Linear Algebra II Exercise Sheet no. 1

SS 2011 April 11, 2011

Prof. Dr. Otto Dr. Le Roux Dr. Linshaw

Exercise G1 (Warm-up)

In \mathbb{R}^3 , let *g* be a line through the origin and *E* be a plane through the origin such that *g* is not in *E*. Determine (geometrically) the eigenvalues and eigenspaces of the following linear maps:

- (a) reflection in the plane *E*.
- (b) central reflection in the origin.
- (c) parallel projection in the direction of g onto E.
- (d) rotation about g through $\frac{1}{2}\pi$ followed by rescaling in the direction of g with factor 6.
- Which of these maps admit a basis of eigenvectors?

Solution:

- a) Two eigenvalues: 1, with eigenspace E, and -1, whose corresponding eigenspace is the orthogonal complement of E.
- b) One eigenvalue -1 with eigenspace \mathbb{R}^3 .
- c) Two eigenvalues: 0, with eigenspace g, and 1, with eigenspace E.
- d) One eigenvalue: 6, with eigenspace *g*.

We have a basis of eigenvectors in cases (i), (ii) and (iii).

Exercise G2 (Warm-up)

- (a) Suppose that $\varphi : V \to V$ is a linear map over an arbitrary field, and such that all vectors $\mathbf{v} \in \mathbf{V}$ are eigenvectors of φ . Show that φ must have exactly one eigenvalue λ , and that φ is precisely $\lambda \cdot id$, where id is the identity map.
- (b) Let $\psi : \mathbb{R}^4 \to \mathbb{R}^4$ be the map defined by

$$\varphi \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x \\ y \\ -w \\ z \end{pmatrix}.$$

Find the (real) eigenvalues of φ and their multiplicity, and find bases for the corresponding eigenspaces.

Solution:

a) Suppose that λ_1 and λ_2 are distinct eigenvalues of φ . Let \mathbf{v}_1 and \mathbf{v}_2 be (non-zero) vectors in the corresponding eigenspaces, so that $\varphi(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1$ and $\varphi(\mathbf{v}_2) = \lambda_2 \mathbf{v}_2$. Clearly $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent. Then $\varphi(\mathbf{v}_1 + \mathbf{v}_2) = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2$. Since every vector in *V* is an eigenvector, this must be equal to $\lambda(\mathbf{v}_1 + \mathbf{v}_2)$ for some scalar λ . Then

$$(\lambda_1 - \lambda)\mathbf{v}_1 + (\lambda_2 - \lambda)\mathbf{v}_2 = \mathbf{0},$$

which implies that $\lambda_1 = \lambda = \lambda_2$, by linear independence. This is a contradiction, so there is only one eigenvalue λ . It is immediate that $\varphi = \lambda \cdot id$.

b) The only eigenvalue is 1, and a basis for the corresponding eigenspace consists of $\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$ and $\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$.

Exercise G3 (Fixed points of affine maps)

Recall that an affine map is a function $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ of the form $\varphi(\mathbf{x}) = \varphi_0(\mathbf{x}) + \mathbf{b}$ where φ_0 is a linear map and $\mathbf{b} \in \mathbb{R}^2$ is a vector. In this exercise we are interested in the question of whether such a map φ has a *fixed point*, i.e., a point \mathbf{x} such that $\varphi(\mathbf{x}) = \mathbf{x}$.

- (a) Prove that φ has a fixed point, provided that 1 is not an eigenvalue of φ_0 .
- (b) Let φ be a rotation through the angle α about a point **c**. Give a formula for φ w.r.t. the standard basis, i.e., find functions *f* and *g* such that $\varphi(x, y) = (f(x, y), g(x, y))$.
- (c) Let $\rho_{\alpha} : \mathbb{R}^2 \to \mathbb{R}^2$ be a rotation through the angle α (about the origin) and let $\tau_{\mathbf{c}} : \mathbf{x} \mapsto \mathbf{x} + \mathbf{c}$ be the translation by \mathbf{c} . Using (ii), show that the composition $\tau_{\mathbf{c}} \circ \rho_{\alpha} \circ \tau_{-\mathbf{c}}$ is a rotation through α about the point \mathbf{c} .
- (d) Suppose that the linear map φ_0 is a rotation through an angle $\alpha \neq 0$. Prove that the affine map $\varphi : \mathbf{x} \mapsto \varphi_0(\mathbf{x}) + \mathbf{b}$ has a fixed point **c** and that $\varphi = \tau_{\mathbf{c}} \circ \varrho_{\alpha} \circ \tau_{-\mathbf{c}}$, i.e., φ is a rotation through α about **c**.

(Bonus question: how can you find the centre **c** *geometrically* (i.e., without computation)?)

(e) Give an example of an affine map $\varphi(\mathbf{x}) = \varphi_0(\mathbf{x}) + \mathbf{b}$ without fixed points such that φ_0 is not the identity map.

