Linear Algebra II
 Exercise Sheet no. 7

Prof. Dr. Otto
\section*{Dr. Le Roux}
Dr. Linshaw

May 18, 2011

Exercise 1 (Warm up: the trace)
Recall Exercise E4.3 about the trace.
Let $V:=\mathbb{R}^{(n, n)}$ be the \mathbb{R}-vector space of all real $n \times n$ matrices and let $S \subseteq V$ be the subspace consisting of all symmetric matrices (i.e., all matrices A with $A^{t}=A$). For $A, B \in V$, we define

$$
\langle A, B\rangle:=\operatorname{Tr}(A B),
$$

where the trace $\operatorname{Tr}(A)$ of a matrix $A=\left(a_{i j}\right)$ is defined as

$$
\operatorname{Tr}(A):=\sum_{i=1}^{n} a_{i i}
$$

(a) Show that $\langle.,$.$\rangle is bilinear.$
(b) Show that $\langle.,$.$\rangle is a scalar product on S$.

Solution:

a) Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$, and $C=\left(c_{i j}\right)$ be matrices and $\lambda \in R$. Since

$$
\langle A, B\rangle=\sum_{i, k=1}^{n} a_{i k} b_{k i}
$$

it follows that

$$
\begin{aligned}
\langle A+C, B\rangle & =\sum_{i, k=1}^{n}\left(a_{i k}+c_{i k}\right) b_{k i}=\sum_{i, k=1}^{n} a_{i k} b_{k i}+\sum_{i, k=1}^{n} c_{i k} b_{k i}=\langle A, B\rangle+\langle C, B\rangle \\
\langle\lambda A, B\rangle & =\sum_{i, k=1}^{n} \lambda a_{i k} b_{k i}=\lambda \sum_{i, k=1}^{n} a_{i k} b_{k i}=\lambda\langle A, B\rangle
\end{aligned}
$$

In the same way, we show that $\langle A, B+C\rangle=\langle A, B\rangle+\langle A, C\rangle$ and $\langle A, \lambda B\rangle=\lambda\langle A, B\rangle$.
b) We have

$$
\langle A, A\rangle=\sum_{i, k=1}^{n} a_{i k} a_{k i}=\sum_{i, k=1}^{n}\left(a_{i k}\right)^{2} \geqslant 0 .
$$

Furthermore, it follows that we have $\langle A, A\rangle=0$ if and only if $A=0$.

Exercise 2 (Cauchy-Schwarz and triangle inequalities)

(a) (Exercise 2.1.4 on page 60 of the notes)

Let $(V,\langle.,\rangle$.$) be a euclidean or unitary vector space. Show that equality holds in the Cauchy-Schwarz inequality,$ i.e., we have $\|\langle\mathbf{v}, \mathbf{w}\rangle\|=\|\mathbf{v}\| \cdot\|\mathbf{w}\|$, if, and only if, \mathbf{v} and \mathbf{w} are linearly dependent.
(b) (Exercise 2.1.5 on page 60 of the notes)

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be pairwise distinct vectors in a euclidean or unitary vector space ($V,\langle.,$.$\rangle), and write \mathbf{a}:=\mathbf{v}-\mathbf{u}$, $\mathbf{b}:=\mathbf{w}-\mathbf{v}$. Show that equality holds in the triangle inequality

$$
d(\mathbf{u}, \mathbf{w})=d(\mathbf{u}, \mathbf{v})+d(\mathbf{v}, \mathbf{w}), \text { or, equivalently, }\|\mathbf{a}+\mathbf{b}\|=\|\mathbf{a}\|+\|\mathbf{b}\|,
$$

if, and only if, a and \mathbf{b} are positive real scalar multiples of each other (geometrically: $\mathbf{v}=\mathbf{u}+s(\mathbf{w}-\mathbf{u})$ for some $s \in(0,1) \subseteq \mathbb{R})$.

Solution:

a) Without loss of generality we may assume that $\mathbf{v}, \mathbf{w} \neq \mathbf{0}$.

