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1 Basic ingredients

For the purpose of this stand-alone short lecture we want to take the following
ingredients for granted:

– ordinary integer arithmetic with addition and multiplication.

– the notion of divisibility and of division with remainder.

– the notion of greatest common divisor.

Here is a brief summary of these preliminaries.

Integer arithmetic. Z is the sets of integers, N ⊆ Z the set of natural
numbers. We regard 0 as a natural number. The basic arithmetical opera-
tions are addition and multiplication (and we tacitly assume the existence of
feasible algorithms to perform integer addition and multiplication in terms
of binary representations of the arguments and results).1

Divisibility. Let a ∈ Z, b ∈ N. Then b divides a if a = mb for some m ∈ Z.
We write b|a for “b divides a” or “a is divisible by b” or “b is a divisor of a”.

A natural number p > 1 is a prime if it is divisible only by 1 and itself.

Division with remainder. Let a, b ∈ Z, b > 0. The numbers mb for
m ∈ Z are referred to as the (integer) multiples of b. For every a ∈ Z there
is a unique m ∈ Z such that mb 6 a < (m + 1)b.

mb a (m + 1)b

In this case we refer to the value m, which is the best approximation from
below of the quotient a/b in Z, as ⌊a/b⌋. The difference between a and mb
is called the remainder of a w.r.t. [division by] b and denoted

a mod b,

1Feasible here means that the result is computed within a number of steps that is
polynomial (here in fact linear and quadratic, respectively) in the lengths of the binary
representations of the arguments (their bit-size). Note that there is an exponential re-
lationship between the bit-size and the value of a number, as length k binary strings
represent numbers up to 2k − 1. Seen from the other side, the bit-size is only logarithmic
in the numerical value.
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also read as “a modulo b”. This remainder can equivalently be characterised
as the unique r ∈ {0, . . . , b − 1} for which a − r is divisible by b (check this
as an exercise!). We shall repeatedly use variants of the equation

a mod b = a − b⌊a/b⌋. (1)

Greatest common divisors. Let a, b > 0. Then the greatest common

divisor of a and b is the number

gcd(a, b) := max
{
d ∈ N : d|a and d|b

}
.

This definition is extended to the (degenerate) cases where one or both of a
and b are zero, by putting gcd(a, 0) = gcd(0, a) = a for all a ∈ N.

Numbers a and b are called relatively prime if gcd(a, b) = 1.
We state a fundamental fact about the gcd from elementary number the-

ory. Part of this follows from the analysis of the extended form of Euclid’s
algorithm below, the other part will be an exercise.

Fact 1.1 Let a, b > 0. Then the greatest common divisor gcd(a, b) is the

smallest positive member of the set {ka + ℓb : k, ℓ ∈ Z}. This set precisely

consists of all the integer multiples of gcd(a, b).

2 Modular arithmetic

2.1 Going in circles

Arithmetic modulo n is the integer arithmetic of remainders w.r.t. n. We
fix n > 0 and instead of the integers a we just look at their remainders
a mod n ∈ {0, . . . , n− 1} =: Zn. This passage may be visualised as wrapping
the integer line around a length n circle:

Z

Zn0 1−1 n n+1n−1

Ä~}|xyz{
0 1n−1

±±
00

//

mod n
//

Formally this intention may be captured with notion of an equivalence rela-

tion (compare section 1.2.3 of the lecture notes), which lumps together all
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integers that leave the same remainder. Two integers a and b get lumped
together if

a mod n = b mod n, (2)

which is the case if, and only if, n divides their difference. This is the same as
to say that a = b+kn for some suitable k ∈ Z, or that a and b are “equal up
to an integer multiple of n”. This motivates the following variant notation
for equation (2)

a = b (mod n), (3)

which stresses the idea of “equality up to multiples of n”.
Integer arithmetic in Z can be exported to the domain Zn of remainders

to obtain addition and multiplication operations in Zn (see section 1.3 in the
lecture notes), +n and ·n. Here we are only interested in their compatibility
with ordinary integer arithmetic

Lemma 2.1 For all a, b ∈ Z:

(a + b) mod n =
(
(a mod n) + (b mod n)

)
mod n,

(a · b) mod n =
(
(a mod n) · (b mod n)

)
mod n.

This means in particular that for arithmetical results modulo n, we may
as well always already reduce the arguments and intermediate results modulo
n, in order to minimise computational complexity.

