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Exercise 1 (Further properties of eigenvalues/eigenspaces)
Throughout this exercise, A is a square matrix with entries in R.

(a) Prove or disprove that A and At have the same eigenvalues. (At is the transpose of A, see lecture notes for Linear
Algebra I.)

(b) Prove or disprove that A and At have the same eigenspaces.

(c) Assume A is regular and let v be an eigenvector of A with eigenvalue λ. Show that v is also an eigenvector of A−1

with eigenvalue 1
λ

.

(d) Let v be an eigenvector of the matrix A with eigenvalue λ and let s be a scalar. Show that v is an eigenvector of
A− sE with eigenvalue λ− s.

Solution:

a) The claim is correct: if λ is an eigenvalue of A, then det(A− λE) = 0. Since the determinant is invariant under
transposition, also det(A−λE)t = det(A−λE) = 0. Making the following computation: (A−λE)t = At − (λE)t =
At − λE, we see that det(At − λE) = 0. Therefore λ is also an eigenvalue of At . The other direction follows by
symmetry ((At)t = A).

b) This claim is incorrect, as can be seen by considering the following counterexample. When A :=
�

0 1
0 0

�

, the only

eigenvalue of A is 0. Its eigenspace is V0 = span(e1) = {α
�

1
0

�

: α ∈ R}. 0 is also the only eigenvalue of At , but its

eigenspace is V ′0 = span(e2) = {α
�

0
1

�

: α ∈ R}.

c) Let λ be an eigenvalue of A and v be one of its eigenvectors. Then Av = λv holds. Since A is invertible, A−1 exists.
By multiplying the previous equation by A−1 from the left, we obtain v = λA−1v. Now we multiply by 1

λ
and get

A−1v= 1
λ
v (λ 6= 0 as A is regular). Thus v is an eigenvector of A−1 with eigenvalue 1

λ
.

d) Combining Av= λv and sEv= sv we get: Av− sEv= λv− sv. This can be written as (A− sE)v= (λ− s)v, therefore
v is an eigenvector of A− sE with eigenvalue λ− s.

Exercise 2 (Application of diagonalisation: Fibonacci Numbers, Golden Mean)
Recall that the sequence f0, f1, f2, . . . of Fibonacci numbers is inductively defined as follows (cf Exercise H6.4 from LA

I):

f0 = 0,

f1 = 1,

fk+2 = fk+1 + fk.

(a) We define uk =
�

fk+1
fk

�

∈ R2. Find a matrix A such that uk+1 = Auk for all k ∈ N.
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(b) What are the eigenvalues of A? Give an explicit formula for fk.
Hint: Use the eigenvalues λ1 and λ2 as abbreviations as long as possible.

(c) Compute the limit a = limk→∞
fk+1

fk
.

The limit is called the Golden Mean, it divides a line segment of length 1 into two parts a and 1 − a such that
1
a
= a

1−a
.

Solution:

a) uk+1 =
�

fk+2
fk+1

�

=
�

fk+1 + fk
fk+1

�

=
�

1 1
1 0

��

fk+1
fk

�

=
�

1 1
1 0

�

uk. Therefore,

A=
�

1 1
1 0

�

.

As a consequence, for all k ∈ N,

uk = Aku0 = Ak
�

1
0

�

.

b) det(A−λE) = λ2 −λ− 1= (λ− 1+
p

5
2
)(λ− 1−

p
5

2
) = 0.

Thus, the eigenvalues of A are:

λ1 =
1+
p

5

2
and λ2 =

1−
p

5

2
.

Corresponding eigenvectors are v1 =
�

λ1
1

�

for λ1 and v2 =
�

λ2
1

�

for λ2.

It follows that A = SDS−1, with S =
�

λ1 λ2
1 1

�

and D =
�

λ1 0
0 λ2

�

. The conjugation map M 7→ SMS−1 is an

automorphism of the ring of n× n matrices (and in particular preserves sums and products of matrices), so we

have Ak = (SDS−1)k = SDkS−1. Since S−1 = 1p
5

�

1 −λ2
−1 λ1

�

,

Ak = SDkS−1 =
1
p

5

�

λ1 λ2
1 1

�

�

λk
1 0

0 λk
2

�

�

1 −λ2
−1 λ1

�

=
1
p

5

�

λk+1
1 λk+1

2
λk

1 λk
2

�

�

1 −λ2
−1 λ1

�

=
1
p

5

�

λk+1
1 −λk+1

2 −λk+1
1 λ2 +λ

k+1
2 λ1

λk
1 −λ

k
2 −λk

1λ2 +λk
2λ1

�

.

