Linear Algebra II Exercise Sheet no. 6

TECHNISCHE UNIVERSITÄT DARMSTADT

May 16, 2011

Summer term 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Warm-up: possible Jordan normal forms)

Let $\varphi : V \to V$ be an endomorphism of a finite dimensional \mathbb{C} -vector space *V*. Which of the following situations can occur?

- (a) i. V is 6-dimensional, the minimal polynomial of φ is (X 2)⁵, and the eigenspace of 2 has dimension 3.
 ii. V is 6-dimensional, the minimal polynomial of φ is (X 2)(X 3)², and the eigenspace of 2 has dimension 3.
- (b) i. φ has minimal polynomial $(X 2)^4$ and there is a vector $\mathbf{v} \in V$ with height 3.
 - ii. φ has minimal polynomial $(X 2)^4$ and there is a vector $\mathbf{v} \in V$ with height 6.
 - iii. φ has minimal polynomial $(X 2)^4$, but no vector in V has height 3.
- (c) i. φ has characteristic polynomial $(X 2)^6$ and $\varphi^2 \varphi id = 0$.
 - ii. $\varphi^2 \varphi 2id = 0$ and φ has eigenvalues that are not real.
- (d) i. V has a φ -invariant subspace of dimension 5, 2 is the only eigenvalue of φ , but there is no $\mathbf{v} \in V$ with dim($[[\mathbf{v}]]$) = 5.
 - ii. 2 is the only eigenvalue of φ , $V = \llbracket \mathbf{v} \rrbracket \oplus \llbracket \mathbf{b} \rrbracket$ with dim($\llbracket \mathbf{v} \rrbracket) = 5$, but the Jordan normal form for φ contains no block of size 5.
- (e) i. V can be written as the direct sum of two φ -invariant subspaces of dimension 4, but there is no Jordan block of size greater than 3 in the Jordan normal form for φ .
 - ii. *V* can be written as the direct sum of two φ -invariant subspaces of dimension 4, and in the Jordan normal form of φ there is a Jordan block of size 5.

Solution:

- a) i. is impossible. As the minimal polynomial is $(X 2)^5$, there must be a Jordan block of size 5. Since the eigenspace of 2 has dimension 3, there must be 3 Jordan blocks, and that simply does not fit in a 6×6 -matrix.
 - ii. is possible. The Jordan normal form could be

$$\begin{pmatrix} 2 & & & 0 \\ & 2 & & & \\ & & 2 & & \\ & & & 3 & 1 \\ & & & & 3 & \\ 0 & & & & & 3 \end{pmatrix}$$

b) i. is possible. If the Jordan normal form is

$$\begin{pmatrix} 2 & 1 & & 0 \\ & 2 & 1 & \\ & & 2 & 1 \\ 0 & & & 2 \end{pmatrix}$$

with respect to a basis $(\mathbf{b}_1, \dots, \mathbf{b}_4)$, then we have dim $(\llbracket \mathbf{b}_3 \rrbracket) = 3$.

- ii. is impossible. If $\psi = \varphi 2id$, then $\psi^4 = 0$. Hence, no [v] can have dimension greater than 4.
- iii. is impossible. There must be a Jordan block of size 4 generated by a vector **v**. But then $(\varphi 2id)\mathbf{v}$ must have height 3.
- c) i. is impossible. The minimal polynomial must be of the form $(X 2)^k$ with $1 \le k \le 6$, and also divide $X^2 X 1$. But 2 is no root of this polynomial.
 - ii. is impossible. If $\varphi(\mathbf{v}) = \lambda \mathbf{v}$ with $\mathbf{v} \neq 0$, then $(\varphi^2 \varphi 2id)(\mathbf{v}) = (\lambda^2 \lambda 2)\mathbf{v} = \mathbf{0}$. This implies $\lambda^2 \lambda 2 = 0$ and, therefore, $\lambda = -1$ or $\lambda = 2$. So all possible eigenvalues are real.
- d) i. is possible, for instance, take $\varphi = 2id$ and $V = \mathbb{C}^5$.
 - ii. is impossible. The Jordan normal form of φ must consist of two blocks, one of size dim(**[[b]**]) and one of size dim(**[[v]**]) = 5.
- e) i. is possible. The Jordan normal form could be

with respect to a basis $(\mathbf{b}_1, \dots, \mathbf{b}_8)$. Then span $(\mathbf{b}_1, \dots, \mathbf{b}_4)$ and span $(\mathbf{b}_5, \dots, \mathbf{b}_8)$ are φ -invariant subspaces.