When \mathbf{v} and \mathbf{w} are linearly dependent, then $\mathbf{w}=\lambda \mathbf{v}$ for some λ. It follows that

$$
\|\langle\mathbf{v}, \mathbf{w}\rangle\|=\|\langle\mathbf{v}, \lambda \mathbf{v}\rangle\|=\|\lambda\|\|\langle\mathbf{v}, \mathbf{v}\rangle\|=\|\lambda\|\|\mathbf{v}\|^{2}=\|\mathbf{v}\|\|\lambda \mathbf{v}\|=\|\mathbf{v}\|\|\mathbf{w}\|
$$

Conversely, suppose that

$$
\|\langle\mathbf{v}, \mathbf{w}\rangle\|=\|\mathbf{v}\| \cdot\|\mathbf{w}\|
$$

and write $\lambda=\frac{\langle\mathbf{v}, \mathbf{w}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle}$. Then it follows, as in the proof of Proposition 2.1.10 (the Cauchy-Schwarz inequality) on page 59 of the notes, that

$$
\langle\mathbf{w}-\lambda \mathbf{v}, \mathbf{w}-\lambda \mathbf{v}\rangle=\langle\mathbf{w}, \mathbf{w}\rangle-\frac{\langle\mathbf{w}, \mathbf{v}\rangle\langle\mathbf{v}, \mathbf{w}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle}=\|\mathbf{w}\|^{2}-\frac{\|\mathbf{v}\|^{2}\|\mathbf{w}\|^{2}}{\|\mathbf{v}\|^{2}}=0
$$

So by positive definiteness of the scalar product, $\mathbf{w}=\lambda \mathbf{v}$.
b) Note that $\mathbf{a}, \mathbf{b} \neq \mathbf{0}$, because $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are pairwise distinct.

When $\mathbf{b}=\lambda \mathbf{a}$ with $0<\lambda \in \mathbb{R}$, then

$$
\|\mathbf{a}+\mathbf{b}\|=\|\mathbf{a}+\lambda \mathbf{a}\|=(1+\lambda)\|\mathbf{a}\|=\|\mathbf{a}\|+\lambda\|\mathbf{a}\|=\|\mathbf{a}\|+\|\lambda \mathbf{a}\|=\|\mathbf{a}\|+\|\mathbf{b}\| .
$$

Conversely, when $\|\mathbf{a}+\mathbf{b}\|=\|\mathbf{a}\|+\|\mathbf{b}\|$, also $(\|\mathbf{a}+\mathbf{b}\|)^{2}=(\|\mathbf{a}\|+\|\mathbf{b}\|)^{2}$. But

$$
\begin{aligned}
(\|\mathbf{a}+\mathbf{b}\|)^{2} & =\langle\mathbf{a}+\mathbf{b}, \mathbf{a}+\mathbf{b}\rangle=\langle\mathbf{a}, \mathbf{a}\rangle+\langle\mathbf{a}, \mathbf{b}\rangle+\langle\mathbf{b}, \mathbf{a}\rangle+\langle\mathbf{b}, \mathbf{b}\rangle \\
& \leqslant\|\mathbf{a}\|^{2}+2\|\langle\mathbf{a}, \mathbf{b}\rangle\|+\|\mathbf{b}\|^{2}, \text { and } \\
(\|\mathbf{a}\|+\|\mathbf{b}\|)^{2} & =\|\mathbf{a}\|^{2}+2\|\mathbf{a}\|\|\mathbf{b}\|+\|\mathbf{b}\|^{2} .
\end{aligned}
$$

Therefore $\|\mathbf{a}\|\|\mathbf{b}\| \leqslant\|\langle\mathbf{a}, \mathbf{b}\rangle\|$, and $\|\mathbf{a}\|\|\mathbf{b}\|=\|\langle\mathbf{a}, \mathbf{b}\rangle\|$ by Cauchy-Schwarz. So we know that $\mathbf{b}=\lambda \mathbf{a}$ for some $\lambda \in \mathbb{C}$ by Exercise (E3.2). From $\|\mathbf{a}+\mathbf{b}\|=\|\mathbf{a}\|+\|\mathbf{b}\|$, we deduce that $\|1+\lambda\|=1+\|\lambda\|$, which implies that λ is a positive real.

Exercise 3 (Orthogonal matrices)

We consider real $n \times n$ matrices. Set

$$
\mathrm{O}(n):=\left\{A \in \mathbb{R}^{(n, n)} \mid A^{t} A=E_{n}\right\} .
$$

Show that $\mathrm{O}(n)$ is a subgroup of $\mathrm{GL}_{n}(\mathbb{R})$.

