Linear Algebra II
 Exercise Sheet no. 1

Prof. Dr. Otto
April 11, 2011
Dr. Le Roux
Dr. Linshaw

Exercise G1 (Warm-up)
In \mathbb{R}^{3}, let g be a line through the origin and E be a plane through the origin such that g is not in E. Determine (geometrically) the eigenvalues and eigenspaces of the following linear maps:
(a) reflection in the plane E.
(b) central reflection in the origin.
(c) parallel projection in the direction of g onto E.
(d) rotation about g through $\frac{1}{3} \pi$ followed by rescaling in the direction of g with factor 6 .

Which of these maps admit a basis of eigenvectors?

Solution:

a) Two eigenvalues: 1 , with eigenspace E, and -1 , whose corresponding eigenspace is the orthogonal complement of E.
b) One eigenvalue - 1 with eigenspace \mathbb{R}^{3}.
c) Two eigenvalues: 0 , with eigenspace g, and 1 , with eigenspace E.
d) One eigenvalue: 6 , with eigenspace g.

We have a basis of eigenvectors in cases (i), (ii) and (iii).

Exercise G2 (Warm-up)

(a) Suppose that $\varphi: V \rightarrow V$ is a linear map over an arbitrary field, and such that all vectors $\mathbf{v} \in \mathbf{V}$ are eigenvectors of φ. Show that φ must have exactly one eigenvalue λ, and that φ is precisely $\lambda \cdot$ id, where id is the identity map.
(b) Let $\psi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the map defined by

$$
\varphi\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
-w \\
z
\end{array}\right) .
$$

Find the (real) eigenvalues of φ and their multiplicity, and find bases for the corresponding eigenspaces.

Solution:

a) Suppose that λ_{1} and λ_{2} are distinct eigenvalues of φ. Let $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ be (non-zero) vectors in the corresponding eigenspaces, so that $\varphi\left(\mathbf{v}_{1}\right)=\lambda_{1} \mathbf{v}_{1}$ and $\varphi\left(\mathbf{v}_{2}\right)=\lambda_{2} \mathbf{v}_{2}$. Clearly $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}$ are linearly independent. Then $\varphi\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=$ $\lambda_{1} \mathbf{v}_{\mathbf{1}}+\lambda_{\mathbf{2}} \mathbf{v}_{\mathbf{2}}$. Since every vector in V is an eigenvector, this must be equal to $\lambda\left(\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}\right)$ for some scalar λ. Then

$$
\left(\lambda_{1}-\lambda\right) \mathbf{v}_{1}+\left(\lambda_{2}-\lambda\right) \mathbf{v}_{2}=\mathbf{0}
$$

which implies that $\lambda_{1}=\lambda=\lambda_{2}$, by linear independence. This is a contradiction, so there is only one eigenvalue λ. It is immediate that $\varphi=\lambda \cdot \mathrm{id}$.
b) The only eigenvalue is 1 , and a basis for the corresponding eigenspace consists of $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$.

