Linear Algebra II Exercise Sheet no. 3

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise 1 (Warm-up: Multiple Zeroes) For a polynomial $p = \sum_{i=0}^{n} a_i X^i \in \mathbb{F}[X]$ define its *formal derivative* p' by

$$p':=\sum_{i=1}^n ia_i X^{i-1}.$$

- (a) Check that the usual product rule for differentiaton applies to the formal derivative of polynomials considered here!
- (b) Let α be a zero of *P*. Show the equivalence of the following:
 - i. α is a multiple zero of *p*. (In other words, $(X \alpha)^2$ divides *p*.)
 - ii. α is a zero of p'.
 - iii. α is a zero of gcd(p, p').

Solution:

- a) The map $p \mapsto p'$ is linear by definition, so it suffices to check that the claim holds for monomials $p = X^k$ and $q = X^l$. On the one hand $(pq)' = (X^{k+l})' = (k+l)X^{k+l-1}$; on the other hand $p'q+q'p = kX^{k-1}X^l + lX^{l-1}X^k = (k+l)X^{k+l-1}$.
- b) Let α be a zero of p. Then $p = (X \alpha)^r q$ for some $q \in \mathbb{F}[X]$ not divisible by $X \alpha$. Then

$$p' = (X - \alpha)^r q' + r(X - \alpha)^{r-1} q.$$

To see that (i) and (ii) are equivalent, note that α is a multiple root of p iff $r \ge 2$, which is clearly equivalent to (ii). To see that (ii) and (iii) are equivalent, note that α is a zero of both p and p' iff $(X - \alpha)$ is a divisor of gcd(p, p').

Exercise 2 (Commutative subrings of matrix rings)

Let $A \in \mathbb{F}^{(n,n)}$ be an $n \times n$ matrix over a field \mathbb{F} . Let $R_A \subseteq \mathbb{F}^{(n,n)}$ be the subring generated by A, which consists of all linear combinations of powers of A.

- (a) Prove that R_A is a commutative subring of $\mathbb{F}^{(n,n)}$.
- (b) Consider the evaluation map[~]: $\mathbb{F}[X] \to R_A$ defined by $\tilde{p} = \sum_i^n a_i A^i$ for $p = \sum_i^n a_i X^i$. Show that this map is a ring homomorphism. Is it surjective? Injective?

Hint: By forgetting about the multiplicative structure, we may regard $\mathbb{F}[X]$ and R_A as vector spaces over \mathbb{F} , and we may regard \tilde{a} as a vector space homomorphism. Do $\mathbb{F}[X]$ and R_A have the same dimension as \mathbb{F} -vector spaces?

Solution:

- a) We have $A^k A^l = A^{k+l} = A^l A^k$ for all $0 \le k, l$ and since every element of the ring is a linear combination of powers of *A*, the claim follows.
- b) It is straightforward to check that it is a ring homomorphism, and it is surjective by definition. Since $\mathbb{F}^{(n,n)}$ is a finite-dimensional vector space over \mathbb{F} and R_A is a subspace of $\mathbb{F}^{(n,n)}$, R_A is also a finite-dimensional vector space over \mathbb{F} . On the other hand $\mathbb{F}[X]$ is an infinite-dimensional vector space over \mathbb{F} . (See exercise *T*3.1.) Therefore the map cannot be injective. (Note that this is consistent with the Cayley-Hamilton Theorem.)

SS 2011 April 29, 2011 Exercise 3 (The Euclidean algorithm revisited)

Recall the Euclidean algorithm from Exercise Sheet 2. In particular, given natural numbers *a*, *b*, we normalise so that $d_1 = \min\{a, b\}$ and $d_0 = \max\{a, b\}$. In each step, we divide with remainder, obtaining $d_{k-1} = q_k d_k + d_{k+1}$. At the end of this procedure $d_{k+1} = 0$, and $d_k = \gcd(a, b)$.

(a) Let k be the number of steps needed to compute $gcd(a_0, b_0)$ in this way. Consider the matrix $M \in \mathbb{Z}^{(2,2)}$ given by

$$M = \begin{pmatrix} 0 & 1 \\ 1 & q_1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & q_2 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & q_k \end{pmatrix}.$$

Show that *M* is regular and that M^{-1} is again a matrix over \mathbb{Z} . Compute $M^{-1}\begin{pmatrix} d_1 \\ d_0 \end{pmatrix}$.

- (b) Interpret the entries in second row of M^{-1} in terms of $gcd(d_0, d_1)$.
- (c) Recall that the *least common multiple* lcm(d₀, d₁) is an integer *z* characterized by the following properties:
 i. d₀|*z* and d₁|*z*.
 - ii. If *a* is any integer for which $d_0|a$ and $d_1|a$, then z|a.

