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Exercise 1
(a) Consider 2×2-matrices over the complex numbers. Why does their minimal polynomial determine their character-

istic polynomial? Is the same true for 3× 3-matrices?

(b) Find two 2× 2-matrices that are not similar, but have the same characteristic polynomial.

(c) Show that any two 2×2-matrices with the same minimal polynomial are similar in C(2,2). Is the same true in R(2,2)?

(d) Discuss necessary and sufficient conditions (also in terms of the determinant, the trace, and the minimal and
characteristic polynomial of a matrix) for the similarity of two matrices. Use these criteria to split the following 9
matrices into equivalence classes w.r.t. similarity.

A1 =







4 2 3
1 3 2
6 8 7






A2 =







2 3 4
0 2 3
0 0 2






A3 =







1 3 4
3 7 2
2 8 6







A4 =







2 0 4
0 2 0
0 0 2






A5 =







2 0 0
0 2 0
0 0 2






A6 =







2 4 3
3 1 2
8 6 7







A7 =







4 2 0
−2 0 0
2 2 2






A8 =







2 5 7
0 1 8
0 0 3






, A9 =







3 0 0
0 2 0
0 0 1






.

Solution:

a) If the minimal polynomial has degree 2, then it must be the characteristic polynomial. If it has degree 1, it must
consist of one linear factor (X − λ), and the characteristic polynomial is (X − λ)2. (And if it is the polynomial
p = 0, then so is the characteristic polynomial.)

A 3× 3-matrix with minimal polynomial (X − 2)(X − 3) may have characteristic polynomial (X − 2)2(X − 3) or
(X − 2)(X − 3)2. (Try to find an example of both!)

b) The following matrices have the same characteristic, but different minimal polynomials, and are therefore not
similar:

A=
�

1 1
0 1

�

and B =
�

1 0
0 1

�

.

c) To prove that matrices in C(2,2) with the same minimal polynomial are similar, we find for each polynomial p of
degree two a matrix to which all matrices with p as minimal polynomial are similar. So, if the minimal polynomial
of a matrix is of the form (X −λ)(X −µ) with λ 6= µ, then this also the characteristic polynomial, and the matrix
is similar to

�

λ 0
0 µ

�

.
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If the minimal polynomial is (X −λ), then the matrix is (similar to)

�

λ 0
0 λ

�

,

and if the minimal polynomial is (X −λ)2, then it is similar to

�

λ 1
0 λ

�

(This will later follow from the Jordan Normal Form Theorem).

In R(2,2) we have the additional possibility of a minimal polynomial of degree two that is irreducible over R. Over
C the polynomial splits as (X −λ)(X −λ) with λ 6= λ. Writing λ = reiϕ it follows from the previous exercise that
the matrix is similar in R(2,2) to

r
�

cosϕ sinϕ
− sinϕ cosϕ

�

.

So we deduce that also in R(2,2) matrices with the same minimal polynomial are similar.

d) Similar matrices share the following features:

• They represent the same linear map with respect to different bases.
• They have the same eigenvalues with the same algebraic and geometric multiplicities.
• They have the same characteristic and minimal polynomial.
• They have the same determinant and trace.
• They have the same rank.
• One is invertible, diagonalisable, idempotent, nilpotent etc. iff the other is.

So these conditions are all necessary. We note that, if the matrices are diagonalisable, then having the same
characteristic polynomial is also sufficient.

After comparing the traces and determinants it suffices to investigate the following classes for similarity:

{A1}, {A3}, {A6}, {A8, A9}, {A2, A4, A5, A7} .

Since pA8
= (X − 1)(X − 2)(X − 3) = pA9

the matrix A8 (and A9) is diagonalisable. It follows that the matrices A8
and A9 are similar.

The characteristic polynomial of A7 is

(2− X )[(−X )(4− X ) + 4] = (2− X )(X 2 − 4X + 4) = (2− X )3.

The eigenspace corresponding to the eigenvalue 2 has dimension 1 for A2, dimension 2 for A4 and A7, and dimen-
sion 3 for A5. The matrices A4 and A7 are similar, since we have A7 = SA4S−1 with

S =







−1 −1 −1
1 1 −1
−1 1 1






, S−1 =

1

2







−1 0 −1
0 1 1
−1 −1 0






.

Exercise 2 (Endomorphisms and bases)
Let ϕ ∈ Hom(R3,R3) be an endomorphism of R3 that, for some λ ∈ R, is represented by the matrix

Aλ :=







λ 1 0
0 λ 1
0 0 λ







(a) Check that the third basis vector in a basis B giving rise to Aλ as Aλ = ¹ϕºB
B must be in ker(ϕ−λid)3\ker(ϕ−λid)2.

