Linear Algebra II Exercise Sheet no. 7

Summer term 2011

TECHNISCHE

UNIVERSITÄT DARMSTADT

May 18, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Warm up: the trace)

Recall Exercise E4.3 about the trace.

Let $V := \mathbb{R}^{(n,n)}$ be the \mathbb{R} -vector space of all real $n \times n$ matrices and let $S \subseteq V$ be the subspace consisting of all symmetric matrices (i.e., all matrices A with $A^t = A$). For $A, B \in V$, we define

$$\langle A,B\rangle := \operatorname{Tr}(AB),$$

where the *trace* Tr(A) of a matrix $A = (a_{ij})$ is defined as

$$\operatorname{Tr}(A) := \sum_{i=1}^{n} a_{ii}.$$

(a) Show that $\langle ., . \rangle$ is bilinear.

(b) Show that $\langle .,. \rangle$ is a scalar product on *S*.

Solution:

a) Let $A = (a_{ij})$, $B = (b_{ij})$, and $C = (c_{ij})$ be matrices and $\lambda \in R$. Since

$$\langle A,B\rangle = \sum_{i,k=1}^n a_{ik}b_{ki}$$

it follows that

$$\langle A+C,B\rangle = \sum_{i,k=1}^{n} (a_{ik}+c_{ik})b_{ki} = \sum_{i,k=1}^{n} a_{ik}b_{ki} + \sum_{i,k=1}^{n} c_{ik}b_{ki} = \langle A,B\rangle + \langle C,B\rangle$$

$$\langle \lambda A,B\rangle = \sum_{i,k=1}^{n} \lambda a_{ik}b_{ki} = \lambda \sum_{i,k=1}^{n} a_{ik}b_{ki} = \lambda \langle A,B\rangle .$$

In the same way, we show that $\langle A, B + C \rangle = \langle A, B \rangle + \langle A, C \rangle$ and $\langle A, \lambda B \rangle = \lambda \langle A, B \rangle$.

b) We have

$$\langle A, A \rangle = \sum_{i,k=1}^{n} a_{ik} a_{ki} = \sum_{i,k=1}^{n} (a_{ik})^2 \ge 0.$$

Furthermore, it follows that we have $\langle A, A \rangle = 0$ if and only if A = 0.

Exercise 2 (Cauchy-Schwarz and triangle inequalities)

- (a) (Exercise 2.1.4 on page 60 of the notes)
 - Let $(V, \langle ., . \rangle)$ be a euclidean or unitary vector space. Show that equality holds in the Cauchy-Schwarz inequality, i.e., we have $\|\langle \mathbf{v}, \mathbf{w} \rangle\| = \|\mathbf{v}\| \cdot \|\mathbf{w}\|$, if, and only if, **v** and **w** are linearly dependent.

(b) (Exercise 2.1.5 on page 60 of the notes)

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be pairwise distinct vectors in a euclidean or unitary vector space $(V, \langle ., . \rangle)$, and write $\mathbf{a} := \mathbf{v} - \mathbf{u}$, $\mathbf{b} := \mathbf{w} - \mathbf{v}$. Show that equality holds in the triangle inequality

 $d(\mathbf{u}, \mathbf{w}) = d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$, or, equivalently, $\|\mathbf{a} + \mathbf{b}\| = \|\mathbf{a}\| + \|\mathbf{b}\|$,

if, and only if, **a** and **b** are *positive real* scalar multiples of each other (geometrically: $\mathbf{v} = \mathbf{u} + s(\mathbf{w} - \mathbf{u})$ for some $s \in (0, 1) \subseteq \mathbb{R}$).

Solution:

a) Without loss of generality we may assume that $\mathbf{v}, \mathbf{w} \neq \mathbf{0}$.

