Linear Algebra II
 Exercise Sheet no. 6

Summer term 2011

Prof. Dr. Otto
Dr. Le Roux
Dr. Linshaw

May 16, 2011

Exercise 1 (Warm-up: possible Jordan normal forms)
Let $\varphi: V \rightarrow V$ be an endomorphism of a finite dimensional \mathbb{C}-vector space V. Which of the following situations can occur?
(a) i. V is 6-dimensional, the minimal polynomial of φ is $(X-2)^{5}$, and the eigenspace of 2 has dimension 3.
ii. V is 6-dimensional, the minimal polynomial of φ is $(X-2)(X-3)^{2}$, and the eigenspace of 2 has dimension 3 .
(b) i. φ has minimal polynomial $(X-2)^{4}$ and there is a vector $\mathbf{v} \in V$ with height 3 .
ii. φ has minimal polynomial $(X-2)^{4}$ and there is a vector $\mathbf{v} \in V$ with height 6 .
iii. φ has minimal polynomial $(X-2)^{4}$, but no vector in V has height 3 .
(c) i. φ has characteristic polynomial $(X-2)^{6}$ and $\varphi^{2}-\varphi-\mathrm{id}=\mathbf{0}$.
ii. $\varphi^{2}-\varphi-2 \mathrm{id}=0$ and φ has eigenvalues that are not real.
(d) i. V has a φ-invariant subspace of dimension 5,2 is the only eigenvalue of φ, but there is no $\mathbf{v} \in V$ with $\operatorname{dim}(\llbracket \mathbf{v} \rrbracket)=5$.
ii. 2 is the only eigenvalue of $\varphi, V=\llbracket \mathbf{v} \rrbracket \oplus \llbracket \mathbf{b} \rrbracket$ with $\operatorname{dim}(\llbracket \mathbf{v} \rrbracket)=5$, but the Jordan normal form for φ contains no block of size 5 .
(e) i. V can be written as the direct sum of two φ-invariant subspaces of dimension 4, but there is no Jordan block of size greater than 3 in the Jordan normal form for φ.
ii. V can be written as the direct sum of two φ-invariant subspaces of dimension 4, and in the Jordan normal form of φ there is a Jordan block of size 5 .

Solution:

a) i. is impossible. As the minimal polynomial is $(X-2)^{5}$, there must be a Jordan block of size 5 . Since the eigenspace of 2 has dimension 3, there must be 3 Jordan blocks, and that simply does not fit in a 6×6 matrix.
ii. is possible. The Jordan normal form could be

$$
\left(\begin{array}{llllll}
2 & & & & & 0 \\
& 2 & & & & \\
& & 2 & & & \\
& & & 3 & 1 & \\
& & & & 3 & \\
0 & & & & & 3
\end{array}\right)
$$

b) i. is possible. If the Jordan normal form is

$$
\left(\begin{array}{llll}
2 & 1 & & 0 \\
& 2 & 1 & \\
& & 2 & 1 \\
0 & & & 2
\end{array}\right)
$$

with respect to a basis $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{4}\right)$, then we have $\operatorname{dim}\left(\llbracket \mathbf{b}_{3} \rrbracket\right)=3$.
ii. is impossible. If $\psi=\varphi-2 \mathrm{id}$, then $\psi^{4}=\mathbf{0}$. Hence, no $\llbracket \mathbf{v} \rrbracket$ can have dimension greater than 4 .
iii. is impossible. There must be a Jordan block of size 4 generated by a vector \mathbf{v}. But then ($\varphi-2 \mathrm{id}$) \mathbf{v} must have height 3.
c) i. is impossible. The minimal polynomial must be of the form $(X-2)^{k}$ with $1 \leq k \leq 6$, and also divide $X^{2}-X-1$. But 2 is no root of this polynomial.
ii. is impossible. If $\varphi(\mathbf{v})=\lambda \mathbf{v}$ with $\mathbf{v} \neq 0$, then $\left(\varphi^{2}-\varphi-2 \mathrm{id}\right)(\mathbf{v})=\left(\lambda^{2}-\lambda-2\right) \mathbf{v}=\mathbf{0}$. This implies $\lambda^{2}-\lambda-2=0$ and, therefore, $\lambda=-1$ or $\lambda=2$. So all possible eigenvalues are real.
d) i. is possible, for instance, take $\varphi=2 \mathrm{id}$ and $V=\mathbb{C}^{5}$.
ii. is impossible. The Jordan normal form of φ must consist of two blocks, one of size $\operatorname{dim}(\llbracket \mathbf{b} \rrbracket)$ and one of size $\operatorname{dim}(\llbracket \mathbf{v} \rrbracket)=5$.
e) i. is possible. The Jordan normal form could be