- ii. is impossible. If $V = V_0 \oplus V_1$ and both V_0 and V_1 are φ -invariant, the Jordan normal form for φ can be obtained by joining the normal forms for the restrictions of φ to V_0 and V_1 . So if V_0 and V_1 can be chosen to have dimension 4, there can be no Jordan block of size 5 in the Jordan normal form of φ .
- Exercise 2 (Commuting matrices and simultaneous diagonalization)
 - (a) Let M_1 and M_2 be square matrices over \mathbb{F} , and let q_{M_1} and q_{M_2} be the corresponding minimal polynomials. Show that the minimal polynomial of the block matrix

$$M = \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix}$$

is the least common multiple of q_{M_1} and q_{M_2} . (Clearly this observation generalises to block matrices with an arbitrary number of blocks).

- (b) Show that *M* is diagonalizable if and only if both M_1 and M_2 are diagonalizable.
- (c) Let *A* and *B* be diagonalizable $n \times n$ matrices over \mathbb{F} that commute with each other, i.e., AB = BA.
 - i. Show that any eigenspace of *A* is invariant under *B*.
 - ii. Show that A and B are simultaneously diagonalizable, i.e., there exists a matrix C such that $C^{-1}AC$ and $C^{-1}BC$ are both diagonal matrices.

Solution:

a) Recall that $lcm(q_{M_1}, q_{M_2})$ is the polynomial q characterised by the following properties:

1. $q_{M_1}|q$ and $q_{M_2}|q$.

2. If $q_{M_1}|p$ and $q_{M_2}|p$, then q|p.

Let q_M be the minimal polynomial of M. Since

$$q_M(M) = \begin{pmatrix} q_M(M_1) & 0\\ 0 & q_M(M_2) \end{pmatrix} = 0,$$

it follows that $q_M(M_1) = 0$ and $q_M(M_2) = 0$. By the definition of minimal polynomial, we have $q_{M_1}|q_M$ and $q_{M_2}|q_M$. Now suppose that $q_{M_1}|p$ and $q_{M_2}|p$ for some polynomial p. Then $p(M_1) = 0$ and $p(M_2) = 0$, so

$$p(M) = \begin{pmatrix} p(M_1) & 0\\ 0 & p(M_2) \end{pmatrix} = 0.$$

Since p(M) = 0, it follows that $q_M | p$, since q_M is the minimal polynomial of M. Therefore $q_M = \text{lcm}(q_{M_1}, q_{M_2})$.

- b) Suppose that *M* is diagonalizable. Then q_M splits into linear factors with multiplicity one. The same is clearly true of q_{M_1} and q_{M_2} since $q_{M_1}|q_M$ and $q_{M_2}|q_M$. Conversely, if both M_1 and M_2 are diagonalizable, q_{M_1} and q_{M_2} split into linear factors with multiplicity one. The same clearly holds for $lcm(q_{M_1}, q_{M_2}) = q_M$.
- c) i. Let λ be an eigenvalue of A, and let V_{λ} be the corresponding eigenspace. Given $\mathbf{v} \in V_{\lambda}$, note that $A(B\mathbf{v}) = AB\mathbf{v} = BA\mathbf{v} = B(A\mathbf{v}) = B\lambda\mathbf{v} = \lambda B\mathbf{v}$. It follows that $B\mathbf{v} \in V_{\lambda}$, as desired.
 - ii. Let λ be an eigenvalue of A, and let V_{λ} be the corresponding eigenspace. Choose a basis v_1, \ldots, v_m for V_{λ} . Let U be the direct sum of the remaining eigenspaces of A, and let v_{m+1}, \ldots, v_n be a basis for U consisting of eigenvectors of A.

Clearly $C = (v_1, ..., v_n)$ is a basis of \mathbb{F}^n consisting of eigenvectors of A. Let S be the matrix whose columns are the vectors $v_1, ..., v_n$, so that $A' = S^{-1}AS$ is the diagonal matrix diag $(\lambda, ..., \lambda, \mu_{m+1} ... \mu_n)$. (Here the first m diagonal entries are λ).

