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Exercise 1 (Warm-up: possible Jordan normal forms)
Let ϕ : V → V be an endomorphism of a finite dimensional C-vector space V . Which of the following situations can

occur?

(a) i. V is 6-dimensional, the minimal polynomial of ϕ is (X − 2)5, and the eigenspace of 2 has dimension 3.
ii. V is 6-dimensional, the minimal polynomial of ϕ is (X −2)(X −3)2, and the eigenspace of 2 has dimension 3.

(b) i. ϕ has minimal polynomial (X − 2)4 and there is a vector v ∈ V with height 3.
ii. ϕ has minimal polynomial (X − 2)4 and there is a vector v ∈ V with height 6.

iii. ϕ has minimal polynomial (X − 2)4, but no vector in V has height 3.

(c) i. ϕ has characteristic polynomial (X − 2)6 and ϕ2 −ϕ− id= 0.
ii. ϕ2 −ϕ− 2id= 0 and ϕ has eigenvalues that are not real.

(d) i. V has a ϕ-invariant subspace of dimension 5, 2 is the only eigenvalue of ϕ, but there is no v ∈ V with
dim(¹vº) = 5.

ii. 2 is the only eigenvalue of ϕ, V = ¹vº⊕¹bº with dim(¹vº) = 5, but the Jordan normal form for ϕ contains
no block of size 5.

(e) i. V can be written as the direct sum of two ϕ-invariant subspaces of dimension 4, but there is no Jordan block
of size greater than 3 in the Jordan normal form for ϕ.

ii. V can be written as the direct sum of two ϕ-invariant subspaces of dimension 4, and in the Jordan normal
form of ϕ there is a Jordan block of size 5.

Solution:

a) i. is impossible. As the minimal polynomial is (X − 2)5, there must be a Jordan block of size 5. Since the
eigenspace of 2 has dimension 3, there must be 3 Jordan blocks, and that simply does not fit in a 6× 6-
matrix.

ii. is possible. The Jordan normal form could be

















2 0
2

2
3 1

3
0 3

















.

b) i. is possible. If the Jordan normal form is











2 1 0
2 1

2 1
0 2











with respect to a basis (b1, . . . ,b4), then we have dim(¹b3º) = 3.
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ii. is impossible. If ψ= ϕ− 2id, then ψ4 = 0. Hence, no ¹vº can have dimension greater than 4.

iii. is impossible. There must be a Jordan block of size 4 generated by a vector v. But then (ϕ−2id)v must have
height 3.

c) i. is impossible. The minimal polynomial must be of the form (X − 2)k with 1 ≤ k ≤ 6, and also divide
X 2 − X − 1. But 2 is no root of this polynomial.

ii. is impossible. If ϕ(v) = λv with v 6= 0, then (ϕ2−ϕ−2id)(v) = (λ2−λ−2)v= 0. This implies λ2−λ−2= 0
and, therefore, λ=−1 or λ= 2. So all possible eigenvalues are real.

d) i. is possible, for instance, take ϕ = 2id and V = C5.

ii. is impossible. The Jordan normal form of ϕ must consist of two blocks, one of size dim(¹bº) and one of
size dim(¹vº) = 5.

e) i. is possible. The Jordan normal form could be
























λ 1 0
λ

λ 1
λ

λ 1
λ

λ 1
0 λ

























with respect to a basis (b1, . . . ,b8). Then span(b1, . . . ,b4) and span(b5, . . . ,b8) are ϕ-invariant subspaces.

ii. is impossible. If V = V0 ⊕ V1 and both V0 and V1 are ϕ-invariant, the Jordan normal form for ϕ can be
obtained by joining the normal forms for the restrictions of ϕ to V0 and V1. So if V0 and V1 can be chosen to
have dimension 4, there can be no Jordan block of size 5 in the Jordan normal form of ϕ.

Exercise 2 (Commuting matrices and simultaneous diagonalization)
(a) Let M1 and M2 be square matrices over F, and let qM1

and qM2
be the corresponding minimal polynomials. Show

that the minimal polynomial of the block matrix

M =
�

M1 0
0 M2

�

is the least common multiple of qM1
and qM2

. (Clearly this observation generalises to block matrices with an
arbitrary number of blocks).

(b) Show that M is diagonalizable if and only if both M1 and M2 are diagonalizable.

(c) Let A and B be diagonalizable n× n matrices over F that commute with each other, i.e., AB = BA.
i. Show that any eigenspace of A is invariant under B.

ii. Show that A and B are simultaneously diagonalizable, i.e., there exists a matrix C such that C−1AC and C−1BC
are both diagonal matrices.