Solution:

We have to show that $E_{n} \in \mathrm{O}(n)$ and that $\mathrm{O}(n)$ is closed under multiplication and inverses.
Since $E_{n}^{t} E_{n}=E_{n}$, we have $E_{n} \in \mathrm{O}(n)$. Furthermore, for $A, B \in \mathrm{O}(n)$, we have

$$
(A B)^{t} A B=B^{t} A^{t} A B=B^{t} E_{n} B=B^{t} B=E_{n} .
$$

Hence, $A B \in \mathrm{O}(n)$. Similarly, one can show that $A^{-1} \in \mathrm{O}(n)$. For the inverse, we first note that $A^{t} A=E_{n}$ implies $A^{t}=A^{-1}$. Therefore, we have

$$
\left(A^{-1}\right)^{t} A^{-1}=\left(A^{t}\right)^{t} A^{t}=A A^{t}=\left(A^{t} A\right)^{t}=E_{n}^{t}=E_{n}
$$

Exercise 4 (Orthogonal vectors)

Let V be a euclidean or unitary space and $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a set of non-null pairwise orthogonal vectors.
(a) Show that S is linearly independent.
(b) Let $\mathbf{u} \in V$. Show that the vector

$$
\mathbf{w}:=\mathbf{u}-\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}_{i}, \mathbf{u}\right\rangle}{\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle} \mathbf{v}_{i}
$$

is orthogonal to S. Note that $\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}_{i}, \mathbf{u}\right\rangle}{\left\langle\mathbf{v}_{i} \mathbf{v}_{i}\right\rangle} \mathbf{v}_{i}$ is the orthogonal projection of \mathbf{w} on $\operatorname{span}(S)$.
(c) [Parseval's identity] Suppose that V is finite dimensional and that S is an othornormal basis of V. Show that

$$
\langle\mathbf{v}, \mathbf{w}\rangle=\sum_{i=1}^{n}\left\langle\mathbf{v}, \mathbf{v}_{i}\right\rangle\left\langle\mathbf{v}_{i}, \mathbf{w}\right\rangle \quad \text { for all } \mathbf{v}, \mathbf{w} \in V .
$$

(d) [Bessel's inequality] Suppose that V is euclidean and S is orthonormal. Show that

$$
\sum_{i=1}^{n}\left\langle\mathbf{v}_{i}, \mathbf{u}\right\rangle^{2} \leq\|\mathbf{u}\|^{2} \quad \text { for all } \mathbf{u} \in V
$$

Solution:

a) Suppose $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ satisfy $\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i}=\mathbf{0}$. We need to show that each λ_{i} is zero. For each $j=1, \ldots, n$, we get that

$$
0=\left\langle\mathbf{v}_{j}, \mathbf{0}\right\rangle=\left\langle\mathbf{v}_{j}, \sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i}\right\rangle=\sum_{i=1}^{n} \lambda_{i}\left\langle\mathbf{v}_{j}, \mathbf{v}_{i}\right\rangle=\lambda_{j}\left\langle\mathbf{v}_{j}, \mathbf{v}_{j}\right\rangle,
$$

since $\left\langle\mathbf{v}_{j}, \mathbf{v}_{i}\right\rangle=0$ whenever $j \neq i$. But $\mathbf{v}_{j} \neq \mathbf{0}$. So $\left\langle\mathbf{v}_{j}, \mathbf{v}_{j}\right\rangle \neq 0$ since the scalar product is positive definite. Hence, $\lambda_{j}=0$ for each $j=1, \ldots, n$. Therefore S is linearly independent.
b) For each $j=1, \ldots, n$, we have that

$$
\begin{aligned}
\left\langle\mathbf{v}_{j}, \mathbf{w}\right\rangle & =\left\langle\mathbf{v}_{j}, \mathbf{u}-\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}_{i}, \mathbf{u}\right\rangle}{\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle} \mathbf{v}\right\rangle=\left\langle\mathbf{v}_{j}, \mathbf{u}\right\rangle-\sum_{i=1}^{n} \frac{\left\langle\mathbf{v}_{j}, \mathbf{u}\right\rangle}{\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle}\left\langle\mathbf{v}_{j}, \mathbf{v}_{i}\right\rangle \\
& =\left\langle\mathbf{v}_{j}, \mathbf{u}\right\rangle-\frac{\left\langle\mathbf{v}_{j}, \mathbf{u}\right\rangle}{\left\langle\mathbf{v}_{j}, \mathbf{v}_{j}\right\rangle}\left\langle\mathbf{v}_{j}, \mathbf{v}_{j}\right\rangle \\
& =0
\end{aligned}
$$

c) By Lemma 2.3.2, we have that $\mathbf{w}=\sum_{i=1}^{n}\left\langle\mathbf{v}_{i}, \mathbf{w}\right\rangle \mathbf{v}_{i}$. Applying the operation $\langle\mathbf{v},$.$\rangle on both sides, we obtain the result.$
d) Setting $\mathbf{w}:=\mathbf{u}-\sum_{i=1}^{n}\left\langle\mathbf{v}_{i}, \mathbf{u}\right\rangle \mathbf{v}_{i}$ we have

