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Exercise G1 (Warm-up)
In R3, let g be a line through the origin and E be a plane through the origin such that g is not in E. Determine

(geometrically) the eigenvalues and eigenspaces of the following linear maps:

(a) reflection in the plane E.

(b) central reflection in the origin.

(c) parallel projection in the direction of g onto E.

(d) rotation about g through 1
3
π followed by rescaling in the direction of g with factor 6.

Which of these maps admit a basis of eigenvectors?

Solution:

a) Two eigenvalues: 1, with eigenspace E, and −1, whose corresponding eigenspace is the orthogonal complement
of E.

b) One eigenvalue −1 with eigenspace R3.

c) Two eigenvalues: 0, with eigenspace g, and 1, with eigenspace E.

d) One eigenvalue: 6, with eigenspace g.

We have a basis of eigenvectors in cases (i), (ii) and (iii).

Exercise G2 (Warm-up)
(a) Suppose that ϕ : V → V is a linear map over an arbitrary field, and such that all vectors v ∈ V are eigenvectors of

ϕ. Show that ϕ must have exactly one eigenvalue λ, and that ϕ is precisely λ · id, where id is the identity map.

(b) Let ψ : R4→ R4 be the map defined by
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Find the (real) eigenvalues of ϕ and their multiplicity, and find bases for the corresponding eigenspaces.

Solution:

a) Suppose that λ1 and λ2 are distinct eigenvalues of ϕ. Let v1 and v2 be (non-zero) vectors in the corresponding
eigenspaces, so that ϕ(v1) = λ1v1 and ϕ(v2) = λ2v2. Clearly v1,v2 are linearly independent. Then ϕ(v1 + v2) =
λ1v1 +λ2v2. Since every vector in V is an eigenvector, this must be equal to λ(v1 + v2) for some scalar λ. Then

(λ1 −λ)v1 + (λ2 −λ)v2 = 0,

which implies that λ1 = λ = λ2, by linear independence. This is a contradiction, so there is only one eigenvalue
λ. It is immediate that ϕ = λ · id.
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b) The only eigenvalue is 1, and a basis for the corresponding eigenspace consists of
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Exercise G3 (Fixed points of affine maps)
Recall that an affine map is a function ϕ : R2→ R2 of the form ϕ(x) = ϕ0(x) + b where ϕ0 is a linear map and b ∈ R2

is a vector. In this exercise we are interested in the question of whether such a map ϕ has a fixed point, i.e., a point x
such that ϕ(x) = x.

(a) Prove that ϕ has a fixed point, provided that 1 is not an eigenvalue of ϕ0.

(b) Let ϕ be a rotation through the angle α about a point c. Give a formula for ϕ w.r.t. the standard basis, i.e., find
functions f and g such that ϕ(x , y) = ( f (x , y), g(x , y)).

(c) Let %α : R2→ R2 be a rotation through the angle α (about the origin) and let τc : x 7→ x+ c be the translation by c.
Using (ii), show that the composition τc ◦%α ◦τ−c is a rotation through α about the point c.

(d) Suppose that the linear map ϕ0 is a rotation through an angle α 6= 0. Prove that the affine map ϕ : x 7→ ϕ0(x) + b
has a fixed point c and that ϕ = τc ◦%α ◦τ−c, i.e., ϕ is a rotation through α about c.
(Bonus question: how can you find the centre c geometrically (i.e., without computation)?)

(e) Give an example of an affine map ϕ(x) = ϕ0(x) + b without fixed points such that ϕ0 is not the identity map.

Solution:

a) A point x is a fixed point of ϕ if ϕ0(x) + b= x. We can rewrite this equation as

(ϕ0 − id )(x) =−b .

We claim that the map ϕ0 − id is invertible. Since we are in a finite dimensional vector space it is sufficient to
show that ϕ0− id is injective, i.e., that ker(ϕ0− id ) = 0. Suppose that v ∈ ker(ϕ0− id ). Then 0= (ϕ0− id )(v) =
ϕ0(v)− v. Hence, ϕ0(v) = v. Since ϕ0 does not have the eigenvalue 1, the only solution to this equation is v = 0.
Hence, ker(ϕ0 − id ) = 0, as desired.

It follows that ϕ0 − id is invertible and

x= (ϕ0 − id )−1(−b)

is a fixed point.

b) The rotation through α around the origin is the function

%α(x , y) =
�

x cosα− y sinα, x sinα+ y cosα
�

.

If we rotate around c= (cx , cy), we obtain

ϕ(x , y) =
�

cx + (x − cx) cosα− (y − cy) sinα, cy + (x − cx) sinα+ (y − cy) cosα
�

.

c) Direct computation shows that

(τc ◦%α ◦τ−c)(x , y) =
�

cx + (x − cx) cosα− (y − cy) sinα,

cy + (x − cx) sinα+ (y − cy) cosα
�

.

Hence, the result follows by (ii).

d) To show that ϕ has a fixed point c it is sufficient, by (i), to show that ϕ0 does not have the eigenvalue 1. Hence,
suppose that v is a vector with ϕ0(v) = v. Since ϕ0 is a rotation through an angle α 6= 0 it only fixes the zero
vector. Hence, v= 0 is the only solution to this equation.

It remains to prove that ϕ = τc ◦%α ◦τ−c. Note that ϕ0 = %α. Hence, we have

(τc ◦%α ◦τ−c)(x) = %α(x− c) + c

= %α(x)−%α(c) + c

= %α(x)−%α(c)− b+ c+ b

= %α(x)−ϕ(c) + c+ b

= %α(x) + b

= ϕ(x) .
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e) For instance, the map

ϕ(x , y) = (−x , 1+ x + y)

has no fixed point. (It must have eigenvalue 1. What is the corresponding eigenvector?)

Exercise G4 (Eigenvalues and eigenvectors)

Consider the real 2× 2 matrix A=
�

−2 6
−2 5

�

and the linear map ϕ = ϕA given by A w.r.t. the standard basis.

(a) Calculate the eigenvalues of A by expanding det(A−λE) and find the zeroes/roots of the characteristic polynomial.

(b) For each eigenvalue λi determine the eigenspace Vλi
.

(c) Find a basis B of R2 that only consists of eigenvectors of ϕ and find the matrix of the map ϕ with respect to the
basis B.

Solution:

a) We have

det(A−λE) = (−2−λ)(5−λ) + 12= λ2 − 3λ+ 2= (λ− 1)(λ− 2) .

Thus the characteristic polynomial splits into linear factors corresponding to roots λ1 = 1 and λ2 = 2.

b) In order to determine the kernels of A−λi E, we perform Gauss–Jordan elimination.

A−λ1E =
�

−3 6
−2 4

�

 
�

−3 6
0 0

�

A−λ2E =
�

−4 6
−2 3

�

 
�

−4 6
0 0

�

We may choose v1 =
�

2
1

�

such that span(v1) = ker(A−λ1E) and v2 =
�

3
2

�

with span(v2) = ker(A−λ2E).

c) The vectors v1 and v2 form a basis B of R2, since they are linearly independent. W.r.t. to this basis ϕ is represented

by the matrix
�

1 0
0 2

�

.
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