Since the eigenspaces of *A* are invariant under *B*, it follows that $B' = S^{-1}BS$ is block diagonal of the form $\begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}$, where B_1 is an $m \times m$ block, and B_2 is an $(n - m) \times (n - m)$ block. Clearly B_1 commutes with the $m \times m$ matrix diag $(\lambda, ..., \lambda) = \lambda E_m$. Since *A* and *B* commute, it follows that *A'* and *B'* commute, which implies that B_2 commutes with the $(n - m) \times (n - m)$ matrix diag $(\mu_{m+1}, ..., \mu_n)$. By Part (b), B_1 is diagonalizable, so there exists an $m \times m$ matrix *T* such that $T^{-1}B_1T$ is a diagonal matrix D_1 . Let *U* be the $n \times n$ matrix $\begin{pmatrix} T & 0 \\ 0 & E_{n-m} \end{pmatrix}$. Then $A'' = (SU)^{-1}ASU = U^{-1}A'U$ is diagonal, and

$$B'' = (SU)^{-1}BSU = U^{-1}B'U = \begin{pmatrix} D_1 & 0\\ 0 & B_2 \end{pmatrix}.$$

We now proceed in the same way with the smaller matrix B_2 .

Exercise 3 (Computing the Jordan normal form) Let

$$A := \begin{pmatrix} 1 & 2 & 2 & 1 \\ 2 & -1 & -3 & -2 \\ -2 & 3 & 5 & 2 \\ -1 & 2 & 2 & 3 \end{pmatrix}.$$

Find a regular matrix *S* and a matrix *J* in Jordan normal form such that $A = SJS^{-1}$.

Hint. The characteristic polynomial of *A* is $p_A = (2 - X)^4$.

Solution:

2 is the only eigenvalue. Thus, we consider

$$C:=A-2E_4=\begin{pmatrix} -1 & 2 & 2 & 1\\ 2 & -3 & -3 & -2\\ -2 & 3 & 3 & 2\\ -1 & 2 & 2 & 1 \end{pmatrix}.$$

We see that dim(ker(C)) = 2, i.e., A has two linearly independent eigenvectors. This means that J consists of two Jordan blocks, either both of size 2, or one of size 3 and one of size 1. To see which of the two cases occurs, we compute C^2 . As $C^2 = 0$, J will consist of two blocks of size two, i.e.,

$$J = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

To find the basis transformation *S*, we first need to determine a suitable basis. For that, we need to find two linearly independent vectors \mathbf{u}_2 and \mathbf{u}_4 , such that

$$\dim(\llbracket \mathbf{u}_2 \rrbracket) = \dim(\llbracket \mathbf{u}_4 \rrbracket) = 2 \quad \text{and} \quad \llbracket \mathbf{u}_2 \rrbracket \cap \llbracket \mathbf{u}_4 \rrbracket = 0.$$

For example, we can take

$$\mathbf{u}_2 = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \quad \text{and} \quad \mathbf{u}_4 = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}.$$

The other basis vectors will be

$$\mathbf{u}_1 = C \mathbf{u}_2 = \begin{pmatrix} -1\\2\\-2\\-1 \end{pmatrix} \quad \text{and} \quad \mathbf{u}_3 = C \mathbf{u}_4 = \begin{pmatrix} 2\\-3\\3\\2 \end{pmatrix}.$$

The basis transformation *S* has as its columns the representations of the new basis vectors in terms of the old (or standard) basis. So the desired matrix is

$$S = \begin{pmatrix} -1 & 1 & 2 & 0\\ 2 & 0 & -3 & 1\\ -2 & 0 & 3 & 0\\ -1 & 0 & 2 & 0 \end{pmatrix}.$$

Exercise 4 (Exponential function for matrices) Let

$$J_{\lambda} := \begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ & & & & \lambda \end{pmatrix} \in \mathbb{C}^{n \times n}$$

be a Jordan block with eigenvalue λ . For an arbitrary matrix *A*, we define

$$e^A:=\sum_{i=0}^\infty\frac{A^i}{i!}\,.$$

(a) Compute J_0^k .

(b) Compute J_{λ}^{k} . *Hint*. Use the decomposition $J_{\lambda} = \lambda E_{n} + J_{0}$.

For the following we leave aside all the convergence issues. It is indeed safe here, but not part of linear algebra.