Exercise G3 (Fixed points of affine maps)
Recall that an affine map is a function $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of the form $\varphi(\mathbf{x})=\varphi_{0}(\mathbf{x})+\mathbf{b}$ where φ_{0} is a linear map and $\mathbf{b} \in \mathbb{R}^{2}$ is a vector. In this exercise we are interested in the question of whether such a map φ has a fixed point, i.e., a point \mathbf{x} such that $\varphi(\mathbf{x})=\mathbf{x}$.
(a) Prove that φ has a fixed point, provided that 1 is not an eigenvalue of φ_{0}.
(b) Let φ be a rotation through the angle α about a point \mathbf{c}. Give a formula for φ w.r.t. the standard basis, i.e., find functions f and g such that $\varphi(x, y)=(f(x, y), g(x, y))$.
(c) Let $\varrho_{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rotation through the angle α (about the origin) and let $\tau_{\mathbf{c}}: \mathbf{x} \mapsto \mathbf{x}+\mathbf{c}$ be the translation by \mathbf{c}. Using (ii), show that the composition $\tau_{\mathbf{c}} \circ \varrho_{\alpha} \circ \tau_{-\mathbf{c}}$ is a rotation through α about the point \mathbf{c}.
(d) Suppose that the linear map φ_{0} is a rotation through an angle $\alpha \neq 0$. Prove that the affine map $\varphi: \mathbf{x} \mapsto \varphi_{0}(\mathbf{x})+\mathbf{b}$ has a fixed point \mathbf{c} and that $\varphi=\tau_{\mathbf{c}} \circ \varrho_{\alpha} \circ \tau_{-\mathbf{c}}$, i.e., φ is a rotation through α about \mathbf{c}.
(Bonus question: how can you find the centre \mathbf{c} geometrically (i.e., without computation)?)
(e) Give an example of an affine map $\varphi(\mathbf{x})=\varphi_{0}(\mathbf{x})+\mathbf{b}$ without fixed points such that φ_{0} is not the identity map.

Solution:

a) A point \mathbf{x} is a fixed point of φ if $\varphi_{0}(\mathbf{x})+\mathbf{b}=\mathbf{x}$. We can rewrite this equation as

$$
\left(\varphi_{0}-\mathrm{id}\right)(\mathbf{x})=-\mathbf{b}
$$

We claim that the map φ_{0} - id is invertible. Since we are in a finite dimensional vector space it is sufficient to show that $\varphi_{0}-\mathrm{id}$ is injective, i.e., that $\operatorname{ker}\left(\varphi_{0}-\mathrm{id}\right)=0$. Suppose that $\mathbf{v} \in \operatorname{ker}\left(\varphi_{0}-\mathrm{id}\right)$. Then $0=\left(\varphi_{0}-\mathrm{id}\right)(\mathbf{v})=$ $\varphi_{0}(\mathbf{v})-\mathbf{v}$. Hence, $\varphi_{0}(\mathbf{v})=\mathbf{v}$. Since φ_{0} does not have the eigenvalue 1 , the only solution to this equation is $\mathbf{v}=\mathbf{0}$. Hence, $\operatorname{ker}\left(\varphi_{0}-\mathrm{id}\right)=0$, as desired.
It follows that $\varphi_{0}-\mathrm{id}$ is invertible and

$$
\mathbf{x}=\left(\varphi_{0}-\mathrm{id}\right)^{-1}(-\mathbf{b})
$$

is a fixed point.
b) The rotation through α around the origin is the function

$$
\varrho_{\alpha}(x, y)=(x \cos \alpha-y \sin \alpha, x \sin \alpha+y \cos \alpha) .
$$

If we rotate around $\mathbf{c}=\left(c_{x}, c_{y}\right)$, we obtain

$$
\varphi(x, y)=\left(c_{x}+\left(x-c_{x}\right) \cos \alpha-\left(y-c_{y}\right) \sin \alpha, c_{y}+\left(x-c_{x}\right) \sin \alpha+\left(y-c_{y}\right) \cos \alpha\right) .
$$

c) Direct computation shows that

$$
\begin{aligned}
\left(\tau_{\mathbf{c}} \circ \varrho_{\alpha} \circ \tau_{-\mathbf{c}}\right)(x, y)= & \left(c_{x}+\left(x-c_{x}\right) \cos \alpha-\left(y-c_{y}\right) \sin \alpha\right. \\
& \left.c_{y}+\left(x-c_{x}\right) \sin \alpha+\left(y-c_{y}\right) \cos \alpha\right) .
\end{aligned}
$$

