Linear Algebra II
 Exercise Sheet no. 4

TECHNISCHE
UNIVERSITAT
DARMSTADT

Prof. Dr. Otto
May 2, 2011
Dr. Le Roux
Dr. Linshaw

Exercise 1 (Warm-up)

Prove the Cayley-Hamilton Theorem for 2×2 matrices by direct computation.

Solution:

Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Clearly the characteristic polynomial $p_{A}(\lambda)$ is given by

$$
p_{A}(\lambda)=\lambda^{2}-(a+d) \lambda+(a d-b c)
$$

By substituting A into $p_{A}(\lambda)$ we get

$$
\begin{gathered}
A^{2}-(a+d) A+(a d-b c) E_{2} \\
=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)-(a+d)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+(a d-b c)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
=\left(\begin{array}{cc}
a^{2}+c b & a b+b d \\
a c+d c & c b+d^{2}
\end{array}\right)-\left(\begin{array}{cc}
a^{2}+a d & a b+b d \\
c a+c d & d a+d^{2}
\end{array}\right)+\left(\begin{array}{cc}
a d-c b & 0 \\
0 & a d-c b
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

Exercise 2 (Eigenvalues)
Let p be a polynomial in $\mathbb{F}[X]$ and $A \in \mathbb{F}^{(n, n)}$. Show that if λ is an eigenvalue of A, then $p(\lambda)$ is an eigenvalue of the matrix $p(A)$.

Solution:

If $p=\sum_{k=0}^{m} a_{k} X^{k}$, then

$$
p(A)=\sum_{k=0}^{m} a_{k} A^{k}=a_{0} E_{n}+a_{1} A+\ldots+a_{m} A^{m} .
$$

Let $\mathbf{v} \in \mathbb{F}^{n}$ be an eigenvector of A with eigenvalue λ. It is easy to see by induction on k that \mathbf{v} is an eigenvalue of A^{k} with eigenvalue λ^{k} for all $k \in \mathbb{N}$.

It follows that

$$
\begin{aligned}
p(A) \cdot \mathbf{v} & =\left(\sum_{k=0}^{m} a_{k} A^{k}\right) \mathbf{v}=\sum_{k=0}^{m} a_{k}\left(A^{k} \mathbf{v}\right)=\sum_{k=0}^{m} a_{k} \lambda^{k} \mathbf{v}=\left(\sum_{k=0}^{m} a_{k} \lambda^{k}\right) \mathbf{v} \\
& =p(\lambda) \mathbf{v}
\end{aligned}
$$

Exercise 3 (Trace)
Recall that $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$ is the trace of an $n \times n$-matrix $A=\left(a_{i j}\right) \in \mathbb{F}^{(n, n)}$.
(a) Show that for any matrices $A, B \in \mathbb{F}^{(n, n)}, \operatorname{tr}(A B)=\operatorname{tr}(B A)$. Use this to show that similar matrices have the same trace.
(b) How does the characteristic polynomial p_{A} of a matrix A determine $\operatorname{tr}(A)$ and $\operatorname{det}(A)$? From this, conclude (again) that the trace is invariant under similarity (as is the determinant, of course).
(c) Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 3 \\
1 & -2
\end{array}\right), \quad C=\left(\begin{array}{cc}
2 & 1 \\
0 & -1
\end{array}\right) .
$$

Show that $\operatorname{tr}(A B C) \neq \operatorname{tr}(A C B)$. Therefore the trace is not invariant under arbitrary permutations of products of matrices.

Solution:

a) Since the $i j$-th entry $(A B)_{(i j)}$ is given by $\sum_{k=1}^{n} a_{i k} b_{k j}$, we have $\operatorname{tr}(A B)=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k i}$. Similarly, $\operatorname{tr}(B A)=$ $\sum_{i=1}^{n} \sum_{k=1}^{n} b_{i k} a_{k i}$, so the claim is immediate.
Suppose next that $A=C B C^{-1}$ for some invertible matrix C. Since $\operatorname{tr}(C R)=\operatorname{tr}(R C)$ for $R=B C^{-1}$, we have

$$
\operatorname{tr}(A)=\operatorname{tr}(C R)=\operatorname{tr}(R C)=\operatorname{tr}\left(B C^{-1} C\right)=\operatorname{tr}(B)
$$

b) Let $p_{A}=\sum_{i=0}^{n} a_{n} X^{n}$ be the characteristic polynomial of A. We have

$$
a_{n}=(-1)^{n}, \quad a_{n-1}=(-1)^{n-1} \operatorname{tr}(A), \quad \text { and } \quad a_{0}=\operatorname{det}(A)
$$

By Observation 1.1.7 in the lecture notes, similar matrices have the same characteristic polynomial. Hence, they also have the same trace and determinant.
c) A calculation shows that $\operatorname{tr}(A B C)=15$ and $\operatorname{tr}(A C B)=7$.

