for all } \mathbf{u} \in U_{1}, \text { as } U_{1} \subseteq U_{2} \\
& \Rightarrow \mathbf{v} \in U_{1}^{\perp} .
\end{aligned}
$$

b) " \subseteq " By (i), since $U_{1}, U_{2} \subseteq U_{1}+U_{2}$.
" \supseteq " Let $\mathbf{v} \in U_{1}^{\perp} \cap U_{2}^{\perp}$, and $\mathbf{u} \in U_{1}+U_{2}$, so $\mathbf{u}=\mathbf{u}_{1}+\mathbf{u}_{2}$ for some $\mathbf{u}_{i} \in U_{i}$. Then

$$
\langle\mathbf{v}, \mathbf{u}\rangle=\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle+\left\langle\mathbf{v}, \mathbf{u}_{2}\right\rangle=0+0=0 .
$$

Thus $\mathbf{v} \in\left(U_{1}+U_{2}\right)^{\perp}$.
c) It is easy to see that $U \subseteq\left(U^{\perp}\right)^{\perp}$. By Lemma 2.3.7, we have that $V=W^{\perp} \oplus W$ for all subspaces W of V. By letting $W:=U^{\perp}$, we get that $V=\left(U^{\perp}\right)^{\perp} \oplus U^{\perp}$, so

$$
\operatorname{dim}\left(\left(U^{\perp}\right)^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}\left(U^{\perp}\right)=\operatorname{dim}(U)
$$

Since $U \subseteq\left(U^{\perp}\right)^{\perp}$, the equality follows.
d) Apply (ii) and (iii) to get that

$$
U_{1}^{\perp}+U_{2}^{\perp}=\left(\left(U_{1}^{\perp}+U_{2}^{\perp}\right)^{\perp}\right)^{\perp}=\left(\left(U_{1}^{\perp}\right)^{\perp} \cap\left(U_{2}^{\perp}\right)^{\perp}\right)^{\perp}=\left(U_{1} \cap U_{2}\right)^{\perp}
$$

Exercise 3 (Stereographic projection)

Let $E \subseteq \mathbb{R}^{3}$ be the plane spanned by \mathbf{e}_{1} and \mathbf{e}_{2} and let $S \subseteq \mathbb{R}^{3}$ be the sphere with radius 1 and centre $\mathbf{0}$. We denote the north pole of S by $\mathbf{p}:=\mathbf{e}_{3}$ and we set $S_{*}:=S \backslash\{\mathbf{p}\}$.

We define a map $\pi: E \rightarrow S_{*}$ by letting $\pi(\mathbf{x})$ be the point of intersection between S_{*} and the line passing through \mathbf{p} and \mathbf{x}.
(a) Give an explicit formula for π, i.e., find functions $f(x, y), g(x, y)$, and $h(x, y)$ such that $\pi(x, y, 0)=$ $(f(x, y), g(x, y), h(x, y))$.
(b) Prove that $\pi: E \rightarrow S_{*}$ is a bijection.
(c) Let $C \subseteq S$ be a circle, i.e., the intersection of S with a plane given by an equation of the form $a x+b y+c z=d$. Prove that the pre-image $\pi^{-1}[C]$ is either also a circle or a line.
(d) Let $c: \mathbb{R} \rightarrow E$ be a line with parametric description $x \mathbf{e}_{1}+t \mathbf{v}, t \in \mathbb{R}$, where $\mathbf{v}=(\cos \alpha, \sin \alpha, 0)$. Note that c intersects the \mathbf{e}_{1}-axis in the point $x \mathbf{e}_{1}$ under the angle α. Prove that the image of c under π, i.e., the curve $\pi \circ c: \mathbb{R} \rightarrow S_{*}$, intersects the great circle $\left\{(u, 0, v) \in S_{*}: u^{2}+v^{2}=1\right\}$ under the same angle α. (This implies that π preserves angles. Such maps are called conformal.)
(Hint. Find the angle between the tangent vectors of the two curves. The tangent vector of a curve c at the point $c\left(t_{0}\right)$ is given by its derivative $\left.\left.\frac{\mathrm{d}}{\mathrm{d} t} c\right|_{t_{0}}.\right)$

