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Exercise 1 (Warm up: the trace)
Recall Exercise E4.3 about the trace.

Let V := R(n,n) be the R-vector space of all real n× n matrices and let S ⊆ V be the subspace consisting of all symmetric
matrices (i.e., all matrices A with At = A). For A, B ∈ V , we define

〈A, B〉 := Tr(AB) ,

where the trace Tr(A) of a matrix A= (ai j) is defined as

Tr(A) :=
n
∑

i=1

aii .

(a) Show that 〈. , . 〉 is bilinear.

(b) Show that 〈. , . 〉 is a scalar product on S.

Solution:

a) Let A= (ai j), B = (bi j), and C = (ci j) be matrices and λ ∈ R. Since

〈A, B〉=
n
∑

i,k=1

aik bki

it follows that

〈A+ C , B〉=
n
∑

i,k=1

(aik + cik)bki =
n
∑

i,k=1

aik bki +
n
∑

i,k=1

cik bki = 〈A, B〉+ 〈C , B〉 ,

〈λA, B〉=
n
∑

i,k=1

λaik bki = λ
n
∑

i,k=1

aik bki = λ〈A, B〉 .

In the same way, we show that 〈A, B+ C〉= 〈A, B〉+ 〈A, C〉 and 〈A,λB〉= λ〈A, B〉 .

b) We have

〈A, A〉=
n
∑

i,k=1

aikaki =
n
∑

i,k=1

(aik)
2 ¾ 0 .

Furthermore, it follows that we have 〈A, A〉= 0 if and only if A= 0.

Exercise 2 (Cauchy-Schwarz and triangle inequalities)
(a) (Exercise 2.1.4 on page 60 of the notes)

Let (V, 〈. , . 〉) be a euclidean or unitary vector space. Show that equality holds in the Cauchy-Schwarz inequality,
i.e., we have ‖〈v,w〉‖= ‖v‖ · ‖w‖, if, and only if, v and w are linearly dependent.
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(b) (Exercise 2.1.5 on page 60 of the notes)
Let u,v,w be pairwise distinct vectors in a euclidean or unitary vector space (V, 〈. , . 〉), and write a := v − u,
b :=w− v. Show that equality holds in the triangle inequality

d(u,w) = d(u,v) + d(v,w) , or, equivalently, ‖a+ b‖= ‖a‖+ ‖b‖ ,

if, and only if, a and b are positive real scalar multiples of each other (geometrically: v = u+ s(w− u) for some
s ∈ (0,1)⊆ R).

Solution:

a) Without loss of generality we may assume that v,w 6= 0.

When v and w are linearly dependent, then w= λv for some λ. It follows that

‖〈v,w〉‖= ‖〈v,λv〉‖= ‖λ‖‖〈v,v〉‖= ‖λ‖‖v‖2 = ‖v‖‖λv‖= ‖v‖‖w‖ .

Conversely, suppose that

‖〈v,w〉‖= ‖v‖ · ‖w‖

and write λ= 〈v,w〉
〈v,v〉 . Then it follows, as in the proof of Proposition 2.1.10 (the Cauchy-Schwarz inequality) on page

59 of the notes, that

〈w−λv,w−λv〉= 〈w,w〉 −
〈w,v〉〈v,w〉
〈v,v〉

= ‖w‖2 −
‖v‖2‖w‖2

‖v‖2 = 0 .

So by positive definiteness of the scalar product, w= λv.

b) Note that a,b 6= 0, because u,v,w are pairwise distinct.

When b= λa with 0< λ ∈ R, then

‖a+ b‖= ‖a+λa‖= (1+λ)‖a‖= ‖a‖+λ‖a‖= ‖a‖+ ‖λa‖= ‖a‖+ ‖b‖ .

Conversely, when ‖a+ b‖= ‖a‖+ ‖b‖, also (‖a+ b‖)2 = (‖a‖+ ‖b‖)2. But

(‖a+ b‖)2 = 〈a+ b,a+ b〉= 〈a,a〉+ 〈a,b〉+ 〈b,a〉+ 〈b,b〉

¶ ‖a‖2 + 2‖〈a,b〉‖+ ‖b‖2, and

(‖a‖+ ‖b‖)2 = ‖a‖2 + 2‖a‖‖b‖+ ‖b‖2.

Therefore ‖a‖‖b‖ ¶ ‖〈a,b〉‖, and ‖a‖‖b‖ = ‖〈a,b〉‖ by Cauchy-Schwarz. So we know that b = λa for some λ ∈ C
by Exercise (E3.2). From ‖a+b‖= ‖a‖+‖b‖, we deduce that ‖1+λ‖= 1+‖λ‖, which implies that λ is a positive
real.

Exercise 3 (Orthogonal matrices)
We consider real n× n matrices. Set

O(n) := {A∈ R(n,n) | AtA= En}.

Show that O(n) is a subgroup of GLn(R).
Solution:
We have to show that En ∈ O(n) and that O(n) is closed under multiplication and inverses.

Since E t
nEn = En, we have En ∈ O(n). Furthermore, for A, B ∈ O(n), we have

(AB)tAB = B tAtAB = B t EnB = B t B = En .