$$
\left(\begin{array}{llllllll}
\lambda & 1 & & & & & & 0 \\
& \lambda & & & & & & \\
& & \lambda & 1 & & & & \\
& & & \lambda & & & & \\
& & & & \lambda & 1 & & \\
& & & & & \lambda & & \\
& & & & & & \lambda & 1 \\
0 & & & & & & & \lambda
\end{array}\right)
$$

with respect to a basis $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{8}\right)$. Then $\operatorname{span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{4}\right)$ and $\operatorname{span}\left(\mathbf{b}_{5}, \ldots, \mathbf{b}_{8}\right)$ are φ-invariant subspaces.
ii. is impossible. If $V=V_{0} \oplus V_{1}$ and both V_{0} and V_{1} are φ-invariant, the Jordan normal form for φ can be obtained by joining the normal forms for the restrictions of φ to V_{0} and V_{1}. So if V_{0} and V_{1} can be chosen to have dimension 4, there can be no Jordan block of size 5 in the Jordan normal form of φ.

Exercise 2 (Commuting matrices and simultaneous diagonalization)
(a) Let M_{1} and M_{2} be square matrices over \mathbb{F}, and let $q_{M_{1}}$ and $q_{M_{2}}$ be the corresponding minimal polynomials. Show that the minimal polynomial of the block matrix

$$
M=\left(\begin{array}{cc}
M_{1} & 0 \\
0 & M_{2}
\end{array}\right)
$$

is the least common multiple of $q_{M_{1}}$ and $q_{M_{2}}$. (Clearly this observation generalises to block matrices with an arbitrary number of blocks).
(b) Show that M is diagonalizable if and only if both M_{1} and M_{2} are diagonalizable.
(c) Let A and B be diagonalizable $n \times n$ matrices over \mathbb{F} that commute with each other, i.e., $A B=B A$.
i. Show that any eigenspace of A is invariant under B.
ii. Show that A and B are simultaneously diagonalizable, i.e., there exists a matrix C such that $C^{-1} A C$ and $C^{-1} B C$ are both diagonal matrices.

Solution:

a) Recall that $\operatorname{lcm}\left(q_{M_{1}}, q_{M_{2}}\right)$ is the polynomial q characterised by the following properties:

1. $q_{M_{1}} \mid q$ and $q_{M_{2}} \mid q$.
2. If $q_{M_{1}} \mid p$ and $q_{M_{2}} \mid p$, then $q \mid p$.

Let q_{M} be the minimal polynomial of M. Since

$$
q_{M}(M)=\left(\begin{array}{cc}
q_{M}\left(M_{1}\right) & 0 \\
0 & q_{M}\left(M_{2}\right)
\end{array}\right)=0
$$

it follows that $q_{M}\left(M_{1}\right)=0$ and $q_{M}\left(M_{2}\right)=0$. By the definition of minimal polynomial, we have $q_{M_{1}} \mid q_{M}$ and $q_{M_{2}} \mid q_{M}$. Now suppose that $q_{M_{1}} \mid p$ and $q_{M_{2}} \mid p$ for some polynomial p. Then $p\left(M_{1}\right)=0$ and $p\left(M_{2}\right)=0$, so

$$
p(M)=\left(\begin{array}{cc}
p\left(M_{1}\right) & 0 \\
0 & p\left(M_{2}\right)
\end{array}\right)=0 .
$$

