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Exercise 1 (Warm-up: Multiple Zeroes)
For a polynomial p = > a;X' € F[X] define its formal derivative p’ by

n

p = Z ia, XL,
i=1
(a) Check that the usual product rule for differentiaton applies to the formal derivative of polynomials considered here!

(b) Let a be a zero of P. Show the equivalence of the following:
i. ais a multiple zero of p. (In other words, (X — a)? divides p.)
ii. aisa zeroof p’.
iii. a is a zero of ged(p, p’).

Solution:

a) The map p — p’ is linear by definition, so it suffices to check that the claim holds for monomials p = X* and q = X.
On the one hand (pq)’ = (X**!)’ = (k+1)X**'~1; on the other hand p’q+q’p = kX 71X +1X!71X* = (k+1)x**-1,

b) Let a be a zero of p. Then p = (X — a)"q for some q € F[X] not divisible by X — a. Then
P'=X-a)q+rX-a)'q.

To see that (i) and (ii) are equivalent, note that a is a multiple root of p iff r > 2, which is clearly equivalent to (ii).
To see that (ii) and (iii) are equivalent, note that « is a zero of both p and p’ iff (X — «) is a divisor of ged(p, p’).

Exercise 2 (Commutative subrings of matrix rings)
Let A € F™™ be an n x n matrix over a field F. Let R, C F(™™ be the subring generated by A, which consists of all
linear combinations of powers of A.

(a) Prove that R, is a commutative subring of Flun),
(b) Consider the evaluation map~: F[X] — R, defined by p = Z? a;A for p = Z? a;X'. Show that this map is a ring
homomorphism. Is it surjective? Injective?

Hint: By forgetting about the multiplicative structure, we may regard F[X] and R, as vector spaces over IF, and we
may regard~as a vector space homomorphism. Do F[X] and R, have the same dimension as [F-vector spaces?

Solution:

a) We have AKA! = AF*! = AlA® for all 0 < k,1 and since every element of the ring is a linear combination of powers
of A, the claim follows.

b) It is straightforward to check that it is a ring homomorphism, and it is surjective by definition. Since F*™ is a
finite-dimensional vector space over F and R, is a subspace of F(»™ R, is also a finite-dimensional vector space
over F. On the other hand F[X] is an infinite-dimensional vector space over F. (See exercise T3.1.) Therefore the
map cannot be injective. (Note that this is consistent with the Cayley-Hamilton Theorem.)




Exercise 3 (The Euclidean algorithm revisited)

Recall the Euclidean algorithm from Exercise Sheet 2. In particular, given natural numbers a, b, we normalise so that
d, = min{a, b} and d, = max{a, b}. In each step, we divide with remainder, obtaining d;_; = q;d; + dj;. At the end of
this procedure d;; =0, and d; = gcd(a, b).

(a) Let k be the number of steps needed to compute ged(ay, by) in this way. Consider the matrix M € Z3? given by
0 1 0 1 0 1
M= .. .
(1 ql) (1 (Iz) (1 qk)

d
Show that M is regular and that M ! is again a matrix over Z. Compute M ( dl) .
0

(b) Interpret the entries in second row of M ™! in terms of gcd(d,, d;).

(c) Recall that the least common multiple lem(d,, d;) is an integer z characterized by the following properties:
i. dyl|z and d;|z.

ii. If a is any integer for which dy|a and d,|a, then z|a.
Interpret the entries in the first row of M ™! in terms of lem(d,, d;).

Solution:

1
a) Each matrix ((1) q ) has determinant —1. Therefore det(M) = (—1)¥, so M is regular. It follows that
k

-1
Ml = (mu m12) = (=1) ( Myo _mlz)
My My —Mmy; My
which clearly has integer entries. Using the above notation we have
(o) (4=
1 q d di1)°

It follows that
1(1) ( 1)1( 1—)1( 1)1( 1)1(1)
dO 1 dx 1 qk-1 1 dz 1 q1 dO
( 1) | ( 1— ) | ( 1) | ( 2)
1 dx 1 dr-1 T\l qz dl
( )
ng(dO’dl) '

b) Let M~ ! = (111)1 rll) So md; + nd, = gcd(d,, d;). Therefore m and n are the coefficients used to write gcd(d,, d;)
as an integer linear combination of d, and d;.

c) We have pd; +ld, =0 so pd; = —ld,. It follows that dy|pd; and d;|pd;. Let z =1lcm(d, d;). Then z also divides
pd, that is pd; = rz for some r. Moreover det(M ') = &1, so p and [ are relatively prime. Since pd, = —Id, = rz

and since z = lem(d,, d, ), it follows that r divides p and [. So r = £1 and |pd,| = |ldy| = lem(d,, d;). (See the
OWO Lecture Notes from 2008/09.)

Exercise 4 (Polynomial factorisation and diagonalisation)
Consider the following polynomials in F[X] for F = Q,R and C:

p1=X%-2, Py = X3 +4X% +2X, ps=X%—X2—2X +2.

(a) Which of these polynomials are irreducible in F[X]?

(b) Which of these polynomials decompose into linear factors over F[X]?




(c) Suppose p; is the characteristic polynomial of a matrix A; € F&*. Which of the A; is diagonalisable over F?

Solution:
Over the complex numbers these polynomials decompose as

P = X - V2)X - V20)X - V2w?),
Py = X(X+24+V2)(X+2-V2),
Ps (X - DX +V2)(X — v2),

2 .
with w =e3™,

a) Since p; has no rational roots, it is irreducible over @, while p, and p5 are not.

None of these polynomials is irreducible over R or C (every third degree polynomial is reducible over R and C).

b) None of the above polynomials decompose into linear factors over Q.
D, and p; decompose into linear factors over R, while p; does not.

All polynomials in C[X] decompose into linear factors over C, especially so do p;, p, and ps.

¢) Applying Propositions 1.1.15 and 1.3.1, it follows that
1. the matrices A; are diagonalisable over C;
2. A, and Aj, but not A;, are diagonalisable over R;

3. none of the A; are diagonalisable over Q.