Exercise 4 (Characteristic polynomial)

(a) Determine the characteristic polynomial p_{A} of the matrix

$$
A=\left(\begin{array}{ccccccc}
0 & 0 & 0 & \ldots & 0 & 0 & a_{0} \\
1 & 0 & 0 & \ldots & 0 & 0 & a_{1} \\
0 & 1 & 0 & \ldots & 0 & 0 & a_{2} \\
0 & 0 & 1 & \ldots & 0 & 0 & a_{3} \\
\vdots & & & & & & \\
0 & 0 & 0 & \ldots & 1 & 0 & a_{n-2} \\
0 & 0 & 0 & \ldots & 0 & 1 & a_{n-1}
\end{array}\right), \quad \text { with } n \geq 1
$$

Hint: expand the determinant along the last column.
(b) Show that every polynomial $p \in \mathbb{F}[X]$ of degree $n \geq 1$ with leading coefficient $(-1)^{n}$ occurs as a characteristic polynomial of a matrix $A \in \mathbb{F}^{(n, n)}$.

Solution:

a) $p_{A}=(-1)^{n} x^{n}+(-1)^{n+1} \sum_{i=0}^{n-1} a_{i} x^{i}$.
b) Let $n \geq 1$ and $p=(-1)^{n} x^{n}+\sum_{i=0}^{n-1} a_{i} x^{i}$. Take

$$
A=\left(\begin{array}{ccccccc}
0 & 0 & 0 & \ldots & 0 & 0 & (-1)^{n-1} a_{0} \\
1 & 0 & 0 & \ldots & 0 & 0 & (-1)^{n-1} a_{1} \\
0 & 1 & 0 & \ldots & 0 & 0 & (-1)^{n-1} a_{2} \\
0 & 0 & 1 & \ldots & 0 & 0 & (-1)^{n-1} a_{3} \\
\vdots & & & & & & \\
0 & 0 & 0 & \ldots & 1 & 0 & (-1)^{n-1} a_{n-2} \\
0 & 0 & 0 & \ldots & 0 & 1 & (-1)^{n-1} a_{n-1}
\end{array}\right)
$$

By (b), we get that

$$
p_{A}=(-1)^{n} x^{n}+(-1)^{n+1} \sum_{i=0}^{n-1}(-1)^{n-1} a_{i} x^{i}=(-1)^{n} x^{n}+\sum_{i=0}^{n-1} a_{i} x^{i}=p
$$

Exercise 5 (Polynomials over \mathbb{F}_{2})
(a) Show that in $\mathbb{F}_{2}[X]$ any non-linear polynomial with an odd number of powers X^{i} for $i \geq 1$ (with or without the constant term 1) is reducible.
(b) Find in $\mathbb{F}_{2}[X]$ all irreducible polynomials of degree 3 and 4.

Solution:

a) A non-linear polynomial without the constant term 1 has the root 0 , a non-linear polynomial with an odd number of powers X^{i} for $i \geq 1$ and the constant term 1 has the root 1 . So reducibility follows from Proposition 1.2.12 on page 21 of the notes.
b) We first consider polynomials of degree 3 . According to (a), the only polynomials that need to be considered are $p_{1}=X^{3}+X+1$ and $p_{2}=X^{3}+X^{2}+1$. Both of these are irreducible, for if they were reducible, they would be divisible by a linear factor X or $X+1$. But that is impossible, since neither 0 nor 1 is a root of either of the two polynomials.
Now consider polynomials of degree 4. According to (a), the only polynomials that come into consideration are:

$$
\begin{aligned}
& p_{1}=X^{4}+X+1 \\
& p_{2}=X^{4}+X^{2}+1 \\
& p_{3}=X^{4}+X^{3}+1 \\
& p_{4}=X^{4}+X^{3}+X^{2}+X+1
\end{aligned}
$$

Neither of these is divisible by a linear factor, since they have no roots. So if any of these were reducible, they would factor as a product of two irreducible polynomials of degree 2 . But the only irreducible polynomial of degree 2 in $\mathbb{F}_{2}[X]$ is $X^{2}+X+1$. So if any of the above would be reducible, it would be $\left(X^{2}+X+1\right)^{2}=X^{4}+X^{2}+1=p_{2}$. So p_{1}, p_{3} and p_{4} are the irreducible polynomials of degree 4 in $\mathbb{F}_{2}[X]$.