Solution:

a) Recall that lcm(qM1
, qM2

) is the polynomial q characterised by the following properties:

1. qM1
|q and qM2

|q.

2. If qM1
|p and qM2

|p, then q|p.

Let qM be the minimal polynomial of M . Since

qM (M) =
�

qM (M1) 0
0 qM (M2)

�

= 0,

it follows that qM (M1) = 0 and qM (M2) = 0. By the definition of minimal polynomial, we have qM1
|qM and qM2

|qM .
Now suppose that qM1

|p and qM2
|p for some polynomial p. Then p(M1) = 0 and p(M2) = 0, so

p(M) =
�

p(M1) 0
0 p(M2)

�

= 0.

Since p(M) = 0, it follows that qM |p, since qM is the minimal polynomial of M . Therefore qM = lcm(qM1
, qM2

).
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b) Suppose that M is diagonalizable. Then qM splits into linear factors with multiplicity one. The same is clearly true
of qM1

and qM2
since qM1

|qM and qM2
|qM . Conversely, if both M1 and M2 are diagonalizable, qM1

and qM2
split into

linear factors with multiplicity one. The same clearly holds for lcm(qM1
, qM2

) = qM .

c) i. Let λ be an eigenvalue of A, and let Vλ be the corresponding eigenspace. Given v ∈ Vλ, note that A(Bv) =
ABv= BAv= B(Av) = Bλv= λBv. It follows that Bv ∈ Vλ, as desired.

ii. Let λ be an eigenvalue of A, and let Vλ be the corresponding eigenspace. Choose a basis v1, . . . , vm for Vλ.
Let U be the direct sum of the remaining eigenspaces of A, and let vm+1, . . . , vn be a basis for U consisting of
eigenvectors of A.

Clearly C = (v1, . . . , vn) is a basis of Fn consisting of eigenvectors of A. Let S be the matrix whose columns
are the vectors v1, . . . , vn, so that A′ = S−1AS is the diagonal matrix diag(λ, . . . ,λ,µm+1 . . .µn). (Here the first
m diagonal entries are λ).

Since the eigenspaces of A are invariant under B, it follows that B′ = S−1BS is block diagonal of the form
�

B1 0
0 B2

�

, where B1 is an m × m block, and B2 is an (n − m) × (n − m) block. Clearly B1 commutes

with the m×m matrix diag(λ, . . . ,λ) = λEm. Since A and B commute, it follows that A′ and B′ commute,
which implies that B2 commutes with the (n− m)× (n− m) matrix diag(µm+1, . . . ,µn). By Part (b), B1 is
diagonalizable, so there exists an m×m matrix T such that T−1B1T is a diagonal matrix D1. Let U be the

n× n matrix
�

T 0
0 En−m

�

. Then A′′ = (SU)−1ASU = U−1A′U is diagonal, and

B′′ = (SU)−1BSU = U−1B′U =
�

D1 0
0 B2

�

.

We now proceed in the same way with the smaller matrix B2.

Exercise 3 (Computing the Jordan normal form)
Let

A :=











1 2 2 1
2 −1 −3 −2
−2 3 5 2
−1 2 2 3











.

Find a regular matrix S and a matrix J in Jordan normal form such that A= SJS−1.
Hint. The characteristic polynomial of A is pA = (2− X )4.

Solution:
2 is the only eigenvalue. Thus, we consider

C := A− 2E4 =











−1 2 2 1
2 −3 −3 −2
−2 3 3 2
−1 2 2 1











.

We see that dim(ker(C)) = 2, i.e., A has two linearly independent eigenvectors. This means that J consists of two Jordan
blocks, either both of size 2, or one of size 3 and one of size 1. To see which of the two cases occurs, we compute C2. As
C2 = 0, J will consist of two blocks of size two, i.e.,

J =











2 1 0 0
0 2 0 0
0 0 2 1
0 0 0 2











.

To find the basis transformation S, we first need to determine a suitable basis. For that, we need to find two linearly
independent vectors u2 and u4, such that

dim(¹u2º) = dim(¹u4º) = 2 and ¹u2º∩¹u4º= 0 .
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For example, we can take

u2 =











1
0
0
0











and u4 =











0
1
0
0











.

The other basis vectors will be

u1 = Cu2 =











−1
2
−2
−1











and u3 = Cu4 =











2
−3
3
2











.

