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Exercise 1 (Warm-up: Multiple Zeroes)
For a polynomial p =

∑n
i=0 aiX

i ∈ F[X ] define its formal derivative p′ by

p′ :=
n
∑

i=1

iaiX
i−1.

(a) Check that the usual product rule for differentiaton applies to the formal derivative of polynomials considered here!

(b) Let α be a zero of P. Show the equivalence of the following:
i. α is a multiple zero of p. (In other words, (X −α)2 divides p.)

ii. α is a zero of p′.
iii. α is a zero of gcd(p, p′).

Solution:

a) The map p 7→ p′ is linear by definition, so it suffices to check that the claim holds for monomials p = X k and q = X l .
On the one hand (pq)′ = (X k+l)′ = (k+ l)X k+l−1; on the other hand p′q+q′p = kX k−1X l+ lX l−1X k = (k+ l)X k+l−1.

b) Let α be a zero of p. Then p = (X −α)rq for some q ∈ F[X ] not divisible by X −α. Then

p′ = (X −α)rq′ + r(X −α)r−1q.

To see that (i) and (ii) are equivalent, note that α is a multiple root of p iff r ≥ 2, which is clearly equivalent to (ii).
To see that (ii) and (iii) are equivalent, note that α is a zero of both p and p′ iff (X −α) is a divisor of gcd(p, p′).

Exercise 2 (Commutative subrings of matrix rings)
Let A ∈ F(n,n) be an n× n matrix over a field F. Let RA ⊆ F(n,n) be the subring generated by A, which consists of all

linear combinations of powers of A.

(a) Prove that RA is a commutative subring of F(n,n).

(b) Consider the evaluation map˜: F[X ]→ RA defined by p̃ =
∑n

i aiA
i for p =

∑n
i aiX

i . Show that this map is a ring
homomorphism. Is it surjective? Injective?

Hint: By forgetting about the multiplicative structure, we may regard F[X ] and RA as vector spaces over F, and we
may regard˜as a vector space homomorphism. Do F[X ] and RA have the same dimension as F-vector spaces?

Solution:

a) We have AkAl = Ak+l = AlAk for all 0 ≤ k, l and since every element of the ring is a linear combination of powers
of A, the claim follows.

b) It is straightforward to check that it is a ring homomorphism, and it is surjective by definition. Since F(n,n) is a
finite-dimensional vector space over F and RA is a subspace of F(n,n), RA is also a finite-dimensional vector space
over F. On the other hand F[X ] is an infinite-dimensional vector space over F. (See exercise T3.1.) Therefore the
map cannot be injective. (Note that this is consistent with the Cayley-Hamilton Theorem.)
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Exercise 3 (The Euclidean algorithm revisited)
Recall the Euclidean algorithm from Exercise Sheet 2. In particular, given natural numbers a, b, we normalise so that

d1 =min{a, b} and d0 =max{a, b}. In each step, we divide with remainder, obtaining dk−1 = qkdk + dk+1. At the end of
this procedure dk+1 = 0, and dk = gcd(a, b).

(a) Let k be the number of steps needed to compute gcd(a0, b0) in this way. Consider the matrix M ∈ Z(2,2) given by

M =
�

0 1
1 q1

��

0 1
1 q2

�

· · ·
�

0 1
1 qk

�

.

Show that M is regular and that M−1 is again a matrix over Z. Compute M−1

�

d1
d0

�

.

(b) Interpret the entries in second row of M−1 in terms of gcd(d0, d1).

(c) Recall that the least common multiple lcm(d0, d1) is an integer z characterized by the following properties:

i. d0|z and d1|z.
ii. If a is any integer for which d0|a and d1|a, then z|a.

Interpret the entries in the first row of M−1 in terms of lcm(d0, d1).

Solution:

a) Each matrix
�

0 1
1 qk

�

has determinant −1. Therefore det(M) = (−1)k, so M is regular. It follows that

M−1 =
�

m11 m12
m21 m22

�−1

= (−1)k
�

m22 −m12
−m21 m11

�

which clearly has integer entries. Using the above notation we have

�

0 1
1 ql

��

dl+1
dl

�

=
�

dl
dl−1

�

.

It follows that

M−1
�

d1
d0

�

=
�

0 1
1 qk

�−1�0 1
1 qk−1

�−1

. . .
�

0 1
1 q2

�−1�0 1
1 q1

�−1�d1
d0

�

=
�

0 1
1 qk

�−1�0 1
1 qk−1

�−1

. . .
�

0 1
1 q2

�−1�d2
d1

�

=
�

0
gcd(d0, d1)

�

.

b) Let M−1 =
�

p l
m n

�

. So md1+ nd0 = gcd(d0, d1). Therefore m and n are the coefficients used to write gcd(d0, d1)

as an integer linear combination of d0 and d1.

c) We have pd1 + ld0 = 0 so pd1 = −ld0. It follows that d0|pd1 and d1|pd1. Let z = lcm(d0, d1). Then z also divides
pd1, that is pd1 = rz for some r. Moreover det(M−1) =±1, so p and l are relatively prime. Since pd1 =−ld0 = rz
and since z = lcm(d0, d1), it follows that r divides p and l. So r = ±1 and |pd1| = |ld0| = lcm(d0, d1). (See the
OWO Lecture Notes from 2008/09.)

Exercise 4 (Polynomial factorisation and diagonalisation)
Consider the following polynomials in F[X ] for F=Q,R and C:

p1 = X 3 − 2, p2 = X 3 + 4X 2 + 2X , p3 = X 3 − X 2 − 2X + 2.

(a) Which of these polynomials are irreducible in F[X ]?
(b) Which of these polynomials decompose into linear factors over F[X ]?
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(c) Suppose pi is the characteristic polynomial of a matrix Ai ∈ F(3,3). Which of the Ai is diagonalisable over F?

Solution:
Over the complex numbers these polynomials decompose as

p1 = (X − 3p2)(X − 3p2ω)(X − 3p2ω2),

p2 = X (X + 2+
p

2)(X + 2−
p

2),

p3 = (X − 1)(X +
p

2)(X −
p

2),

with ω= e
2
3πi .

a) Since p1 has no rational roots, it is irreducible over Q, while p2 and p3 are not.

None of these polynomials is irreducible over R or C (every third degree polynomial is reducible over R and C).

b) None of the above polynomials decompose into linear factors over Q.

p2 and p3 decompose into linear factors over R, while p1 does not.

All polynomials in C[X ] decompose into linear factors over C, especially so do p1, p2 and p3.

c) Applying Propositions 1.1.15 and 1.3.1, it follows that

1. the matrices Ai are diagonalisable over C;

2. A2 and A3, but not A1, are diagonalisable over R;

3. none of the Ai are diagonalisable over Q.
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