Hence, AB ∈ O(n). Similarly, one can show that A−1 ∈ O(n). For the inverse, we first note that AtA= En implies At = A−1.
Therefore, we have

(A−1)tA−1 = (At)tAt = AAt = (AtA)t = E t
n = En .
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Exercise 4 (Orthogonal vectors)
Let V be a euclidean or unitary space and S = {v1, . . . ,vn} be a set of non-null pairwise orthogonal vectors.

(a) Show that S is linearly independent.

(b) Let u ∈ V . Show that the vector

w := u−
n
∑

i=1

〈vi ,u〉
〈vi ,vi〉

vi

is orthogonal to S. Note that
∑n

i=1
〈vi ,u〉
〈vi ,vi 〉

vi is the orthogonal projection of w on span(S).

(c) [Parseval’s identity] Suppose that V is finite dimensional and that S is an othornormal basis of V . Show that

〈v,w〉=
n
∑

i=1

〈v,vi〉〈vi ,w〉 for all v,w ∈ V .

(d) [Bessel’s inequality] Suppose that V is euclidean and S is orthonormal. Show that

n
∑

i=1

〈vi ,u〉2 ≤ ‖u‖2 for all u ∈ V .

Solution:

a) Suppose v1, . . . ,vn satisfy
∑n

i=1λivi = 0. We need to show that each λi is zero. For each j = 1, . . . , n, we get that

0= 〈v j ,0〉=

*

v j ,
n
∑

i=1

λivi

+

=
n
∑

i=1

λi〈v j ,vi〉= λ j〈v j ,v j〉 ,

since 〈v j ,vi〉 = 0 whenever j 6= i. But v j 6= 0. So 〈v j ,v j〉 6= 0 since the scalar product is positive definite. Hence,
λ j = 0 for each j = 1, . . . , n. Therefore S is linearly independent.

b) For each j = 1, . . . , n, we have that

〈v j ,w〉=

*

v j ,u−
n
∑

i=1

〈vi ,u〉
〈vi ,vi〉

v

+

= 〈v j ,u〉 −
n
∑

i=1

〈v j ,u〉
〈vi ,vi〉

〈v j ,vi〉

= 〈v j ,u〉 −
〈v j ,u〉
〈v j ,v j〉

〈v j ,v j〉

= 0 .

c) By Lemma 2.3.2, we have that w=
∑n

i=1〈vi ,w〉vi . Applying the operation 〈v, . 〉 on both sides, we obtain the result.

d) Setting w := u−
∑n

i=1〈vi ,u〉vi we have

‖w‖2 = 〈w,w〉=

*

u−
n
∑

i=1

〈vi ,u〉vi , u−
n
∑

j=1

〈v j ,u〉v j

+

= 〈u,u〉 − 2
n
∑

i=1

〈vi ,u〉2 +
n
∑

i, j=1

〈vi ,u〉〈v j ,u〉〈vi ,v j〉

= 〈u,u〉 −
n
∑

i=1

〈vi ,u〉2.

Since ‖w‖2 ≥ 0, the inequality follows.
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Exercise 5 (Jordan normal form for describing processes)
Suppose that we use vectors sn ∈ R3 to describe the state of a 3-dimensional system at step n ∈ N (for example, the

position of a particle in space). The evolution of the system from stage n to n+ 1 is given by

sn+1 = Asn , where A=







−4 2 −1
−4 3 0
14 −5 5






.

(a) Use a transformation of the given A into Jordan normal form in order to get a feasible formula for sn, as a function
of the index n and the initial state s0.

(b) Compute s100 for s0 =







1
3
1






.

Solution:
(a) The characteristic polynomial of A is pA = (1 − X )2(2 − X ), so λ1 = 1 and λ2 = 2 are the eigenvalues of A. The
corresponding eigenspaces are 1-dimensional, with generators







1
2
−1






for Vλ1

and







1
4
2






for Vλ2

.

So the Jordan normal form of A has two blocks, one of size 2 and one of size 1. As

(A− E3)
2 =







3 −1 1
12 −4 4
6 −2 2






,

dim(ker(A− E3)2) = 2. Hence, the Jordan block of size 2 has entries 1 on the diagonal. Therefore the Jordan normal
form of A is

J =







1 1 0
0 1 0
0 0 2






.

To find a matrix S such that A = SJS−1, we take as third column u3 =







1
4
2






, an eigenvector with eigenvalue 2, and as

second column an element of ker(A− E3)2 \ ker(A− E3), for example u2 =







0
1
1






. The first column will then be

u1 = (A− E3)u2 =







1
2
−1






. Hence, S =







1 0 1
2 1 4
−1 1 2






.

We have sn = Ans0 = SJ nS−1s0. Furthermore

J n =







1 n 0
0 1 0
0 0 2n






.

(b) For s0 =







1
3
1






=







1
4
2






−







0
1
1






, we have

sn = 2n







1
4
2






−







0
1
1






− n







1
2
−1






. Hence, s100 = 2100







1
4
2






−







100
201
−99






.
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