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Exercise 1 (Warm-up: possible Jordan normal forms)
Let ¢ : V — V be an endomorphism of a finite dimensional C-vector space V. Which of the following situations can

occur?
(a) i
ii.
(b)) i
ii.
iii.
(0 i
ii.
@ i
ii.
(e i
ii.
Solution:
a) i.
ii.
b) i

V is 6-dimensional, the minimal polynomial of ¢ is (X — 2)°, and the eigenspace of 2 has dimension 3.

V is 6-dimensional, the minimal polynomial of ¢ is (X — 2)(X — 3)?, and the eigenspace of 2 has dimension 3.
¢ has minimal polynomial (X — 2)* and there is a vector v € V with height 3.

¢ has minimal polynomial (X — 2)* and there is a vector v € V with height 6.

¢ has minimal polynomial (X — 2)#, but no vector in V has height 3.

¢ has characteristic polynomial (X — 2)® and ¢? — ¢ —id = 0.

¢? — ¢ —2id = 0 and ¢ has eigenvalues that are not real.

V has a g-invariant subspace of dimension 5, 2 is the only eigenvalue of ¢, but there is no v € V with
dim([v]) =5.

2 is the only eigenvalue of ¢, V = [v]] & [b] with dim([v]) =5, but the Jordan normal form for ¢ contains
no block of size 5.

V can be written as the direct sum of two g-invariant subspaces of dimension 4, but there is no Jordan block
of size greater than 3 in the Jordan normal form for ¢.

V can be written as the direct sum of two p-invariant subspaces of dimension 4, and in the Jordan normal
form of ¢ there is a Jordan block of size 5.

is impossible. As the minimal polynomial is (X — 2)°, there must be a Jordan block of size 5. Since the
eigenspace of 2 has dimension 3, there must be 3 Jordan blocks, and that simply does not fit in a 6 x 6-
matrix.

is possible. The Jordan normal form could be

2 0
2
2
3 1
3
0 3
. is possible. If the Jordan normal form is
2 1 0
2 1
2 1
0 2

with respect to a basis (by,...,b,), then we have dim([[b;]) = 3.




ii. is impossible. If ) = ¢ — 2id, then v* = 0. Hence, no [v] can have dimension greater than 4.
iii. is impossible. There must be a Jordan block of size 4 generated by a vector v. But then (¢ — 2id)v must have
height 3.
c) i. is impossible. The minimal polynomial must be of the form (X — 2)X with 1 < k < 6, and also divide
X? — X — 1. But 2 is no root of this polynomial.
ii. is impossible. If ¢ (v) = Av with v # 0, then (2 — ¢ —2id)(v) = (A2 —A—2)v= 0. This implies A>—~1—2=0
and, therefore, A = —1 or A = 2. So all possible eigenvalues are real.
d) i. is possible, for instance, take ¢ = 2id and V = C°>.
ii. is impossible. The Jordan normal form of ¢ must consist of two blocks, one of size dim([b]) and one of
size dim([[v]) = 5.

e) i. is possible. The Jordan normal form could be

Al 0
A
Al
A
Al
A
Al
\0 A)
with respect to a basis (by,...,bg). Then span(b,,...,b,) and span(bs, ...,bg) are p-invariant subspaces.

ii. is impossible. If V = V, @ V; and both V|, and V; are p-invariant, the Jordan normal form for ¢ can be
obtained by joining the normal forms for the restrictions of ¢ to V,, and V;. So if V,; and V; can be chosen to
have dimension 4, there can be no Jordan block of size 5 in the Jordan normal form of ¢.