(b) Describe in words which properties of ϕ guarantee that ¹ϕºB
B = Aλ for some basis B (for instance, in terms of

eigenvalues, eigenvectors, the minimal polynomial, or the characteristic polynomial).
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(c) For fixed ϕ (and λ), describe the set of all bases B = (b1,b2,b3) for which ¹ϕºB
B = Aλ.

Hint. Use ϕ to express b1 in terms of b2 and b2 in terms of b3, and determine the possible choices for b3.

(d) For λ = 0, what does the condition that ¹ϕºB
B = A0, for some basis B, tell us about dimensions of and the

relationship between Im(ϕ) and ker(ϕ)? What are the invariant subspaces?

Solution:

a) Let B = (b1,b2,b3) be such a basis. pϕ(X ) = (λ − X )3 so (ϕ − λid)3 = 0. Also, some calculation shows that
(ϕ−λid)2(b3) = ϕ2(b3)− 2λϕ(b3) +λ2b3 = · · ·= b1 6= 0.

b) We can find a basis B with ¹ϕºB
B = Aλ if, and only if, ϕ has only one eigenvalue λ, of geometric multiplicity 1,

and its minimal polynomial is qϕ = (X −λ)3.

c) If B is a basis as above, then

b1 = ϕ(b2)−λb2 = (ϕ−λid)b2 and b2 = ϕ(b3)−λb3 = (ϕ−λid)b3 .

Hence, every choice of b3 uniquely determines b1 and b2.

For which b3 do we get a basis this way? Clearly, we must have b1 6= 0 and b2 6= 0. Hence,

b2 /∈ ker(ϕ−λid) and b3 /∈ ker(ϕ−λid) .

We can simplify these conditions to the single necessary condition

b3 /∈ ker(ϕ−λid)2 .

We claim that this condition is also sufficient, i.e., for every b3 ∈ R3 \ ker(ϕ − λid)2, the vectors (ϕ − λid)2b3,
(ϕ−λid)b3, b3 form a basis.

First, we show that b1 := (ϕ − λid)2b3 and b2 := (ϕ − λid)b3 are linearly independent. For a contradiction,
suppose otherwise. Then, since both vectors are non-zero, there is a non-zero scalar α such that

(ϕ−λid)2b3 = α(ϕ−λid)b3 .

We can rewrite this equation to

ϕ(b2) = (α+λ)b2 .

Hence, b2 is an eigenvector of ϕ with eigenvalue α+ λ. Since λ is the only eigenvalue of ϕ, we obtain α = 0. A
contradiction.

Finally, we show that all three vectors b1,b2,b3 are linearly independent. Otherwise, we would have b3 ∈
span(b1,b2). Since b1,b2 ∈ ker(ϕ−λid)2 and ker(ϕ−λid)2 is a subspace, it follows that

b3 ∈ span(b1,b2)⊆ ker(ϕ−λid)2 .

Again a contradiction.

d) Let B = (b1,b2,b3) be a basis such that ¹ϕº= A0. Then

ker(ϕ) = span(b1) and Im(ϕ) = span(b1,b2) .

Hence,

ker(ϕ)⊆ Im(ϕ) , dim(ker(ϕ)) = 1 , dim(Im(ϕ)) = 2 .

We claim that the only invariant subspaces are {0}, ker(ϕ), Im(ϕ), and R3. Let U be an invariant subspace. If
U contains some vector v /∈ ker(ϕ2), then ϕ(v) and ϕ2(v) are also in U and v,ϕ(v),ϕ2(v) are linearly independent.
Hence, dim(U)≥ 3 and U = R3.

Similarly, if U ⊆ ker(ϕ2) but there is some v ∈ U \ ker(ϕ), then ϕ(v) and v are linearly independent vectors in U .
Hence, dim(U) = 2 and U = ker(ϕ2) = Im(ϕ).

Finally, if U ⊆ ker(ϕ) then U is either 1-dimensional and, hence, U = ker(ϕ), or U is 0-dimensional and U = {0}.
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Exercise 3 (Nilpotent endomorphisms)
Recall that an endomorphism ϕ : V → V is nilpotent if there is some k ∈ N such that ϕk = 0. The minimal such k is

called the index of ϕ.

(a) Suppose that V is Poln(R) the R-vector space of all polynomial functions of degree up to n. Show that the usual
differential operator ∂ : V → V : f 7→ f ′ is nilpotent of index n+ 1.