Solution:

a) Intersecting the line with parametric description $\mathbf{p}+\lambda(\mathbf{x}-\mathbf{p})$ with S we obtain the equation

$$
\|\mathbf{p}+\lambda(\mathbf{x}-\mathbf{p})\|=1
$$

which has the solution

$$
\lambda=\frac{2}{x^{2}+y^{2}+1} .
$$

Hence,

$$
\pi(\mathbf{x})=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+\frac{2}{x^{2}+y^{2}+1}\left(\begin{array}{c}
x \\
y \\
-1
\end{array}\right)=\frac{1}{x^{2}+y^{2}+1}\left(\begin{array}{c}
2 x \\
2 y \\
x^{2}+y^{2}-1
\end{array}\right) .
$$

b) To show that π is injective, suppose that $\mathbf{x}_{1}=\left(x_{1}, y_{1}, 0\right)$ and $\mathbf{x}_{2}=\left(x_{2}, y_{2}, 0\right)$ are two points with $\pi\left(\mathbf{x}_{1}\right)=\pi\left(\mathbf{x}_{2}\right)$. Looking at the third coordinate, we obtain the equation

$$
\frac{\left(x_{1}\right)^{2}+\left(y_{1}\right)^{2}-1}{\left(x_{1}\right)^{2}+\left(y_{1}\right)^{2}+1}=\frac{\left(x_{2}\right)^{2}+\left(y_{2}\right)^{2}-1}{\left(x_{2}\right)^{2}+\left(y_{2}\right)^{2}+1},
$$

which implies that $\left(x_{1}\right)^{2}+\left(y_{1}\right)^{2}=\left(x_{2}\right)^{2}+\left(y_{2}\right)^{2}$. Looking at the first coordinate, we obtain

$$
\frac{2 x_{1}}{\left(x_{1}\right)^{2}+\left(y_{1}\right)^{2}+1}=\frac{2 x_{2}}{\left(x_{2}\right)^{2}+\left(y_{2}\right)^{2}+1} .
$$

Since the denominators are equal, it follows that $x_{1}=x_{2}$. In the same way we can show that $y_{1}=y_{2}$. Hence, $\mathbf{x}_{1}=\mathbf{x}_{2}$.

It remains to show that π is surjective. Instead of doing the calculations, let us argue geometrically. Let $\mathbf{y} \in S_{*}$ be an arbitrary point. We construct the line passing through \mathbf{p} and \mathbf{y}. Since $\mathbf{y} \neq \mathbf{p}$ this line is not parallel to the plane E. Hence, it intersects E in some points \mathbf{x}. By definition of π it follows that $\pi(\mathbf{x})=\mathbf{y}$.
c) C is given by the two equations

$$
a x+b y+c z=d \quad \text { and } \quad x^{2}+y^{2}+z^{2}=1
$$

To obtain the equations for its pre-image under π we substitute the functions from (i).

$$
\frac{2 a x+2 b y+c\left(x^{2}+y^{2}-1\right)}{x^{2}+y^{2}+1}=d \quad \text { and } \quad \frac{4 x^{2}+4 y^{2}+\left(x^{2}+y^{2}-1\right)^{2}}{\left(x^{2}+y^{2}+1\right)^{2}}=1
$$

The second equation is automatically satisfied, since $\pi(\mathbf{x}) \in S_{*}$. Hence, we only need to consider the first one. Simplifying it yields

$$
2 a x+2 b y+c x^{2}+c y^{2}-c=d x^{2}+d y^{2}+d,
$$

which is equivalent to

$$
2 a x+2 b y+(c-d) x^{2}+(c-d) y^{2}=c+d
$$

If $c=d$ then we obtain

$$
2 a x+2 b y=2 d,
$$

which is the equation of a line. Otherwise, we get

$$
\begin{aligned}
0 & =x^{2}+y^{2}+2 \frac{a}{c-d} x+2 \frac{b}{c-d} y-\frac{c+d}{c-d} \\
& =\left(x+\frac{a}{(c-d)}\right)^{2}+\left(y+\frac{b}{(c-d)}\right)^{2}-\frac{a^{2}}{(c-d)^{2}}-\frac{b^{2}}{(c-d)^{2}}-\frac{c+d}{c-d} .
\end{aligned}
$$

This equation is of the form

$$
(x-\alpha)^{2}+(y-\beta)^{2}=\gamma .
$$

If $\gamma<0$ then it has no solution. Otherwise, it describes a circle of radius $\sqrt{\gamma}$ with centre (α, β).
d) We abbreviate $s:=\sin \alpha$ and $c:=\cos \alpha$. Note that $c^{2}+s^{2}=1$. The image is the curve

$$
\begin{aligned}
\pi(c(t)) & =\frac{2(x+t c)}{(x+t c)^{2}+t^{2} s^{2}+1} \mathbf{e}_{1} \\
& +\frac{2 t s}{(x+t c)^{2}+t^{2} s^{2}+1} \mathbf{e}_{2} \\
& +\frac{(x+t c)^{2}+t^{2} s^{2}-1}{(x+t c)^{2}+t^{2} s^{2}+1} \mathbf{e}_{3} \\
& =\frac{2(x+t c) \mathbf{e}_{1}+2 t s \mathbf{e}_{2}+\left((x+t c)^{2}+t^{2} s^{2}-1\right) \mathbf{e}_{3}}{(x+t c)^{2}+t^{2} s^{2}+1}
\end{aligned}
$$