- (c) Suppose that *A* and *B* are matrices with AB = BA. Show that $e^{A+B} = e^A e^B$.
- (d) Show that $e^{S^{-1}AS} = S^{-1}e^{A}S$, for an arbitrary matrix *A* and an invertible one *S*.
- (e) Prove that

$$e^{J_{\lambda}} = e^{\lambda} \sum_{i=0}^{n-1} \frac{J_0^i}{i!}$$

Solution:

a)

$$J_0^k = \begin{pmatrix} \ddots & \ddots & 0 & 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 1 \\ \vdots & & & & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

b)

$$J_{\lambda}^{k} = (\lambda E_{n} + J_{0})^{k} = \sum_{i=0}^{k} {\binom{k}{i}} \lambda^{i} J_{0}^{k-i}$$

c)

$$e^{A+B} = \sum_{k=0}^{\infty} \frac{(A+B)^k}{k!} = \sum_{k=0}^{\infty} \sum_{i=0}^k \binom{k}{i} \frac{A^i B^{k-i}}{k!} = \sum_{k=0}^{\infty} \sum_{i=0}^k \frac{A^i B^{k-i}}{i! (k-i)!} = \sum_{k=0}^{\infty} \frac{A^k}{k!} \cdot \sum_{i=0}^{\infty} \frac{B^i}{i!} = e^A e^B.$$

d) We have $(S^{-1}AS)^k = S^{-1}ASS^{-1}AS \cdots S^{-1}AS = S^{-1}AA \cdots AS = S^{-1}A^kS$. Consequently,

$$e^{S^{-1}AS} = \sum_{i=0}^{\infty} \frac{(S^{-1}AS)^i}{i!} = S^{-1} \Big[\sum_{i=0}^{\infty} \frac{A^i}{i!} \Big] S = S^{-1} e^A S$$

e)

$$e^{J_{\lambda}} = e^{\lambda E_n + J_0} = e^{\lambda E_n} e^{J_0} = e^{\lambda} \sum_{i=0}^{\infty} \frac{J_0^i}{i!} = e^{\lambda} \sum_{i=0}^{n-1} \frac{J_0^i}{i!}$$

Exercise 5 (Square roots)

- (a) Let $a_0, \ldots, a_{n-1} \in \mathbb{C}$ and let N be the $n \times n$ matrix $\begin{pmatrix} 0 & 1 & 0 \\ \vdots & \ddots & \ddots \\ & & \ddots & 1 \\ 0 & & \cdots & 0 \end{pmatrix}$. When is $(\sum_{i=0}^{n-1} a_i N^i)^2$ a Jordan block?
- (b) Deduce a sufficient condition for $dE_n + N \in \mathbb{C}^{(n,n)}$ to have a square root.
- (c) Deduce a sufficient condition for complex matrices to have complex square roots.

Remark: using techniques from Lie group theory, which combine differential geometry, topology and group theory, one can also obtain that the exponential map on matrices, $A \mapsto e^A$, is a surjection of $\mathbb{C}^{(n,n)}$ onto $GL_n(\mathbb{C})$. It follows that the equality $[e^{\frac{1}{2}A}]^2 = e^A$ yields square roots for any regular matrix.

Solution:

a) First note that generally speaking $(\sum_{i=0}^{k} a_i)^2 = \sum_{0 \le i, j \le k} a_i a_j$ whenever a_0, \ldots, a_k are elements of a ring.

$$A := (\sum_{i=0}^{n-1} a_i N^i)^2 = \sum_{0 \le i, j \le n-1} a_i a_j N^{i+j}$$
$$= \sum_{0 \le k \le n-1} d_k N^k \quad \text{where } d_k := \sum_{i=0}^k a_i a_{k-i}$$

For *A* to be a Jordan block, d_1 must equal 1, that is, $2a_0a_1 = 1$. Therefore $a_0 \neq 0$ and $a_1 = \frac{1}{2a_0}$ are necessary. Moreover d_k must be zero for 1 < k, that is, $a_k = \frac{-\sum_{i=1}^{k-1} a_i a_{k-i}}{2a_0}$. These conditions are also sufficient.

- b) If $d \neq 0$ then let $a_0^2 := d$ (so that $d_0 = d$), let $a_1 := \frac{1}{2a_0}$, and for all $1 < k \le n 1$ let us define the a_k by induction. $a_k := \frac{-\sum_{i=1}^{k-1} a_i a_{k-i}}{2a_0}$. We have $(\sum_{i=0}^{n-1} a_i N^i)^2 = dE_n + N$.
- c) If a matrix is invertible, it has a square root. Indeed it suffices to shows that one of its JNF has a square root, by an argument similar to the previous exercise. Since the matrix is invertible, 0 is not a root of its characteristic polynomial, so all JNF blocks are of the form dE + N with $d \neq 0$. Each of those has a square root by the previous question, so has the whole JNF, by block multiplication.