When **v** and **w** are linearly dependent, then $\mathbf{w} = \lambda \mathbf{v}$ for some λ . It follows that

$$\|\langle \mathbf{v}, \mathbf{w} \rangle\| = \|\langle \mathbf{v}, \lambda \mathbf{v} \rangle\| = \|\lambda\| \|\langle \mathbf{v}, \mathbf{v} \rangle\| = \|\lambda\| \|\mathbf{v}\|^2 = \|\mathbf{v}\| \|\lambda \mathbf{v}\| = \|\mathbf{v}\| \|\mathbf{w}\|$$

Conversely, suppose that

$$\|\langle \mathbf{v}, \mathbf{w} \rangle\| = \|\mathbf{v}\| \cdot \|\mathbf{w}\|$$

and write $\lambda = \frac{\langle v, w \rangle}{\langle v, v \rangle}$. Then it follows, as in the proof of Proposition 2.1.10 (the Cauchy-Schwarz inequality) on page 59 of the notes, that

$$\langle \mathbf{w} - \lambda \mathbf{v}, \mathbf{w} - \lambda \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{w} \rangle - \frac{\langle \mathbf{w}, \mathbf{v} \rangle \langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} = \|\mathbf{w}\|^2 - \frac{\|\mathbf{v}\|^2 \|\mathbf{w}\|^2}{\|\mathbf{v}\|^2} = 0.$$

So by positive definiteness of the scalar product, $\mathbf{w} = \lambda \mathbf{v}$.

b) Note that $\mathbf{a}, \mathbf{b} \neq \mathbf{0}$, because $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are pairwise distinct.

When **b** = λ **a** with 0 < $\lambda \in \mathbb{R}$, then

$$\|\mathbf{a} + \mathbf{b}\| = \|\mathbf{a} + \lambda \mathbf{a}\| = (1 + \lambda)\|\mathbf{a}\| = \|\mathbf{a}\| + \lambda\|\mathbf{a}\| = \|\mathbf{a}\| + \|\lambda \mathbf{a}\| = \|\mathbf{a}\| + \|\mathbf{b}\|.$$

Conversely, when $\|\mathbf{a} + \mathbf{b}\| = \|\mathbf{a}\| + \|\mathbf{b}\|$, also $(\|\mathbf{a} + \mathbf{b}\|)^2 = (\|\mathbf{a}\| + \|\mathbf{b}\|)^2$. But

$$(\|\mathbf{a} + \mathbf{b}\|)^2 = \langle \mathbf{a} + \mathbf{b}, \mathbf{a} + \mathbf{b} \rangle = \langle \mathbf{a}, \mathbf{a} \rangle + \langle \mathbf{a}, \mathbf{b} \rangle + \langle \mathbf{b}, \mathbf{a} \rangle + \langle \mathbf{b}, \mathbf{b} \rangle$$
$$\leq \|\mathbf{a}\|^2 + 2\|\langle \mathbf{a}, \mathbf{b} \rangle\| + \|\mathbf{b}\|^2, \text{ and}$$
$$(\|\mathbf{a}\| + \|\mathbf{b}\|)^2 = \|\mathbf{a}\|^2 + 2\|\mathbf{a}\|\|\mathbf{b}\| + \|\mathbf{b}\|^2.$$

Therefore $\|\mathbf{a}\|\|\mathbf{b}\| \leq \|\langle \mathbf{a}, \mathbf{b} \rangle\|$, and $\|\mathbf{a}\|\|\mathbf{b}\| = \|\langle \mathbf{a}, \mathbf{b} \rangle\|$ by Cauchy-Schwarz. So we know that $\mathbf{b} = \lambda \mathbf{a}$ for some $\lambda \in \mathbb{C}$ by Exercise (E3.2). From $\|\mathbf{a} + \mathbf{b}\| = \|\mathbf{a}\| + \|\mathbf{b}\|$, we deduce that $\|1 + \lambda\| = 1 + \|\lambda\|$, which implies that λ is a positive real.

Exercise 3 (Orthogonal matrices)

We consider real $n \times n$ matrices. Set

$$O(n) := \{A \in \mathbb{R}^{(n,n)} \mid A^t A = E_n\}$$

Show that O(n) is a subgroup of $GL_n(\mathbb{R})$.

Solution:

We have to show that $E_n \in O(n)$ and that O(n) is closed under multiplication and inverses.

Since $E_n^t E_n = E_n$, we have $E_n \in O(n)$. Furthermore, for $A, B \in O(n)$, we have

$$(AB)^{t}AB = B^{t}A^{t}AB = B^{t}E_{n}B = B^{t}B = E_{n}.$$

Hence, $AB \in O(n)$. Similarly, one can show that $A^{-1} \in O(n)$. For the inverse, we first note that $A^tA = E_n$ implies $A^t = A^{-1}$. Therefore, we have

$$(A^{-1})^t A^{-1} = (A^t)^t A^t = AA^t = (A^t A)^t = E_n^t = E_n$$
.