Since $p(M)=0$, it follows that $q_{M} \mid p$, since q_{M} is the minimal polynomial of M. Therefore $q_{M}=\operatorname{lcm}\left(q_{M_{1}}, q_{M_{2}}\right)$.
b) Suppose that M is diagonalizable. Then q_{M} splits into linear factors with multiplicity one. The same is clearly true of $q_{M_{1}}$ and $q_{M_{2}}$ since $q_{M_{1}} \mid q_{M}$ and $q_{M_{2}} \mid q_{M}$. Conversely, if both M_{1} and M_{2} are diagonalizable, $q_{M_{1}}$ and $q_{M_{2}}$ split into linear factors with multiplicity one. The same clearly holds for $\operatorname{lcm}\left(q_{M_{1}}, q_{M_{2}}\right)=q_{M}$.
c) i. Let λ be an eigenvalue of A, and let V_{λ} be the corresponding eigenspace. Given $\mathbf{v} \in V_{\lambda}$, note that $A(B \mathbf{v})=$ $A B \mathbf{v}=B A \mathbf{v}=B(A \mathbf{v})=B \lambda \mathbf{v}=\lambda B \mathbf{v}$. It follows that $B \mathbf{v} \in V_{\lambda}$, as desired.
ii. Let λ be an eigenvalue of A, and let V_{λ} be the corresponding eigenspace. Choose a basis v_{1}, \ldots, v_{m} for V_{λ}. Let U be the direct sum of the remaining eigenspaces of A, and let v_{m+1}, \ldots, v_{n} be a basis for U consisting of eigenvectors of A.
Clearly $C=\left(\nu_{1}, \ldots, v_{n}\right)$ is a basis of \mathbb{F}^{n} consisting of eigenvectors of A. Let S be the matrix whose columns are the vectors v_{1}, \ldots, v_{n}, so that $A^{\prime}=S^{-1} A S$ is the diagonal matrix $\operatorname{diag}\left(\lambda, \ldots, \lambda, \mu_{m+1} \ldots \mu_{n}\right)$. (Here the first m diagonal entries are λ).
Since the eigenspaces of A are invariant under B, it follows that $B^{\prime}=S^{-1} B S$ is block diagonal of the form $\left(\begin{array}{cc}B_{1} & 0 \\ 0 & B_{2}\end{array}\right)$, where B_{1} is an $m \times m$ block, and B_{2} is an $(n-m) \times(n-m)$ block. Clearly B_{1} commutes with the $m \times m$ matrix $\operatorname{diag}(\lambda, \ldots, \lambda)=\lambda E_{m}$. Since A and B commute, it follows that A^{\prime} and B^{\prime} commute, which implies that B_{2} commutes with the $(n-m) \times(n-m)$ matrix $\operatorname{diag}\left(\mu_{m+1}, \ldots, \mu_{n}\right)$. By Part (b), B_{1} is diagonalizable, so there exists an $m \times m$ matrix T such that $T^{-1} B_{1} T$ is a diagonal matrix D_{1}. Let U be the $n \times n$ matrix $\left(\begin{array}{cc}T & 0 \\ 0 & E_{n-m}\end{array}\right)$. Then $A^{\prime \prime}=(S U)^{-1} A S U=U^{-1} A^{\prime} U$ is diagonal, and

$$
B^{\prime \prime}=(S U)^{-1} B S U=U^{-1} B^{\prime} U=\left(\begin{array}{cc}
D_{1} & 0 \\
0 & B_{2}
\end{array}\right)
$$

We now proceed in the same way with the smaller matrix B_{2}.

Exercise 3 (Computing the Jordan normal form)
Let

$$
A:=\left(\begin{array}{cccc}
1 & 2 & 2 & 1 \\
2 & -1 & -3 & -2 \\
-2 & 3 & 5 & 2 \\
-1 & 2 & 2 & 3
\end{array}\right)
$$

Find a regular matrix S and a matrix J in Jordan normal form such that $A=S J S^{-1}$.
Hint. The characteristic polynomial of A is $p_{A}=(2-X)^{4}$.