It follows that
�

fk+1
fk

�

= uk = Ak
�

1
0

�

=
1
p

5

�

λk+1
1 −λk+1

2
λk

1 −λ
k
2

�

,

hence

fk =
1
p

5
(λk

1 −λ
k
2) =

1
p

5

 

�

1+
p

5

2

�k

−
�

1−
p

5

2

�k!

.

c) We have that

fk+1
fk

=
λk+1

1 −λk+1
2

λk
1−λ

k
2
=
λk+1

1
λk

1
·

1−
λk+1

2
λk+1

1

1−
λk

2
λk

1

= λ1 ·
1−( λ2

λ1
)k+1

1−( λ2
λ1
)k

and

�

�

�

λ2
λ1

�

�

� =
�

�

�

1−
p

5
1+
p

5

�

�

�=
p

5−1p
5+1

< 1.

It follows that

lim
k→∞

fk+1

fk
= λ1 ·

1− limk→∞

�

λ2
λ1

�k+1

1− limk→∞

�

λ2
λ1

�k
= λ1.
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Exercise 3 (Euclidean algorithm and recursive functions)
The greatest common divisor d = gcd(a, b) of two non-zero natural numbers a and b is a natural number characterised

by the following property:

• d|b and d|a.

• If r|a and r|b, then r|d

The Euclidean algorithm is a procedure for determining the greatest common divisor of two numbers a and b.

Step 0: Swap a and b if a < b.
Euclid (a,b): IF b = 0 THEN return a, ELSE return Euclid(b, a mod b).

[After initialising: d1 := min{a, b}, d0 := max{a, b}, we divide with remainder in each step: dk−1 = qkdk + dk+1 with
0≤ dk+1 < dk, and ends if dk+1 = 0. We get dk = gcd(a, b).]

(a) Prove that the gcd is well defined, that is, uniquely characterised by the above properties.

(b) Prove that gcd(a, b) = gcd(b, a mod b) for 0< b.

(c) Assume that b < a and that (a, b)
E→ (a′, b′)

E→ (a′′, b′′) are two steps in the Euclidean algorithm. Prove that a′′ < a
2

and b′′ < b
2
.

(d) Deduce that Euclid(a, b) returns gcd(a, b).

Solution:

a) 1 divides both a and b so the set of common divisors is non-empty. Let d and d ′ satisfy the second condition. Then
d|d ′ and d ′|d, so d = d ′.

b) Suppose a = qb+ r where 0≤ r < b, so r = a mod b. Since e|a and e|b iff e|r = a−qb and e|b. Let d = gcd(a, b)
and d ′ = gcd(b, r). We have d|d ′ and d ′|d, so d = d ′.

c) If b ≤ a
2
, then b′ < b ≤ a

2
; if a

2
< b, then q = 1 so b′ = a − b < a

2
. So in every case, b′ < a

2
. Similarly b′′ < a′

2
.

Moreover a′ = b and a′′ = b′, so a′′ < a
2

and b′′ < b
2
.

d) Every step (a, b)
E→ (a′, b′) of the algorithm preserves the gcd, in the sense that gcd(a, b) = gcd(a′, b′). Moreover

the algorithm terminates due to part (c), so we obtain (gcd(a, b), 0) after finitely many steps.

Exercise 4 (Diagonalization and recursive sequences)
Let ak be the sequence of real numbers defined recursively as follows: a0 = 0, a1 = 1, and ak+2 =

1
2
(ak+1 + ak). In

other words, each term in the sequence is the average of the two previous terms.

(a) As we did with the Fibonacci sequence, we want to study this sequence using diagonalization of matrices. For
k ≥ 0, let

uk =
�

ak+1
ak

�

.

Using the equations ak+2 =
1
2
(ak+1 + ak) and ak+1 = ak+1, find a 2× 2 matrix A such that uk+1 = Auk.

(b) Find the eigenvalues and eigenvectors of A, and find a matrix S and a diagonal matrix D with D = S−1AS.

(c) Find a formula for ak, and calculate limk→∞ ak if it exists.

Solution:

a) A=

�

1
2

1
2

1 0

�

.

b) The eigenvalues of A are 1 and − 1
2
.

For λ = 1, the eigenspace V1 is spanned by
�

1
1

�

. For λ = − 1
2
, the eigenspace V−1/2 is spanned by

�

1
−2

�

. So

S =
�

1 1
1 −2

�

and D =

�

1 0
0 − 1

2

�

.
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c) First, we have uk = Aku0 = SDkS−1u0, where u0 =
�

0
1

�

, and ak is just the second component of the vector uk.

We calculate

S−1 =
�

2/3 1/3
1/3 −1/3

�

, S−1u0 =
�

1/3
−1/3

�

, Dk =

�

1 0
0 (− 1

2
)k

�

.

It follows easily that ak =
1
3
+ 2

3

�

− 1
2

�k. It is clear from this formula that limk→∞ ak =
1
3
.
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