Hence, the result follows by (ii).
d) To show that φ has a fixed point \mathbf{c} it is sufficient, by (i), to show that φ_{0} does not have the eigenvalue 1 . Hence, suppose that \mathbf{v} is a vector with $\varphi_{0}(\mathbf{v})=\mathbf{v}$. Since φ_{0} is a rotation through an angle $\alpha \neq 0$ it only fixes the zero vector. Hence, $\mathbf{v}=\mathbf{0}$ is the only solution to this equation.
It remains to prove that $\varphi=\tau_{\mathbf{c}} \circ \varrho_{\alpha} \circ \tau_{-\mathbf{c}}$. Note that $\varphi_{0}=\varrho_{\alpha}$. Hence, we have

$$
\begin{aligned}
\left(\tau_{\mathbf{c}} \circ \varrho_{\alpha} \circ \tau_{-\mathbf{c}}\right)(\mathbf{x}) & =\varrho_{\alpha}(\mathbf{x}-\mathbf{c})+\mathbf{c} \\
& =\varrho_{\alpha}(\mathbf{x})-\varrho_{\alpha}(\mathbf{c})+\mathbf{c} \\
& =\varrho_{\alpha}(\mathbf{x})-\varrho_{\alpha}(\mathbf{c})-\mathbf{b}+\mathbf{c}+\mathbf{b} \\
& =\varrho_{\alpha}(\mathbf{x})-\varphi(\mathbf{c})+\mathbf{c}+\mathbf{b} \\
& =\varrho_{\alpha}(\mathbf{x})+\mathbf{b} \\
& =\varphi(\mathbf{x})
\end{aligned}
$$

e) For instance, the map

$$
\varphi(x, y)=(-x, 1+x+y)
$$

has no fixed point. (It must have eigenvalue 1 . What is the corresponding eigenvector?)

Exercise G4 (Eigenvalues and eigenvectors)

Consider the real 2×2 matrix $A=\left(\begin{array}{ll}-2 & 6 \\ -2 & 5\end{array}\right)$ and the linear map $\varphi=\varphi_{A}$ given by A w.r.t. the standard basis.
(a) Calculate the eigenvalues of A by expanding $\operatorname{det}(A-\lambda E)$ and find the zeroes/roots of the characteristic polynomial.
(b) For each eigenvalue λ_{i} determine the eigenspace $V_{\lambda_{i}}$.
(c) Find a basis B of \mathbb{R}^{2} that only consists of eigenvectors of φ and find the matrix of the map φ with respect to the basis B.

Solution:

a) We have

$$
\operatorname{det}(A-\lambda E)=(-2-\lambda)(5-\lambda)+12=\lambda^{2}-3 \lambda+2=(\lambda-1)(\lambda-2) .
$$

Thus the characteristic polynomial splits into linear factors corresponding to roots $\lambda_{1}=1$ and $\lambda_{2}=2$.
b) In order to determine the kernels of $A-\lambda_{i} E$, we perform Gauss-Jordan elimination.

$$
\begin{aligned}
& A-\lambda_{1} E=\left(\begin{array}{ll}
-3 & 6 \\
-2 & 4
\end{array}\right) \rightsquigarrow\left(\begin{array}{cc}
-3 & 6 \\
0 & 0
\end{array}\right) \\
& A-\lambda_{2} E=\left(\begin{array}{ll}
-4 & 6 \\
-2 & 3
\end{array}\right) \rightsquigarrow\left(\begin{array}{cc}
-4 & 6 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

We may choose $\mathbf{v}_{1}=\binom{2}{1}$ such that $\operatorname{span}\left(\mathbf{v}_{1}\right)=\operatorname{ker}\left(A-\lambda_{1} E\right)$ and $\mathbf{v}_{2}=\binom{3}{2}$ with $\operatorname{span}\left(\mathbf{v}_{2}\right)=\operatorname{ker}\left(A-\lambda_{2} E\right)$.
c) The vectors \mathbf{v}_{1} and \mathbf{v}_{2} form a basis B of \mathbb{R}^{2}, since they are linearly independent. W.r.t. to this basis φ is represented by the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$.