Its derivative at $t=0$ is

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \pi(c(t))\right|_{t=0} & =\frac{\left(2 c \mathbf{e}_{1}+2 s \mathbf{e}_{2}+2 x c \mathbf{e}_{3}\right)\left(x^{2}+1\right)-\left(2 x \mathbf{e}_{1}+\left(x^{2}-1\right) \mathbf{e}_{3}\right)(2 x c)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2 c\left(1-x^{2}\right) \mathbf{e}_{1}+2 s\left(x^{2}+1\right) \mathbf{e}_{2}+4 c x \mathbf{e}_{3}}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

The tangent vector of the great circle at the point $u \mathbf{e}_{1}+v \mathbf{e}_{3}$ is $-v \mathbf{e}_{1}+u \mathbf{e}_{3}$. Since

$$
\pi(c(0))=\frac{2 x \mathbf{e}_{1}+\left(x^{2}-1\right) \mathbf{e}_{3}}{x^{2}+1}
$$

we compute

$$
\left\langle\frac{-\left(x^{2}-1\right) \mathbf{e}_{1}+2 x \mathbf{e}_{3}}{x^{2}+1},\left.\frac{\mathrm{~d}}{\mathrm{~d} t} \pi(c(t))\right|_{t=0}\right\rangle=\frac{2 c\left(1-x^{2}\right)^{2}+8 c x^{2}}{\left(x^{2}+1\right)^{3}}=\frac{2 c\left(x^{2}+1\right)^{2}}{\left(x^{2}+1\right)^{3}}=\frac{2 c}{x^{2}+1} .
$$

Furthermore, we have

$$
\begin{aligned}
\left\|\left.\frac{\mathrm{d}}{\mathrm{~d} t} \pi(c(t))\right|_{t=0}\right\| & =\frac{\sqrt{4 c^{2}\left(1-x^{2}\right)^{2}+4 s^{2}\left(x^{2}+1\right)^{2}+16 c^{2} x^{2}}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\sqrt{4 c^{2}-8 c^{2} x^{2}+4 c^{2} x^{4}+4 s^{2}\left(x^{2}+1\right)^{2}+16 c^{2} x^{2}}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\sqrt{4 c^{2}+8 c^{2} x^{2}+4 c^{2} x^{4}+4 s^{2}\left(x^{2}+1\right)^{2}}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\sqrt{4 c^{2}\left(x^{2}+1\right)^{2}+4 s^{2}\left(x^{2}+1\right)^{2}}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2}{x^{2}+1}, \\
\left\|\frac{-\left(x^{2}-1\right) \mathbf{e}_{1}+2 x \mathbf{e}_{3}}{x^{2}+1}\right\| & =\frac{\sqrt{\left(x^{2}-1\right)^{2}+4 x^{2}}}{x^{2}+1}=\frac{\sqrt{\left(x^{2}+1\right)^{2}}}{x^{2}+1}=1 .
\end{aligned}
$$

Consequently, the angle β between the two curves is

$$
\cos \beta=\frac{2 c}{x^{2}+1} \cdot \frac{x^{2}+1}{2}=c=\cos \alpha .
$$

Exercise 4 (Characterisations of orthogonal projections)
(Exercise 2.3.2 on page 68 of the notes.) Let φ be an endomorphism of a finite dimensional euclidean or unitary vector space V.

Show the equivalence of the following:
(a) φ is an orthogonal projection.
(b) $\varphi \circ \varphi=\varphi$ and $\operatorname{ker}(\varphi) \perp \operatorname{image}(\varphi)$.
(c) $\varphi \circ \varphi=\varphi$ and $\mathbf{v}-\varphi(\mathbf{v}) \perp \varphi(\mathbf{v})$ for all $\mathbf{v} \in V$.
(d) $\mathbf{v}-\varphi(\mathbf{v}) \perp \operatorname{image}(\varphi)$ for all $\mathbf{v} \in V$.