$$
\begin{aligned}
\|\mathbf{w}\|^{2}=\langle\mathbf{w}, \mathbf{w}\rangle & =\left\langle\mathbf{u}-\sum_{i=1}^{n}\left\langle\mathbf{v}_{i}, \mathbf{u}\right\rangle \mathbf{v}_{i}, \mathbf{u}-\sum_{j=1}^{n}\left\langle\mathbf{v}_{j}, \mathbf{u}\right\rangle \mathbf{v}_{j}\right\rangle \\
& =\langle\mathbf{u}, \mathbf{u}\rangle-2 \sum_{i=1}^{n}\left\langle\mathbf{v}_{i}, \mathbf{u}\right\rangle^{2}+\sum_{i, j=1}^{n}\left\langle\mathbf{v}_{i}, \mathbf{u}\right\rangle\left\langle\mathbf{v}_{j}, \mathbf{u}\right\rangle\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle \\
& =\langle\mathbf{u}, \mathbf{u}\rangle-\sum_{i=1}^{n}\left\langle\mathbf{v}_{i}, \mathbf{u}\right\rangle^{2} .
\end{aligned}
$$

Since $\|\mathbf{w}\|^{2} \geq 0$, the inequality follows.

Exercise 5 (Jordan normal form for describing processes)

Suppose that we use vectors $\mathbf{s}_{n} \in \mathbb{R}^{3}$ to describe the state of a 3-dimensional system at step $n \in \mathbb{N}$ (for example, the position of a particle in space). The evolution of the system from stage n to $n+1$ is given by

$$
\mathbf{s}_{n+1}=A \mathbf{s}_{n}, \quad \text { where } \quad A=\left(\begin{array}{ccc}
-4 & 2 & -1 \\
-4 & 3 & 0 \\
14 & -5 & 5
\end{array}\right)
$$

(a) Use a transformation of the given A into Jordan normal form in order to get a feasible formula for \mathbf{s}_{n}, as a function of the index n and the initial state s_{0}.
(b) Compute \mathbf{s}_{100} for $\mathbf{s}_{0}=\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$.

Solution:

(a) The characteristic polynomial of A is $p_{A}=(1-X)^{2}(2-X)$, so $\lambda_{1}=1$ and $\lambda_{2}=2$ are the eigenvalues of A. The corresponding eigenspaces are 1-dimensional, with generators

$$
\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \text { for } V_{\lambda_{1}} \quad \text { and } \quad\left(\begin{array}{l}
1 \\
4 \\
2
\end{array}\right) \text { for } V_{\lambda_{2}}
$$

So the Jordan normal form of A has two blocks, one of size 2 and one of size 1. As

$$
\left(A-E_{3}\right)^{2}=\left(\begin{array}{ccc}
3 & -1 & 1 \\
12 & -4 & 4 \\
6 & -2 & 2
\end{array}\right)
$$

$\operatorname{dim}\left(\operatorname{ker}\left(A-E_{3}\right)^{2}\right)=2$. Hence, the Jordan block of size 2 has entries 1 on the diagonal. Therefore the Jordan normal form of A is

$$
J=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

To find a matrix S such that $A=S J S^{-1}$, we take as third column $\mathbf{u}_{3}=\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$, an eigenvector with eigenvalue 2 , and as second column an element of $\operatorname{ker}\left(A-E_{3}\right)^{2} \backslash \operatorname{ker}\left(A-E_{3}\right)$, for example $\mathbf{u}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$. The first column will then be

$$
\mathbf{u}_{1}=\left(A-E_{3}\right) \mathbf{u}_{2}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) . \text { Hence, } \quad S=\left(\begin{array}{ccc}
1 & 0 & 1 \\
2 & 1 & 4 \\
-1 & 1 & 2
\end{array}\right)
$$

We have $\mathbf{s}_{n}=A^{n} \mathbf{s}_{0}=S J^{n} S^{-1} \mathbf{s}_{0}$. Furthermore

$$
J^{n}=\left(\begin{array}{ccc}
1 & n & 0 \\
0 & 1 & 0 \\
0 & 0 & 2^{n}
\end{array}\right)
$$

(b) For $\mathbf{s}_{0}=\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)-\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$, we have

$$
\mathbf{s}_{n}=2^{n}\left(\begin{array}{l}
1 \\
4 \\
2
\end{array}\right)-\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-n\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) . \text { Hence, } \mathbf{s}_{100}=2^{100}\left(\begin{array}{l}
1 \\
4 \\
2
\end{array}\right)-\left(\begin{array}{c}
100 \\
201 \\
-99
\end{array}\right)
$$