Proof. We sketch the argument in the case of addition.
a = kn + (a mod n) and b = ℓn + (b mod n) for suitable k, ℓ ∈ Z (in fact

k = ⌊a/n⌋ and ℓ = ⌊b/n⌋, but we don’t care). Then

a + b = (k + ℓ)n + (a mod n) + (b mod n)

implies the desired “equality modulo n”.
2

Looking at exponentiation, which is iterated multiplication, we get the
following corollary for modular exponentiation.

Corollary 2.2 For all a ∈ Z, b ∈ N:

ab mod n =
(
a · · · · · a
︸ ︷︷ ︸

b times

)
mod n = (a mod n)b mod n,

where the intermediate results may be reduced modulo n after every multipli-

cation step.
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2.2 Feasible modular exponentiation

Addition and multiplication modulo n are computationally reduced to cor-
responding algorithms for integers and the computation of remainders, for
which the usual feasible algorithms can be used.

Even modular exponentiation, (a, b) 7→ ab mod n is feasibly computable.
Note that iterated multiplication does not work, as b-fold iteration is expo-
nential in the bit-size of b (length of its binary representation).

Representing the exponent b in binary, as

〈b〉2 = bk . . . b0, so that b = b0 + b12 + b22
2 + · · · + bk2

k,

we have
ab = a(b0+b12+b222+···+bk2k) = ab0a2b1 · · · · · a2kbk .

So only certain 2i-th powers of a need to be collected, namely those for
which bi 6= 0. The 2i-th powers

a, a2, a4, a8, . . . , a2i

, a2i+1

=
(
a2i)2

, . . .

can be generated by successive squaring. This yields the following feasible
modular exponentiation procedure based on repeated squaring.

The variable c successively gets set to a, a2, a4, . . . , a2k

(mod n) in lines
3 and 5, and the corresponding factors a2i

are multiplied into d for those bi

that are not 0.

Modular-Exponentiation(a, b, n) 〈b〉2 = bk . . . b0 in binary

〈b〉2 = bk . . . b0 in binary
1 d := 1
2 c := a
3 FOR i = 0, . . . , k DO
4 IF bi = 1 THEN d := dc mod n
5 c := c2 mod n
6 OD
7 return d

Exercise 1 Show that 3444 + 4333 is divisible by 5, and that 2999 + 5999 as
well as 5222 − 2222 are divisible by 7 (without ever so much as thinking of
3-digit decimal numbers for intermediate results).



LA I — Martin Otto 2008 5

2.3 Euclid’s algorithm

The following observation holds the key to a feasible evaluation of the greatest
common divisor of two (positive) integers.

Lemma 2.3 For integers a, b > 0: gcd(a, b) = gcd(b, amod b).

Proof. We can even show that for arbitrary d ∈ N:

(
d|a and d|b

)
iff 2

(
d|(a mod b) and d|b

)
.

Equality of the gcds is then immediate.
Assume first that d|a and d|b. We need to show that d then also divides

a mod b. This follows from a mod b = a − b⌊a/b⌋, see equation (1) above.
Conversely, assume that d|(a mod b) and d|b. We need to show that d then

also divides a. Again this follows from equation (1), as a = a mod b+b⌊a/b⌋.
2

Lemma 2.3 supports the following procedure for computing the gcd. This
algorithm, which was known to (but possibly not invented by) Euclid in the
4th century BC, is one of the most fundamental examples of a mathematical
algorithm.

The basic form of Euclid’s algorithm computes gcd(a, b) by a simple re-
cursion which terminates within a number of iterations that is linear in the
bit-size of the inputs (the length of a binary representation of the numbers
a and b).

Euclid(a, b) assume a > b

1 IF b = 0 THEN return a
2 ELSE return Euclid(b, a mod b)

Correctness is shown on the basis of Lemma 2.3 above. That the recursive
call is executed only a logarithmic number of times (in terms of the numerical
values) follows directly from the observation that two rounds through the loop
at least halve both arguments.

2“iff” is shorthand for “if, and only if”
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Exercise 2 Show that for a0 > b0 > 0,

(a1, b1) = (b0, a0 mod b0)
and (a2, b2) = (b1, a1 mod b1)

}

⇒ a2 < a0/2 and b2 < b0/2.

Hint: show that, whenever a > b, then a mod b < a/2.