Exercise 4 (Orthogonal vectors)

Let *V* be a euclidean or unitary space and $S = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a set of non-null pairwise orthogonal vectors.

- (a) Show that *S* is linearly independent.
- (b) Let $\mathbf{u} \in V$. Show that the vector

$$\mathbf{w} := \mathbf{u} - \sum_{i=1}^{n} \frac{\langle \mathbf{v}_{i}, \mathbf{u} \rangle}{\langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle} \mathbf{v}_{i}$$

is orthogonal to *S*. Note that $\sum_{i=1}^{n} \frac{\langle \mathbf{v}_i, \mathbf{u} \rangle}{\langle \mathbf{v}_i, \mathbf{v}_i \rangle} \mathbf{v}_i$ is the orthogonal projection of \mathbf{w} on span(*S*).

(c) [Parseval's identity] Suppose that V is finite dimensional and that S is an othornormal basis of V. Show that

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{i=1}^{n} \langle \mathbf{v}, \mathbf{v}_i \rangle \langle \mathbf{v}_i, \mathbf{w} \rangle$$
 for all $\mathbf{v}, \mathbf{w} \in V$.

(d) [Bessel's inequality] Suppose that V is euclidean and S is orthonormal. Show that

$$\sum_{i=1}^n \langle \mathbf{v}_i, \mathbf{u} \rangle^2 \le \|\mathbf{u}\|^2 \quad \text{for all } \mathbf{u} \in V.$$

Solution:

a) Suppose $\mathbf{v}_1, \ldots, \mathbf{v}_n$ satisfy $\sum_{i=1}^n \lambda_i \mathbf{v}_i = \mathbf{0}$. We need to show that each λ_i is zero. For each $j = 1, \ldots, n$, we get that

$$0 = \langle \mathbf{v}_j, \mathbf{0} \rangle = \left\langle \mathbf{v}_j, \sum_{i=1}^n \lambda_i \mathbf{v}_i \right\rangle = \sum_{i=1}^n \lambda_i \langle \mathbf{v}_j, \mathbf{v}_i \rangle = \lambda_j \langle \mathbf{v}_j, \mathbf{v}_j \rangle,$$

since $\langle \mathbf{v}_j, \mathbf{v}_i \rangle = 0$ whenever $j \neq i$. But $\mathbf{v}_j \neq \mathbf{0}$. So $\langle \mathbf{v}_j, \mathbf{v}_j \rangle \neq 0$ since the scalar product is positive definite. Hence, $\lambda_j = 0$ for each j = 1, ..., n. Therefore *S* is linearly independent.

b) For each j = 1, ..., n, we have that

$$\langle \mathbf{v}_j, \mathbf{w} \rangle = \left\langle \mathbf{v}_j, \mathbf{u} - \sum_{i=1}^n \frac{\langle \mathbf{v}_i, \mathbf{u} \rangle}{\langle \mathbf{v}_i, \mathbf{v}_i \rangle} \mathbf{v} \right\rangle = \langle \mathbf{v}_j, \mathbf{u} \rangle - \sum_{i=1}^n \frac{\langle \mathbf{v}_j, \mathbf{u} \rangle}{\langle \mathbf{v}_i, \mathbf{v}_i \rangle} \langle \mathbf{v}_j, \mathbf{v}_i \rangle$$
$$= \langle \mathbf{v}_j, \mathbf{u} \rangle - \frac{\langle \mathbf{v}_j, \mathbf{u} \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle} \langle \mathbf{v}_j, \mathbf{v}_j \rangle$$
$$= 0.$$

c) By Lemma 2.3.2, we have that $\mathbf{w} = \sum_{i=1}^{n} \langle \mathbf{v}_i, \mathbf{w} \rangle \mathbf{v}_i$. Applying the operation $\langle \mathbf{v}, . \rangle$ on both sides, we obtain the result.