Interpret the entries in the first row of M^{-1} in terms of lcm (d_0, d_1) .

Solution:

a) Each matrix $\begin{pmatrix} 0 & 1 \\ 1 & q_k \end{pmatrix}$ has determinant -1. Therefore det $(M) = (-1)^k$, so M is regular. It follows that

$$M^{-1} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}^{-1} = (-1)^k \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$$

which clearly has integer entries. Using the above notation we have

$$\begin{pmatrix} 0 & 1 \\ 1 & q_l \end{pmatrix} \begin{pmatrix} d_{l+1} \\ d_l \end{pmatrix} = \begin{pmatrix} d_l \\ d_{l-1} \end{pmatrix}$$

It follows that

$$\begin{split} M^{-1} \begin{pmatrix} d_1 \\ d_0 \end{pmatrix} &= \begin{pmatrix} 0 & 1 \\ 1 & q_k \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ 1 & q_{k-1} \end{pmatrix}^{-1} \cdots \begin{pmatrix} 0 & 1 \\ 1 & q_2 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ 1 & q_1 \end{pmatrix}^{-1} \begin{pmatrix} d_1 \\ d_0 \end{pmatrix} \\ &= \begin{pmatrix} 0 & 1 \\ 1 & q_k \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ 1 & q_{k-1} \end{pmatrix}^{-1} \cdots \begin{pmatrix} 0 & 1 \\ 1 & q_2 \end{pmatrix}^{-1} \begin{pmatrix} d_2 \\ d_1 \end{pmatrix} \\ &= \begin{pmatrix} 0 \\ \gcd(d_0, d_1) \end{pmatrix}. \end{split}$$

- b) Let $M^{-1} = \begin{pmatrix} p & l \\ m & n \end{pmatrix}$. So $md_1 + nd_0 = \gcd(d_0, d_1)$. Therefore *m* and *n* are the coefficients used to write $\gcd(d_0, d_1)$ as an integer linear combination of d_0 and d_1 .
- c) We have $pd_1 + ld_0 = 0$ so $pd_1 = -ld_0$. It follows that $d_0|pd_1$ and $d_1|pd_1$. Let $z = lcm(d_0, d_1)$. Then z also divides pd_1 , that is $pd_1 = rz$ for some r. Moreover $det(M^{-1}) = \pm 1$, so p and l are relatively prime. Since $pd_1 = -ld_0 = rz$ and since $z = lcm(d_0, d_1)$, it follows that r divides p and l. So $r = \pm 1$ and $|pd_1| = |ld_0| = lcm(d_0, d_1)$. (See the OWO Lecture Notes from 2008/09.)

Exercise 4 (Polynomial factorisation and diagonalisation) Consider the following polynomials in $\mathbb{F}[X]$ for $\mathbb{F} = \mathbb{Q}, \mathbb{R}$ and \mathbb{C} :

$$p_1 = X^3 - 2,$$
 $p_2 = X^3 + 4X^2 + 2X,$ $p_3 = X^3 - X^2 - 2X + 2.$

- (a) Which of these polynomials are irreducible in $\mathbb{F}[X]$?
- (b) Which of these polynomials decompose into linear factors over $\mathbb{F}[X]$?

(c) Suppose p_i is the characteristic polynomial of a matrix $A_i \in \mathbb{F}^{(3,3)}$. Which of the A_i is diagonalisable over \mathbb{F} ?

Solution:

Over the complex numbers these polynomials decompose as

$$p_1 = (X - \sqrt[3]{2})(X - \sqrt[3]{2}\omega)(X - \sqrt[3]{2}\omega^2),$$

$$p_2 = X(X + 2 + \sqrt{2})(X + 2 - \sqrt{2}),$$

$$p_3 = (X - 1)(X + \sqrt{2})(X - \sqrt{2}),$$

with $\omega = e^{\frac{2}{3}\pi i}$.

- a) Since p₁ has no rational roots, it is irreducible over Q, while p₂ and p₃ are not.
 None of these polynomials is irreducible over ℝ or C (every third degree polynomial is reducible over ℝ and C).
- b) None of the above polynomials decompose into linear factors over Q. *p*₂ and *p*₃ decompose into linear factors over ℝ, while *p*₁ does not.
 All polynomials in C[X] decompose into linear factors over C, especially so do *p*₁, *p*₂ and *p*₃.
- c) Applying Propositions 1.1.15 and 1.3.1, it follows that
 - 1. the matrices A_i are diagonalisable over \mathbb{C} ;
 - 2. A_2 and A_3 , but not A_1 , are diagonalisable over \mathbb{R} ;
 - 3. none of the A_i are diagonalisable over \mathbb{Q} .