The basis transformation S has as its columns the representations of the new basis vectors in terms of the old (or standard)
basis. So the desired matrix is

S =











−1 1 2 0
2 0 −3 1
−2 0 3 0
−1 0 2 0











.

Exercise 4 (Exponential function for matrices)
Let

Jλ :=

















λ 1
λ 1

. . .
. . .
λ 1

λ

















∈ Cn×n

be a Jordan block with eigenvalue λ. For an arbitrary matrix A, we define

eA :=
∞
∑

i=0

Ai

i!
.

(a) Compute J k
0 .

(b) Compute J k
λ . Hint. Use the decomposition Jλ = λEn + J0.

For the following we leave aside all the convergence issues. It is indeed safe here, but not part of linear algebra.

(c) Suppose that A and B are matrices with AB = BA. Show that eA+B = eAeB.

(d) Show that eS−1AS = S−1eAS, for an arbitrary matrix A and an invertible one S.

(e) Prove that

eJλ = eλ
n−1
∑

i=0

J i
0

i!
.

Solution:

a)

J k
0 =























k
︷ ︸︸ ︷

0 · · · 0
0 · · · 0
...
0 · · · 0
...
0 · · · 0

1 0 · · · 0
0 1 · · · 0

. . .
...

0 0 · · · 1
...

0 0 · · · 0






















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b)

J k
λ = (λEn + J0)

k =
k
∑

i=0

�

k

i

�

λiJ k−i
0 .

c)

eA+B =
∞
∑

k=0

(A+ B)k

k!
=
∞
∑

k=0

k
∑

i=0

�

k

i

�

AiBk−i

k!
=
∞
∑

k=0

k
∑

i=0

AiBk−i

i! (k− i)!
=
∞
∑

k=0

Ak

k!
·
∞
∑

i=0

Bi

i!
= eAeB.

d) We have (S−1AS)k = S−1ASS−1AS · · ·S−1AS = S−1AA · · ·AS = S−1AkS. Consequently,

eS−1AS =
∞
∑

i=0

(S−1AS)i

i!
= S−1

h
∞
∑

i=0

Ai

i!

i

S = S−1eAS .

e)

eJλ = eλEn+J0 = eλEn eJ0 = eλ
∞
∑

i=0

J i
0

i!
= eλ

n−1
∑

i=0

J i
0

i!
.

Exercise 5 (Square roots)

(a) Let a0, . . . , an−1 ∈ C and let N be the n× n matrix















0 1 0
...

. . .
. . .
. . . 1

0 . . . 0















. When is (
∑n−1

i=0 aiN
i)2 a Jordan block?

(b) Deduce a sufficient condition for dEn + N ∈ C(n,n) to have a square root.

(c) Deduce a sufficient condition for complex matrices to have complex square roots.

Remark: using techniques from Lie group theory, which combine differential geometry, topology and group theory, one
can also obtain that the exponential map on matrices, A 7→ eA, is a surjection of C(n,n) onto GLn(C). It follows that the

equality [e
1
2 A]2 = eA yields square roots for any regular matrix.

Solution:

a) First note that generally speaking (
∑k

i=0 ai)2 =
∑

0≤i, j≤k aia j whenever a0, . . . , ak are elements of a ring.

A := (
n−1
∑

i=0

aiN
i)2 =

∑

0≤i, j≤n−1

aia jN
i+ j

=
∑

0≤k≤n−1

dkN k where dk :=
k
∑

i=0

aiak−i

For A to be a Jordan block, d1 must equal 1, that is, 2a0a1 = 1. Therefore a0 6= 0 and a1 =
1

2a0
are necessary.

Moreover dk must be zero for 1< k, that is, ak =
−
∑k−1

i=1 ai ak−i

2a0
. These conditions are also sufficient.

b) If d 6= 0 then let a2
0 := d (so that d0 = d), let a1 := 1

2a0
, and for all 1 < k ≤ n− 1 let us define the ak by induction.

ak :=
−
∑k−1

i=1 ai ak−i

2a0
. We have (

∑n−1
i=0 aiN

i)2 = dEn + N .

c) If a matrix is invertible, it has a square root. Indeed it suffices to shows that one of its JNF has a square root,
by an argument similar to the previous exercise. Since the matrix is invertible, 0 is not a root of its characteristic
polynomial, so all JNF blocks are of the form dE + N with d 6= 0. Each of those has a square root by the previous
question, so has the whole JNF, by block multiplication.
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