Linear Algebra II
 Exercise Sheet no. 3

TECHNISCHE UNIVERSITAT DARMSTADT

Prof. Dr. Otto
Dr. Le Roux

April 29, 2011
Dr. Linshaw

Exercise 1 (Warm-up: Multiple Zeroes)

For a polynomial $p=\sum_{i=0}^{n} a_{i} X^{i} \in \mathbb{F}[X]$ define its formal derivative p^{\prime} by

$$
p^{\prime}:=\sum_{i=1}^{n} i a_{i} X^{i-1}
$$

(a) Check that the usual product rule for differentiaton applies to the formal derivative of polynomials considered here!
(b) Let α be a zero of P. Show the equivalence of the following:
i. α is a multiple zero of p. (In other words, $(X-\alpha)^{2}$ divides p.)
ii. α is a zero of p^{\prime}.
iii. α is a zero of $\operatorname{gcd}\left(p, p^{\prime}\right)$.

Solution:

a) The map $p \mapsto p^{\prime}$ is linear by definition, so it suffices to check that the claim holds for monomials $p=X^{k}$ and $q=X^{l}$. On the one hand $(p q)^{\prime}=\left(X^{k+l}\right)^{\prime}=(k+l) X^{k+l-1}$; on the other hand $p^{\prime} q+q^{\prime} p=k X^{k-1} X^{l}+l X^{l-1} X^{k}=(k+l) X^{k+l-1}$.
b) Let α be a zero of p. Then $p=(X-\alpha)^{r} q$ for some $q \in \mathbb{F}[X]$ not divisible by $X-\alpha$. Then

$$
p^{\prime}=(X-\alpha)^{r} q^{\prime}+r(X-\alpha)^{r-1} q
$$

To see that (i) and (ii) are equivalent, note that α is a multiple root of p iff $r \geq 2$, which is clearly equivalent to (ii). To see that (ii) and (iii) are equivalent, note that α is a zero of both p and p^{\prime} iff $(X-\alpha)$ is a divisor of $\operatorname{gcd}\left(p, p^{\prime}\right)$.

Exercise 2 (Commutative subrings of matrix rings)
Let $A \in \mathbb{F}^{(n, n)}$ be an $n \times n$ matrix over a field \mathbb{F}. Let $R_{A} \subseteq \mathbb{F}^{(n, n)}$ be the subring generated by A, which consists of all linear combinations of powers of A.
(a) Prove that R_{A} is a commutative subring of $\mathbb{F}^{(n, n)}$.
(b) Consider the evaluation map $\sim \mathbb{F}[X] \rightarrow R_{A}$ defined by $\tilde{p}=\sum_{i}^{n} a_{i} A^{i}$ for $p=\sum_{i}^{n} a_{i} X^{i}$. Show that this map is a ring homomorphism. Is it surjective? Injective?

Hint: By forgetting about the multiplicative structure, we may regard $\mathbb{F}[X]$ and R_{A} as vector spaces over \mathbb{F}, and we may regard ${ }^{\sim}$ as a vector space homomorphism. Do $\mathbb{F}[X]$ and R_{A} have the same dimension as \mathbb{F}-vector spaces?

Solution:

a) We have $A^{k} A^{l}=A^{k+l}=A^{l} A^{k}$ for all $0 \leq k, l$ and since every element of the ring is a linear combination of powers of A, the claim follows.
b) It is straightforward to check that it is a ring homomorphism, and it is surjective by definition. Since $\mathbb{F}^{(n, n)}$ is a finite-dimensional vector space over \mathbb{F} and R_{A} is a subspace of $\mathbb{F}^{(n, n)}, R_{A}$ is also a finite-dimensional vector space over \mathbb{F}. On the other hand $\mathbb{F}[X]$ is an infinite-dimensional vector space over \mathbb{F}. (See exercise T3.1.) Therefore the map cannot be injective. (Note that this is consistent with the Cayley-Hamilton Theorem.)

Exercise 3 (The Euclidean algorithm revisited)

Recall the Euclidean algorithm from Exercise Sheet 2. In particular, given natural numbers a, b, we normalise so that $d_{1}=\min \{a, b\}$ and $d_{0}=\max \{a, b\}$. In each step, we divide with remainder, obtaining $d_{k-1}=q_{k} d_{k}+d_{k+1}$. At the end of this procedure $d_{k+1}=0$, and $d_{k}=\operatorname{gcd}(a, b)$.
(a) Let k be the number of steps needed to compute $\operatorname{gcd}\left(a_{0}, b_{0}\right)$ in this way. Consider the matrix $M \in \mathbb{Z}^{(2,2)}$ given by

$$
M=\left(\begin{array}{cc}
0 & 1 \\
1 & q_{1}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & q_{2}
\end{array}\right) \cdots\left(\begin{array}{cc}
0 & 1 \\
1 & q_{k}
\end{array}\right) .
$$

Show that M is regular and that M^{-1} is again a matrix over \mathbb{Z}. Compute $M^{-1}\binom{d_{1}}{d_{0}}$.
(b) Interpret the entries in second row of M^{-1} in terms of $\operatorname{gcd}\left(d_{0}, d_{1}\right)$.
(c) Recall that the least common multiple $\operatorname{lcm}\left(d_{0}, d_{1}\right)$ is an integer z characterized by the following properties:
i. $d_{0} \mid z$ and $d_{1} \mid z$.
ii. If a is any integer for which $d_{0} \mid a$ and $d_{1} \mid a$, then $z \mid a$.