Exercise 2 (Commuting matrices and simultaneous diagonalization)
(a) Let M; and M, be square matrices over I, and let q,;, and gy, be the corresponding minimal polynomials. Show
that the minimal polynomial of the block matrix

_(My O
w=(" )
is the least common multiple of g, and gq,. (Clearly this observation generalises to block matrices with an
arbitrary number of blocks).
(b) Show that M is diagonalizable if and only if both M; and M, are diagonalizable.
(c) Let A and B be diagonalizable n x n matrices over F that commute with each other, i.e., AB = BA.

i. Show that any eigenspace of A is invariant under B.

ii. Show thatA and B are simultaneously diagonalizable, i.e., there exists a matrix C such that C"*AC and C™'BC
are both diagonal matrices.

Solution:

a) Recall that lem(qyy,,qy,) is the polynomial g characterised by the following properties:
L. qu,lq and gy, |q.

2. 1f gy, |p and qy, |p, then q|p.
Let gy, be the minimal polynomial of M. Since

_ (au(My) 0 _
qM(M)‘( 0 qM(Mz))‘O’

it follows that q,,(M;) = 0 and q,;(M,) = 0. By the definition of minimal polynomial, we have gy, |qy and gy, |qu-
Now suppose that gy, |p and gy, |p for some polynomial p. Then p(M,) = 0 and p(M,) =0, so

_ p(M;) 0 _
p(M)—( 0 p(MZ))_o.

Since p(M) = 0, it follows that g |p, since gy, is the minimal polynomial of M. Therefore q), = lem(qyy, ,qu, )-




b) Suppose that M is diagonalizable. Then q,, splits into linear factors with multiplicity one. The same is clearly true
of q, and qy, since qy, |qy and qy,|qy . Conversely, if both M; and M, are diagonalizable, q,;, and q,;, split into
linear factors with multiplicity one. The same clearly holds for lem(qyy, , qum,) = qu-

c) i.

ii.

Let A be an eigenvalue of A, and let V, be the corresponding eigenspace. Given v € V,, note that A(Bv) =
ABV = BAv = B(Av) = BAv = ABv. It follows that Bv € V,, as desired.

Let A be an eigenvalue of A, and let V, be the corresponding eigenspace. Choose a basis vy, ..., v, for V,.
Let U be the direct sum of the remaining eigenspaces of A, and let v,,,,..., v, be a basis for U consisting of
eigenvectors of A.

Clearly C = (v4,...,v,) is a basis of F" consisting of eigenvectors of A. Let S be the matrix whose columns
are the vectors v;, ..., v,, so that A’ = ST'AS is the diagonal matrix diag(A, ..., A, Uy - - - Uy ). (Here the first
m diagonal entries are A).

Since the eigenspaces of A are invariant under B, it follows that B’ = S™'BS is block diagonal of the form

0 B,
with the m x m matrix diag(2,...,A) = AE,,. Since A and B commute, it follows that A" and B’ commute,
which implies that B, commutes with the (n — m) x (n — m) matrix diag(t;41,---,4,). By Part (b), By is
diagonalizable, so there exists an m x m matrix T such that T~'B; T is a diagonal matrix D;. Let U be the

n X n matrix (g EO ) Then A” = (SU) ASU = U™ 'A'U is diagonal, and
n—-m

(Bl 0 ), where B; is an m x m block, and B, is an (n — m) x (n — m) block. Clearly B; commutes

B’ =(SU)'BSU=U"'B'U= D0

We now proceed in the same way with the smaller matrix B,.

Exercise 3 (Computing the Jordan normal form)

Let

1 2 2 1
2 -1 -3 -2
-2 3 5 2
-1 2 2 3

Find a regular matrix S and a matrix J in Jordan normal form such that A= SJS™!.
Hint. The characteristic polynomial of A is p, = (2 — X)*.

Solution:

2 is the only eigenvalue. Thus, we consider

-1 2 2 1
2 -3 -3 -2
-2 3 3 2
-1 2 2 1

C:=A—-2E,=

We see that dim(ker(C)) = 2, i.e., A has two linearly independent eigenvectors. This means that J consists of two Jordan
blocks, either both of size 2, or one of size 3 and one of size 1. To see which of the two cases occurs, we compute C2. As
C? =0, J will consist of two blocks of size two, i.e.,

Qo onN
S oON
oON OO
N = OO

To find the basis transformation S, we first need to determine a suitable basis. For that, we need to find two linearly
independent vectors u, and uy, such that

dim([u,]) =dim([u,])=2 and [u,]N[u,] =0.