Solution:

2 is the only eigenvalue. Thus, we consider

$$
C:=A-2 E_{4}=\left(\begin{array}{cccc}
-1 & 2 & 2 & 1 \\
2 & -3 & -3 & -2 \\
-2 & 3 & 3 & 2 \\
-1 & 2 & 2 & 1
\end{array}\right)
$$

We see that $\operatorname{dim}(\operatorname{ker}(C))=2$, i.e., A has two linearly independent eigenvectors. This means that J consists of two Jordan blocks, either both of size 2 , or one of size 3 and one of size 1 . To see which of the two cases occurs, we compute C^{2}. As $C^{2}=\mathbf{0}, J$ will consist of two blocks of size two, i.e.,

$$
J=\left(\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

To find the basis transformation S, we first need to determine a suitable basis. For that, we need to find two linearly independent vectors \mathbf{u}_{2} and \mathbf{u}_{4}, such that

$$
\operatorname{dim}\left(\llbracket \mathbf{u}_{2} \rrbracket\right)=\operatorname{dim}\left(\llbracket \mathbf{u}_{4} \rrbracket\right)=2 \quad \text { and } \quad \llbracket \mathbf{u}_{2} \rrbracket \cap \llbracket \mathbf{u}_{4} \rrbracket=0 .
$$

For example, we can take

$$
\mathbf{u}_{2}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad \text { and } \quad \mathbf{u}_{4}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

The other basis vectors will be

$$
\mathbf{u}_{1}=C \mathbf{u}_{2}=\left(\begin{array}{c}
-1 \\
2 \\
-2 \\
-1
\end{array}\right) \quad \text { and } \quad \mathbf{u}_{3}=C \mathbf{u}_{4}=\left(\begin{array}{c}
2 \\
-3 \\
3 \\
2
\end{array}\right)
$$

The basis transformation S has as its columns the representations of the new basis vectors in terms of the old (or standard) basis. So the desired matrix is

$$
S=\left(\begin{array}{cccc}
-1 & 1 & 2 & 0 \\
2 & 0 & -3 & 1 \\
-2 & 0 & 3 & 0 \\
-1 & 0 & 2 & 0
\end{array}\right)
$$

Exercise 4 (Exponential function for matrices)

Let

$$
J_{\lambda}:=\left(\begin{array}{ccccc}
\lambda & 1 & & & \\
& \lambda & 1 & & \\
& & \ddots & \ddots & \\
& & & \lambda & 1 \\
& & & & \lambda
\end{array}\right) \in \mathbb{C}^{n \times n}
$$

be a Jordan block with eigenvalue λ. For an arbitrary matrix A, we define

$$
e^{A}:=\sum_{i=0}^{\infty} \frac{A^{i}}{i!} .
$$

(a) Compute J_{0}^{k}.
(b) Compute J_{λ}^{k}. Hint. Use the decomposition $J_{\lambda}=\lambda E_{n}+J_{0}$.

For the following we leave aside all the convergence issues. It is indeed safe here, but not part of linear algebra.
(c) Suppose that A and B are matrices with $A B=B A$. Show that $e^{A+B}=e^{A} e^{B}$.
(d) Show that $e^{S^{-1} A S}=S^{-1} e^{A} S$, for an arbitrary matrix A and an invertible one S.
(e) Prove that

$$
e^{J_{\lambda}}=e^{\lambda} \sum_{i=0}^{n-1} \frac{J_{0}^{i}}{i!} .
$$

Solution:

a)

$$
J_{0}^{k}=\left(\begin{array}{ccccccc}
0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & & & & & \ddots & \vdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 1 \\
\vdots & & & & & & \vdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

b)

$$
J_{\lambda}^{k}=\left(\lambda E_{n}+J_{0}\right)^{k}=\sum_{i=0}^{k}\binom{k}{i} \lambda^{i} J_{0}^{k-i} .
$$

c)

$$
e^{A+B}=\sum_{k=0}^{\infty} \frac{(A+B)^{k}}{k!}=\sum_{k=0}^{\infty} \sum_{i=0}^{k}\binom{k}{i} \frac{A^{i} B^{k-i}}{k!}=\sum_{k=0}^{\infty} \sum_{i=0}^{k} \frac{A^{i} B^{k-i}}{i!(k-i)!}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!} \cdot \sum_{i=0}^{\infty} \frac{B^{i}}{i!}=e^{A} e^{B} .
$$