Solution:

a) A point **x** is a fixed point of φ if $\varphi_0(\mathbf{x}) + \mathbf{b} = \mathbf{x}$. We can rewrite this equation as

$$(\varphi_0 - \mathrm{id})(\mathbf{x}) = -\mathbf{b}.$$

We claim that the map $\varphi_0 - id$ is invertible. Since we are in a finite dimensional vector space it is sufficient to show that $\varphi_0 - id$ is injective, i.e., that ker($\varphi_0 - id$) = 0. Suppose that $\mathbf{v} \in ker(\varphi_0 - id)$. Then $\mathbf{0} = (\varphi_0 - id)(\mathbf{v}) = \varphi_0(\mathbf{v}) - \mathbf{v}$. Hence, $\varphi_0(\mathbf{v}) = \mathbf{v}$. Since φ_0 does not have the eigenvalue 1, the only solution to this equation is $\mathbf{v} = \mathbf{0}$. Hence, ker($\varphi_0 - id$) = 0, as desired.

It follows that φ_0 – id is invertible and

$$\mathbf{x} = (\varphi_0 - id)^{-1}(-b)$$

is a fixed point.

b) The rotation through α around the origin is the function

$$\varrho_{\alpha}(x, y) = (x \cos \alpha - y \sin \alpha, x \sin \alpha + y \cos \alpha).$$

If we rotate around $\mathbf{c} = (c_x, c_y)$, we obtain

$$\varphi(x,y) = (c_x + (x - c_x)\cos\alpha - (y - c_y)\sin\alpha, c_y + (x - c_x)\sin\alpha + (y - c_y)\cos\alpha)$$

c) Direct computation shows that

$$(\tau_{\mathbf{c}} \circ \varrho_{\alpha} \circ \tau_{-\mathbf{c}})(x, y) = (c_x + (x - c_x)\cos\alpha - (y - c_y)\sin\alpha, c_y + (x - c_x)\sin\alpha + (y - c_y)\cos\alpha).$$

Hence, the result follows by (ii).

d) To show that φ has a fixed point **c** it is sufficient, by (i), to show that φ_0 does not have the eigenvalue 1. Hence, suppose that **v** is a vector with $\varphi_0(\mathbf{v}) = \mathbf{v}$. Since φ_0 is a rotation through an angle $\alpha \neq 0$ it only fixes the zero vector. Hence, $\mathbf{v} = \mathbf{0}$ is the only solution to this equation.

It remains to prove that $\varphi = \tau_{\mathbf{c}} \circ \varrho_{a} \circ \tau_{-\mathbf{c}}$. Note that $\varphi_{0} = \varrho_{a}$. Hence, we have

$$\begin{aligned} (\tau_{\mathbf{c}} \circ \varrho_{\alpha} \circ \tau_{-\mathbf{c}})(\mathbf{x}) &= \varrho_{\alpha}(\mathbf{x} - \mathbf{c}) + \mathbf{c} \\ &= \varrho_{\alpha}(\mathbf{x}) - \varrho_{\alpha}(\mathbf{c}) + \mathbf{c} \\ &= \varrho_{\alpha}(\mathbf{x}) - \varrho_{\alpha}(\mathbf{c}) - \mathbf{b} + \mathbf{c} + \mathbf{b} \\ &= \varrho_{\alpha}(\mathbf{x}) - \varphi(\mathbf{c}) + \mathbf{c} + \mathbf{b} \\ &= \varrho_{\alpha}(\mathbf{x}) + \mathbf{b} \\ &= \varphi(\mathbf{x}). \end{aligned}$$

e) For instance, the map

$$\varphi(x,y) = (-x,1+x+y)$$

has no fixed point. (It must have eigenvalue 1. What is the corresponding eigenvector?)

Exercise G4 (Eigenvalues and eigenvectors)

Consider the real 2 × 2 matrix $A = \begin{pmatrix} -2 & 6 \\ -2 & 5 \end{pmatrix}$ and the linear map $\varphi = \varphi_A$ given by A w.r.t. the standard basis.

- (a) Calculate the eigenvalues of *A* by expanding det $(A \lambda E)$ and find the zeroes/roots of the characteristic polynomial.
- (b) For each eigenvalue λ_i determine the eigenspace V_{λ_i} .
- (c) Find a basis *B* of \mathbb{R}^2 that only consists of eigenvectors of φ and find the matrix of the map φ with respect to the basis *B*.

Solution:

a) We have

$$\det(A - \lambda E) = (-2 - \lambda)(5 - \lambda) + 12 = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2).$$

Thus the characteristic polynomial splits into linear factors corresponding to roots $\lambda_1 = 1$ and $\lambda_2 = 2$.

b) In order to determine the kernels of $A - \lambda_i E$, we perform Gauss–Jordan elimination.

$$A - \lambda_1 E = \begin{pmatrix} -3 & 6 \\ -2 & 4 \end{pmatrix} \rightsquigarrow \begin{pmatrix} -3 & 6 \\ 0 & 0 \end{pmatrix}$$
$$A - \lambda_2 E = \begin{pmatrix} -4 & 6 \\ -2 & 3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} -4 & 6 \\ 0 & 0 \end{pmatrix}$$

We may choose $\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ such that span $(\mathbf{v}_1) = \ker(A - \lambda_1 E)$ and $\mathbf{v}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ with span $(\mathbf{v}_2) = \ker(A - \lambda_2 E)$.

c) The vectors \mathbf{v}_1 and \mathbf{v}_2 form a basis *B* of \mathbb{R}^2 , since they are linearly independent. W.r.t. to this basis φ is represented by the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.