d) Setting $\mathbf{w} := \mathbf{u} - \sum_{i=1}^{n} \langle \mathbf{v}_i, \mathbf{u} \rangle \mathbf{v}_i$ we have

$$\|\mathbf{w}\|^{2} = \langle \mathbf{w}, \mathbf{w} \rangle = \left\langle \mathbf{u} - \sum_{i=1}^{n} \langle \mathbf{v}_{i}, \mathbf{u} \rangle \mathbf{v}_{i}, \ \mathbf{u} - \sum_{j=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j} \right\rangle$$
$$= \langle \mathbf{u}, \mathbf{u} \rangle - 2 \sum_{i=1}^{n} \langle \mathbf{v}_{i}, \mathbf{u} \rangle^{2} + \sum_{i,j=1}^{n} \langle \mathbf{v}_{i}, \mathbf{u} \rangle \langle \mathbf{v}_{j}, \mathbf{u} \rangle \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle$$
$$= \langle \mathbf{u}, \mathbf{u} \rangle - \sum_{i=1}^{n} \langle \mathbf{v}_{i}, \mathbf{u} \rangle^{2}.$$

Since $\|\mathbf{w}\|^2 \ge 0$, the inequality follows.

Exercise 5 (Jordan normal form for describing processes)

Suppose that we use vectors $\mathbf{s}_n \in \mathbb{R}^3$ to describe the state of a 3-dimensional system at step $n \in \mathbb{N}$ (for example, the position of a particle in space). The evolution of the system from stage n to n + 1 is given by

$$\mathbf{s}_{n+1} = A\mathbf{s}_n$$
, where $A = \begin{pmatrix} -4 & 2 & -1 \\ -4 & 3 & 0 \\ 14 & -5 & 5 \end{pmatrix}$.

(a) Use a transformation of the given *A* into Jordan normal form in order to get a feasible formula for \mathbf{s}_n , as a function of the index *n* and the initial state \mathbf{s}_0 .

(b) Compute
$$\mathbf{s}_{100}$$
 for $\mathbf{s}_0 = \begin{pmatrix} 1\\ 3\\ 1 \end{pmatrix}$

Solution:

(a) The characteristic polynomial of *A* is $p_A = (1 - X)^2(2 - X)$, so $\lambda_1 = 1$ and $\lambda_2 = 2$ are the eigenvalues of *A*. The corresponding eigenspaces are 1-dimensional, with generators

$$\begin{pmatrix} 1\\2\\-1 \end{pmatrix} \quad \text{for } V_{\lambda_1} \quad \text{and} \quad \begin{pmatrix} 1\\4\\2 \end{pmatrix} \quad \text{for } V_{\lambda_2}.$$

So the Jordan normal form of A has two blocks, one of size 2 and one of size 1. As

$$(A - E_3)^2 = \begin{pmatrix} 3 & -1 & 1 \\ 12 & -4 & 4 \\ 6 & -2 & 2 \end{pmatrix},$$

 $\dim(\ker(A - E_3)^2) = 2$. Hence, the Jordan block of size 2 has entries 1 on the diagonal. Therefore the Jordan normal form of *A* is

$$J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

To find a matrix *S* such that $A = SJS^{-1}$, we take as third column $\mathbf{u}_3 = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$, an eigenvector with eigenvalue 2, and as

second column an element of ker $(A - E_3)^2 \setminus \text{ker}(A - E_3)$, for example $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. The first column will then be

$$\mathbf{u}_1 = (A - E_3)\mathbf{u}_2 = \begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix}$$
. Hence, $S = \begin{pmatrix} 1 & 0 & 1\\ 2 & 1 & 4\\ -1 & 1 & 2 \end{pmatrix}$.

We have $\mathbf{s}_n = A^n \mathbf{s}_0 = S J^n S^{-1} \mathbf{s}_0$. Furthermore

$$J^n = \begin{pmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^n \end{pmatrix}.$$

(b) For
$$\mathbf{s}_0 = \begin{pmatrix} 1\\3\\1 \end{pmatrix} = \begin{pmatrix} 1\\4\\2 \end{pmatrix} - \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$
, we have
$$\mathbf{s}_n = 2^n \begin{pmatrix} 1\\4\\2 \end{pmatrix} - \begin{pmatrix} 0\\1\\1 \end{pmatrix} - n \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$$
. Hence, $\mathbf{s}_{100} = 2^{100} \begin{pmatrix} 1\\4\\2 \end{pmatrix} - \begin{pmatrix} 100\\201\\-99 \end{pmatrix}$