For example, we can take

1 0
u, = 8 and u,= (1)
0 0
The other basis vectors will be
-1 2
u; =Cu, = _22 and u;=Cu,= _33
-1 2

The basis transformation S has as its columns the representations of the new basis vectors in terms of the old (or standard)
basis. So the desired matrix is

-1 1 2 0
2 0 -3 1
S= -2 0 3 O
-1 0 2 0
Exercise 4 (Exponential function for matrices)
Let
A1
A1
J)( = ..‘ ..‘ E(Cnxn
A1
A

(a) Compute Jg.
(b) Compute J /’{ Hint. Use the decomposition J, = AE,, +J,.
For the following we leave aside all the convergence issues. It is indeed safe here, but not part of linear algebra.
(c) Suppose that A and B are matrices with AB = BA. Show that e*8 = /5,
(d) Show that eSilAS =S71eAS, for an arbitrary matrix A and an invertible one S.

(e) Prove that

Solution:
a) r

—
(0 - 0 1 0 0)
0 001 0

k _—

o=10 000 1
\ 0 000 0)




b)

k
K\,
JE=(AE, +J) =) (i)/w(’;l.

i=0

c)

2 (A+B) &g ABT g ABT A
eA+B:ZT=ZZ(.) ZZ”(k_l)l:;E'Z_

k=0 k=0 i=0

d) We have (S7!AS)* =S TASSTIAS---S71IAS = ST1AA---AS = ST1AKS. Consequently,

o i

s-las Z(S 'AS) ,1[2%%:548%‘5'

i=

e)
0 Jl n— 1Jl
Jl: AEH-I-JO: AEn J0: A _0= A 0
ot = Mt = i =2 310 A3 %0
i=0 i=0
Exercise 5 (Square roots)
0 1 0
(a) Letay,...,a,_; €C and let N be the n x n matrix | ) ' . When is (ZL—OI
1
0 ... 0O

(b) Deduce a sufficient condition for dE, + N € C™" to have a square root.

(c) Deduce a sufficient condition for complex matrices to have complex square roots.

Remark: using techniques from Lie group theory, which combine differential geometry, topology and group theory, one
can also obtain that the exponential map on matrices, A — e, is a surjection of C™" onto GL,(C). It follows that the

equality [e %A]Z = e yields square roots for any regular matrix.

Solution:

00 pi
B_eAB
—=ele.
i—o U

a;N")? a Jordan block?

. . k .
a) First note that generally speaking (3.,_, a;)* = >}, i, a;a; whenever a, ..., a; are elements of a ring.

E : i+j
a;a;N

0<i,j<n-1

n—1
A= (Z a;NH?
i=0

k
Z d,N* where d; := Z a;ay_;

0<k=n-1 i=0
For A to be a Jordan block, d; must equal 1, that is, 2aga; = 1. Therefore a, # 0 and a; = i are necessary.
Zk

Moreover d; must be zero for 1 < k, that is, a; = 2

b) If d # 0 then let ag :=d (so that dy =d), let q; := i, and for all 1 < k < n —1 let us define the g, by induction.

_ Nk
akzz% We have (31—, a;N')? = dE, +N.

a;a
—2i=1 5%l Thege conditions are also sufficient.

c)

If a matrix is invertible, it has a square root. Indeed it suffices to shows that one of its JNF has a square root,
by an argument similar to the previous exercise. Since the matrix is invertible, 0 is not a root of its characteristic
polynomial, so all JNF blocks are of the form dE + N with d # 0. Each of those has a square root by the previous
question, so has the whole JNE by block multiplication.




