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Exercise G1 (Warm-up)
In R3, let g be a line through the origin and E be a plane through the origin such that g is not in E. Determine
(geometrically) the eigenvalues and eigenspaces of the following linear maps:

(a) reflection in the plane E.

(b) central reflection in the origin.

(c) parallel projection in the direction of g onto E.

(d) rotation about g through %n followed by rescaling in the direction of g with factor 6.
Which of these maps admit a basis of eigenvectors?

Solution:

a) Two eigenvalues: 1, with eigenspace E, and —1, whose corresponding eigenspace is the orthogonal complement
of E.

b) One eigenvalue —1 with eigenspace R>.
c) Two eigenvalues: 0, with eigenspace g, and 1, with eigenspace E.
d) One eigenvalue: 6, with eigenspace g.

We have a basis of eigenvectors in cases (i), (ii) and (iii).

Exercise G2 (Warm-up)
(a) Suppose that ¢ : V — V is a linear map over an arbitrary field, and such that all vectors v € V are eigenvectors of
. Show that ¢ must have exactly one eigenvalue A, and that ¢ is precisely A - id, where id is the identity map.

(b) Let) : R* — R* be the map defined by

x x
Y| _ Yy
lz 7| —w
w Z

Find the (real) eigenvalues of ¢ and their multiplicity, and find bases for the corresponding eigenspaces.

Solution:

a) Suppose that A; and A, are distinct eigenvalues of ¢. Let v; and v, be (non-zero) vectors in the corresponding
eigenspaces, so that ¢(v;) = A;v; and ¢(vy) = A,v,. Clearly v, v, are linearly independent. Then ¢(v; +v,) =
A1V; + Ayv,. Since every vector in V is an eigenvector, this must be equal to A(v; +Vv,) for some scalar A. Then

(A = A)vy; + (A — A)v, =0,

which implies that A; = A = A,, by linear independence. This is a contradiction, so there is only one eigenvalue
A. It is immediate that ¢ = A - id.




b) The only eigenvalue is 1, and a basis for the corresponding eigenspace consists of and

O O O
o o o

Exercise G3 (Fixed points of affine maps)

Recall that an affine map is a function ¢ : R? — R? of the form ¢(x) = ¢o(x) + b where ¢, is a linear map and b € R?
is a vector. In this exercise we are interested in the question of whether such a map ¢ has a fixed point, i.e., a point x
such that ¢(x) = x.

(a) Prove that ¢ has a fixed point, provided that 1 is not an eigenvalue of .

(b) Let ¢ be a rotation through the angle a about a point c. Give a formula for ¢ w.r.t. the standard basis, i.e., find
functions f and g such that p(x,y) = (f(x,y), g(x,¥)).

(c) Let o, : R? — RR? be a rotation through the angle a (about the origin) and let 7, : x — x+ ¢ be the translation by c.
Using (ii), show that the composition 7. o g, © T_. is a rotation through a about the point c.

(d) Suppose that the linear map ¢, is a rotation through an angle a # 0. Prove that the affine map ¢ : x — @y(x) +b
has a fixed point ¢ and that ¢ = 1.0 p,07T_,, i.e., ¢ is a rotation through a about c.

(Bonus question: how can you find the centre ¢ geometrically (i.e., without computation)?)
(e) Give an example of an affine map ¢ (x) = ¢y(x) + b without fixed points such that ¢, is not the identity map.

Solution:

a) A point x is a fixed point of ¢ if ¢,(x) + b = x. We can rewrite this equation as

(po —id )(x) = —b.

We claim that the map ¢, —id is invertible. Since we are in a finite dimensional vector space it is sufficient to
show that ¢, —id is injective, i.e., that ker(yp, —id ) = 0. Suppose that v € ker(yp, —id ). Then 0 = (¢, —id )(v) =
po(Vv) —v. Hence, ¢(v) =v. Since ¢, does not have the eigenvalue 1, the only solution to this equation is v = 0.
Hence, ker(¢, —id ) = 0, as desired.

It follows that ¢, —id is invertible and
x = (o —id )7'(~b)

is a fixed point.

b) The rotation through a around the origin is the function
04(x,y)=(xcosa—ysina, xsina+ycosa).
If we rotate around ¢ = (c,, ¢, ), we obtain
e(x,y) = (e +(x —c,)cosa—(y —¢,)sina, ¢, +(x —c,)sina+(y —c,)cosa) .
c) Direct computation shows that
(Te00a°T-J,y)=(cx +(x—c)cosa—(y —c,)sina,
¢y +(x—c)sina+(y —c,)cosa).
Hence, the result follows by (ii).

d) To show that ¢ has a fixed point c it is sufficient, by (i), to show that ¢, does not have the eigenvalue 1. Hence,
suppose that v is a vector with ¢,(v) = v. Since ¢, is a rotation through an angle a # 0 it only fixes the zero
vector. Hence, v = 0 is the only solution to this equation.

It remains to prove that ¢ = 7.0 p, © 7_.. Note that ¢, = p,. Hence, we have
(Teo@e0T-JX) =p,(x—¢c)+¢
=a(x) —eq(c) +c
=0u(x) =@ (c)=b+c+b
=0,(x)—p(c)+c+b
=0.(x)+b
=p(x).




e) For instance, the map
wl,y)=(x,1+x+y)

has no fixed point. (It must have eigenvalue 1. What is the corresponding eigenvector?)

Exercise G4 (FEigenvalues and eigenvectors)

; g) and the linear map ¢ = ¢, given by A w.r.t. the standard basis.

(a) Calculate the eigenvalues of A by expanding det(A— AE) and find the zeroes/roots of the characteristic polynomial.

Consider the real 2 x 2 matrix A= (:

(b) For each eigenvalue A; determine the eigenspace V.

(c) Find a basis B of R? that only consists of eigenvectors of ¢ and find the matrix of the map ¢ with respect to the
basis B.

Solution:
a) We have
det(A—AE)=(—2-A)(5-A)+12=22-314+2=A-1)(A —2).
Thus the characteristic polynomial splits into linear factors corresponding to roots A; =1 and A, = 2.

b) In order to determine the kernels of A— A;E, we perform Gauss—Jordan elimination.
-3 6 -3 6
ane=(55)=(5 o)
-4 6 -4 6
wei=(503)- (0 0)

2) such that span(v;) = ker(A—A,E) and v, = (3

1 2) with span(v,) = ker(A — A,E).

We may choose v; = (

¢) The vectors v; and v, form a basis B of R?, since they are linearly independent. W.r.t. to this basis ¢ is represented

by the matrix ((1) O) .