Solution:

(a) \Rightarrow (b). By Exercise E 8.1.
(b) \Rightarrow (c) and (b) \Rightarrow (d) follow immediately from the fact that $\varphi \circ \varphi=\varphi$ implies $\mathbf{v}-\varphi(\mathbf{v}) \in \operatorname{ker}(\varphi)$ for all $\mathbf{v} \in V$.
(c) \Rightarrow (b). Let $\mathbf{a} \in \operatorname{ker}(\varphi)$ and $\mathbf{v} \in \operatorname{image}(\varphi)$, hence $\varphi(\mathbf{a})=\mathbf{0}$ and $\varphi(\mathbf{v})=\mathbf{v}$, as $\varphi \circ \varphi=\varphi$. By letting $\mathbf{w}:=\mathbf{a}+\mathbf{v}$, it
follows that $\varphi(\mathbf{w})=\varphi(\mathbf{a})+\varphi(\mathbf{v})=\mathbf{0}+\mathbf{v}=\mathbf{v}$. Therefore,

$$
\mathbf{a}=\mathbf{w}-\mathbf{v}=\mathbf{w}-\varphi(\mathbf{w}) \perp \varphi(\mathbf{w})=\mathbf{v} .
$$

(d) \Rightarrow (a). Let $U:=\operatorname{image}(\varphi)$. We shall prove that $\varphi=\pi_{U}$, the orthogonal projection on U. If $\mathbf{v} \in V$ is arbitrary, then $\mathbf{v}=\mathbf{u}+\mathbf{u}^{\prime}$ for unique $\mathbf{u} \in U$ and $\mathbf{u}^{\prime} \in U^{\perp}$, by Lemma 2.3.7. We have to show that $\varphi(\mathbf{v})=\mathbf{u}=\pi_{U}(\mathbf{v})$. Let us remark first that $\mathbf{u}-\varphi(\mathbf{v}) \in U$. On the other hand,

$$
\mathbf{u}-\varphi(\mathbf{v})=(\mathbf{v}-\varphi(\mathbf{v}))-\mathbf{u}^{\prime} \in U^{\perp}, \quad \text { as } \mathbf{v}-\varphi(\mathbf{v}) \in U^{\perp} \text { by hypothesis. }
$$

Therefore, we must have $\mathbf{u}-\varphi(\mathbf{v})=\mathbf{0}$, that is $\varphi(\mathbf{v})=\mathbf{u}$.
Exercise 5 (More on orthogonal projections)
(Exercise 2.3 .3 on page 68 of the notes.) Show that the orthogonal projections of an n-dimensional euclidean or unitary vector space V are precisely those endomorphisms φ of V that are represented w.r.t. a suitable orthonormal basis by a diagonal matrix with ones and zeroes on the diagonal.

Solution:

Suppose first that there exists an orthonormal basis $B=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ in which φ is represented by a diagonal matrix with ones and zeroes on the diagonal, so $\varphi \circ \varphi=\varphi$. Letting V_{0} and V_{1} be the eigenspaces corresponding to eigenvalues 0 and 1, respectively, it is immediate that $V=V_{0} \oplus V_{1}$ and $V_{1}^{\perp}=V_{0}$. Moreover, $\left.\varphi\right|_{V_{1}}$ is the identity map and $\left.\varphi\right|_{V_{0}}$ is the zero map, so $V_{1}=\operatorname{image}(\varphi)$ and $V_{0}=\operatorname{ker}(\varphi)$. Therefore $\operatorname{ker}(\varphi) \perp$ image (φ). By condition (b) of the previous exercise, we see that φ is an orthogonal projection.

Conversely, suppose that φ is an orthogonal projection. By the same exercise, we have $\varphi \circ \varphi=\varphi$ and $\operatorname{ker}(\varphi) \perp$ $\operatorname{image}(\varphi)$. Note that $V=\operatorname{ker}(\varphi) \oplus \operatorname{image}(\varphi)$. This follows from the fact that $\operatorname{dim}(V)=\operatorname{dim}(\operatorname{ker}(\varphi))+\operatorname{dim}(\operatorname{image}(\varphi))$ and the fact that $\operatorname{ker}(\varphi) \perp \operatorname{image}(\varphi)$, which implies that $\operatorname{ker}(\varphi) \cap \operatorname{image}(\varphi)=\{0\}$. Let $k=\operatorname{dim}(\operatorname{image}(\varphi))$. Choose an orthonormal basis $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right)$ for image (φ) and an orthonormal basis $\left(\mathbf{b}_{k+1}, \ldots, \mathbf{b}_{k}\right)$ for $\operatorname{ker}(\varphi)$. Since $\varphi \circ \varphi=\varphi$, it follows that $\left.\varphi\right|_{\text {image }(\varphi)}$ is the identity map, and $\left.\varphi\right|_{\operatorname{ker}(\varphi)}$ is the zero map. Hence with respect to the orthonormal basis $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ for V, φ is represented by the diagonal matrix whose first k entries are 1 and remaining entries are 0 .