d) We have $\left(S^{-1} A S\right)^{k}=S^{-1} A S S^{-1} A S \cdots S^{-1} A S=S^{-1} A A \cdots A S=S^{-1} A^{k} S$. Consequently,

$$
e^{S^{-1} A S}=\sum_{i=0}^{\infty} \frac{\left(S^{-1} A S\right)^{i}}{i!}=S^{-1}\left[\sum_{i=0}^{\infty} \frac{A^{i}}{i!}\right] S=S^{-1} e^{A} S .
$$

e)

$$
e^{J_{\lambda}}=e^{\lambda E_{n}+J_{0}}=e^{\lambda E_{n}} e^{J_{0}}=e^{\lambda} \sum_{i=0}^{\infty} \frac{J_{0}^{i}}{i!}=e^{\lambda} \sum_{i=0}^{n-1} \frac{J_{0}^{i}}{i!} .
$$

Exercise 5 (Square roots)

(a) Let $a_{0}, \ldots, a_{n-1} \in \mathbb{C}$ and let N be the $n \times n$ matrix $\left(\begin{array}{cccc}0 & 1 & & 0 \\ \vdots & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & \ldots & 0\end{array}\right)$. When is $\left(\sum_{i=0}^{n-1} a_{i} N^{i}\right)^{2}$ a Jordan block?
(b) Deduce a sufficient condition for $d E_{n}+N \in \mathbb{C}^{(n, n)}$ to have a square root.
(c) Deduce a sufficient condition for complex matrices to have complex square roots.

Remark: using techniques from Lie group theory, which combine differential geometry, topology and group theory, one can also obtain that the exponential map on matrices, $A \mapsto e^{A}$, is a surjection of $\mathbb{C}^{(n, n)}$ onto $G L_{n}(\mathbb{C}$). It follows that the equality $\left[e^{\frac{1}{2} A}\right]^{2}=e^{A}$ yields square roots for any regular matrix.

Solution:

a) First note that generally speaking $\left(\sum_{i=0}^{k} a_{i}\right)^{2}=\sum_{0 \leq i, j \leq k} a_{i} a_{j}$ whenever a_{0}, \ldots, a_{k} are elements of a ring.

$$
\begin{aligned}
A:=\left(\sum_{i=0}^{n-1} a_{i} N^{i}\right)^{2} & =\sum_{0 \leq i, j \leq n-1} a_{i} a_{j} N^{i+j} \\
& =\sum_{0 \leq k \leq n-1} d_{k} N^{k} \quad \text { where } d_{k}:=\sum_{i=0}^{k} a_{i} a_{k-i}
\end{aligned}
$$

For A to be a Jordan block, d_{1} must equal 1 , that is, $2 a_{0} a_{1}=1$. Therefore $a_{0} \neq 0$ and $a_{1}=\frac{1}{2 a_{0}}$ are necessary. Moreover d_{k} must be zero for $1<k$, that is, $a_{k}=\frac{-\sum_{i=1}^{k-1} a_{i} a_{k-i}}{2 a_{0}}$. These conditions are also sufficient.
b) If $d \neq 0$ then let $a_{0}^{2}:=d$ (so that $d_{0}=d$), let $a_{1}:=\frac{1}{2 a_{0}}$, and for all $1<k \leq n-1$ let us define the a_{k} by induction. $a_{k}:=\frac{-\sum_{i=1}^{k-1} a_{i} a_{k-i}}{2 a_{0}}$. We have $\left(\sum_{i=0}^{n-1} a_{i} N^{i}\right)^{2}=d E_{n}+N$.
c) If a matrix is invertible, it has a square root. Indeed it suffices to shows that one of its JNF has a square root, by an argument similar to the previous exercise. Since the matrix is invertible, 0 is not a root of its characteristic polynomial, so all JNF blocks are of the form $d E+N$ with $d \neq 0$. Each of those has a square root by the previous question, so has the whole JNF, by block multiplication.