Interpret the entries in the first row of M^{-1} in terms of $1 \mathrm{~cm}\left(d_{0}, d_{1}\right)$.

Solution:

a) Each matrix $\left(\begin{array}{cc}0 & 1 \\ 1 & q_{k}\end{array}\right)$ has determinant -1 . Therefore $\operatorname{det}(M)=(-1)^{k}$, so M is regular. It follows that

$$
M^{-1}=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)^{-1}=(-1)^{k}\left(\begin{array}{cc}
m_{22} & -m_{12} \\
-m_{21} & m_{11}
\end{array}\right)
$$

which clearly has integer entries. Using the above notation we have

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & q_{l}
\end{array}\right)\binom{d_{l+1}}{d_{l}}=\binom{d_{l}}{d_{l-1}}
$$

It follows that

$$
\begin{aligned}
M^{-1}\binom{d_{1}}{d_{0}}= & \left(\begin{array}{cc}
0 & 1 \\
1 & q_{k}
\end{array}\right)^{-1}\left(\begin{array}{cc}
0 & 1 \\
1 & q_{k-1}
\end{array}\right)^{-1} \ldots\left(\begin{array}{cc}
0 & 1 \\
1 & q_{2}
\end{array}\right)^{-1}\left(\begin{array}{cc}
0 & 1 \\
1 & q_{1}
\end{array}\right)^{-1}\binom{d_{1}}{d_{0}} \\
= & \left(\begin{array}{cc}
0 & 1 \\
1 & q_{k}
\end{array}\right)^{-1}\left(\begin{array}{cc}
0 & 1 \\
1 & q_{k-1}
\end{array}\right)^{-1} \cdots\left(\begin{array}{cc}
0 & 1 \\
1 & q_{2}
\end{array}\right)^{-1}\binom{d_{2}}{d_{1}} \\
& =\binom{0}{\operatorname{gcd}\left(d_{0}, d_{1}\right)}
\end{aligned}
$$

b) Let $M^{-1}=\left(\begin{array}{ll}p & l \\ m & n\end{array}\right)$. So $m d_{1}+n d_{0}=\operatorname{gcd}\left(d_{0}, d_{1}\right)$. Therefore m and n are the coefficients used to write $\operatorname{gcd}\left(d_{0}, d_{1}\right)$ as an integer linear combination of d_{0} and d_{1}.
c) We have $p d_{1}+l d_{0}=0$ so $p d_{1}=-l d_{0}$. It follows that $d_{0} \mid p d_{1}$ and $d_{1} \mid p d_{1}$. Let $z=\operatorname{lcm}\left(d_{0}, d_{1}\right)$. Then z also divides $p d_{1}$, that is $p d_{1}=r z$ for some r. Moreover $\operatorname{det}\left(M^{-1}\right)= \pm 1$, so p and l are relatively prime. Since $p d_{1}=-l d_{0}=r z$ and since $z=\operatorname{lcm}\left(d_{0}, d_{1}\right)$, it follows that r divides p and l. So $r= \pm 1$ and $\left|p d_{1}\right|=\left|l d_{0}\right|=\operatorname{lcm}\left(d_{0}, d_{1}\right)$. (See the OWO Lecture Notes from 2008/09.)

Exercise 4 (Polynomial factorisation and diagonalisation)
Consider the following polynomials in $\mathbb{F}[X]$ for $\mathbb{F}=\mathbb{Q}, \mathbb{R}$ and \mathbb{C} :

$$
p_{1}=X^{3}-2, \quad p_{2}=X^{3}+4 X^{2}+2 X, \quad p_{3}=X^{3}-X^{2}-2 X+2 .
$$

(a) Which of these polynomials are irreducible in $\mathbb{F}[X]$?
(b) Which of these polynomials decompose into linear factors over $\mathbb{F}[X]$?
(c) Suppose p_{i} is the characteristic polynomial of a matrix $A_{i} \in \mathbb{F}^{(3,3)}$. Which of the A_{i} is diagonalisable over \mathbb{F} ?

Solution:

Over the complex numbers these polynomials decompose as

$$
\begin{aligned}
& p_{1}=(X-\sqrt[3]{2})(X-\sqrt[3]{2} \omega)\left(X-\sqrt[3]{2} \omega^{2}\right) \\
& p_{2}=X(X+2+\sqrt{2})(X+2-\sqrt{2}) \\
& p_{3}=(X-1)(X+\sqrt{2})(X-\sqrt{2})
\end{aligned}
$$

with $\omega=e^{\frac{2}{3} \pi i}$.
a) Since p_{1} has no rational roots, it is irreducible over \mathbb{Q}, while p_{2} and p_{3} are not.

None of these polynomials is irreducible over \mathbb{R} or \mathbb{C} (every third degree polynomial is reducible over \mathbb{R} and \mathbb{C}).
b) None of the above polynomials decompose into linear factors over \mathbb{Q}.
p_{2} and p_{3} decompose into linear factors over \mathbb{R}, while p_{1} does not.
All polynomials in $\mathbb{C}[X]$ decompose into linear factors over \mathbb{C}, especially so do p_{1}, p_{2} and p_{3}.
c) Applying Propositions 1.1.15 and 1.3.1, it follows that

1. the matrices A_{i} are diagonalisable over \mathbb{C};
2. A_{2} and A_{3}, but not A_{1}, are diagonalisable over \mathbb{R};
3. none of the A_{i} are diagonalisable over \mathbb{Q}.