Suppose that ϕ : V → V is nilpotent with index k.

(b) Show that qϕ = X k.

(c) Show that, for every v ∈ V , W := span(v,ϕ(v), . . . ,ϕk−1(v)) is an invariant subspace.

(d) Let W be the subspace from (iii) where we additionally assume that ϕk−1(v) 6= 0. Show that the restriction ϕ0 of
ϕ to W is nilpotent with index k.

(e) Suppose that V has dimension k. Show that there is some basis B such that

¹ϕºB
B =





















0 1 0 · · · 0
. . .

. . .
. . .

...
...

. . .
. . . 0
. . . 1

0 · · · 0





















.

Solution:

a) Since ∂ n+1(x 7→ x i) = 0, for all i ≤ n, the index of ∂ is at most n+ 1. On the other hand, ∂ i(x 7→ xn) 6= 0, for
i ≤ n. Therefore, the index is exactly n+ 1.

b) The minimal polynomial qϕ must divide X k since ϕk = 0. By minimality of k, we have ϕi 6= 0, for i < k. Hence,
qϕ 6= X i , for i < k. Therefore, qϕ = X k.

c) Let w ∈ span(v,ϕ(v), . . . ,ϕk−1(v)). Then

w= α0v+α1ϕ(v) + · · ·+αk−2ϕ
k−2(v) +αk−1ϕ

k−1(v) ,

and

ϕ(w) = α0ϕ(v) +α1ϕ
2(v) + · · ·+αk−2ϕ

k−1(v) +αk−1ϕ
k(v)

= α0ϕ(v) +α1ϕ
2(v) + · · ·+αk−2ϕ

k−1(v) ∈ span(v,ϕ(v), . . . ,ϕk−1(v)) .

Hence ϕ(w) ∈W , for every w ∈W .

d) For every w ∈ V , we have ϕk(w) = 0. This implies that ϕk
0(w) = 0, for all w ∈ W ⊆ V . Hence, the index is at

most k. It cannot be less than k since v ∈W and ϕk−1
0 (v) = ϕk−1(v) 6= 0.

e) Since the index of ϕ is k, there is some v ∈ V such that ϕk−1(v) 6= 0. For the basis B = (ϕk−1(v), . . . ,ϕ(v),v), the
matrix ¹ϕºB

B has the desired form.

Exercise 4 (Characteristic and minimal polynomial)
Let A∈ F(n,n) have the characteristic polynomial pA and the minimal polynomial qA = X r +

∑r−1
i=0 ciX

i .

(a) Let B0, B1, . . . , Br be defined as below.

B0 := En

B1 := A+ cr−1En

B2 := A2 + cr−1A+ cr−2En

. . .

Br−1 := Ar−1 + cr−1Ar−2 + · · ·+ c1En

Br := Ar + cr−1Ar−1 + · · ·+ c0En

Let B(X ) := X r−1B0 + X r−2B1 + · · ·+ X Br−2 + Br−1 and show that (X En − A)B(X ) = qA(X En).
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(b) Use part (a) to show that pA divides (qA)n.

(c) Use part (b) to show that pA and qA have the same irreducible factors.

Solution:

a) One sees that for the sequence Bi we have:

B0 = En

B1 − AB0 = A+ cr−1En − A

= cr−1En

. . .

Br−1 − ABr−2 = c1En

Br − ABr−1 = c0En

As Br = qA(A) = 0 we get

−ABr−1 = c0En − Br = c0En.

Using these observations we can determine (X En − A)B(X ):

(X En − A)B(X ) = (X r B0 + X r−1B1 + · · ·+ X 2Br−2 + X Br−1)

−(X r−1AB0 + X r−2AB1 + · · ·+ XABr2
+ ABr−1)

= X r B0 + X r−1(B1 − AB0) + · · ·+ X Br−1 − ABr−2 − ABr−1

= X r En + X r−1c1En + X r−2cr−2En + · · ·+ X c1En + c0En

= qA(X En)

b) The determinant on both sides of the above equation gives |(X En−A)||B(X )|= |qA(X En)|= (qA(X ))n. Since |B(X )|
is a polynomial, |X En − A| divides (qA)n; that is the characteristic polynomial pA of A divides (qA)n.

c) Suppose f is an irreducible polynomial. If f divides qA then, since qA divides pA, f divides pA. On the other hand,
if f divides qA, then by part (a), f divides (qA)n. But f is irreducible; hence f divides qA. Thus qA and pA have the
same irreducible factors.
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