An extended form of Euclid’s algorithm produces not only the value of
gcd(a, b) but also values for k and ℓ such that gcd(a, b) = ka + ℓb (compare
Fact 1.1 above). This extra information is useful for solving simple equations
in modular arithmetic and plays a key role in some cryptographic applications
below.

Extended-Euclid(a, b) assume a > b

1 IF b = 0 THEN return (a, 1, 0)
2 ELSE DO
3 (d, x, y) := Extended-Euclid(b, a mod b)
4 return (d, y, x − ⌊a/b⌋y)
5 OD

Extended-Euclid has the same recursive structure as Euclid, and
performs just like Euclid w.r.t. to variable (and output) d.

That the output (d, k, ℓ) of Extended-Euclid(a, b) satisfies the equa-
tion

d = gcd(a, b) = ka + ℓb. (4)

is shown as follows.3

Equation (4) is clearly true in case of termination in line 1 (no recursive
call).

We now show that every one additional recursive call preserves the de-
sired equation. We assume that line 3 returns d, x, y satisfying the require-
ment w.r.t. Extended-Euclid(b, a mod b). Then it follows by simple arith-
metic that the return value (d, y, x − ⌊a/b⌋y) satisfies the requirement for
Extended-Euclid(a, b). Indeed,

d = gcd(b, a mod b) = xb + y(a mod b)

3Formally, this is a proof by induction on the number of recursive calls to the
Extended-Euclid procedure during the computation of Extended-Euclid(a, b). Com-
pare section 1.2.6 of the lecture notes.
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implies that d = gcd(a, b) (Lemma 2.3). It also implies that

ya + (x − ⌊a/b⌋y)b = xb + y(a − ⌊a/b⌋b) = xb + y(a mod b) = d

as required (compare equation (1)).

2.4 Solving modular equations

We want to find solutions to simple linear equations in modular arithmetic,
like finding x ∈ Zn = {0, . . . , n − 1} such that

ax = b (mod n), (5)

for given n and a, b ∈ Zn.

Lemma 2.4 The modular equation (5) is solvable for x iff gcd(n, a)|b.

Proof. Assume first that the equation has a solution x = ℓ say. So
b = ℓa + kn for some k ∈ Z. But gcd(n, a) divides all numbers of the form
kn + ℓa by Fact 1.1.

Conversely, let gcd(n, a) divide b: b = m gcd(n, a) for some m ∈ Z. From
Fact 1.1 we know that gcd(n, a) = kn + ℓa for suitable k, ℓ ∈ Z.

So b = mkn + mℓa, and x := mℓ mod n solves the equation.
2

We may assume that 0 6 a, b < n, i.e., that a, b ∈ Zn (else pass to a mod n
and b mod n without changing the meaning of the equation).

If gcd(n, a)|b, then a solution to equation (5) is easy to find on the basis
of Extended-Euclid as follows.

Extended-Euclid(n, a) yields (d, k, ℓ) such that d = gcd(n, a) and d =
kn + ℓa. Therefore d = ℓa (mod n). It follows that if d|b, then

x = (ℓb/d) mod n is a solution.

This is because d = ℓa (mod n) implies a(ℓb/d) = ℓab/d = db/d = b (mod n).

Example 2.5 Consider the modular equation ax = 1 (mod n). It is solvable
if and only if a and n are relatively prime. In this case an output (1, k, ℓ)
from Extended-Euclid(n, a) yields the solution x = ℓ mod n.

For 93x = 1 (mod 100), for instance, Extended-Euclid(100, 93) gives
d = 1, k = 40, ℓ = −43. The solution for x ∈ {0, . . . , 99} is obtained as
−43 mod 100 = 57.
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3 Fermat’s Little Theorem

The following theorem of Fermat plays an important role in primality tests
as well as for the arithmetic of certain cryptographic protocols.

Theorem 3.1 (Fermat) For all primes p and all a ∈ {1, . . . , p − 1}:

ap−1 = 1 (mod p). (6)

Proof. You can find elementary proofs in textbooks, but we here sketch
a more playful combinatorial proof. It proceeds via counting bead patterns.

(a) We count the number S(n, a) of colour patterns in strings of n beads
made from beads of a distinct colours. Clearly there are exactly an such
patterns, as each position in the string allows us to choose one out of the a
many colours. S(n, a) = an.

(b) Now let us count the number C(n, a) of distinct circular colour pat-
terns in bead cycles of length n. Look at a particular pattern. We may cut
it open in n different places to form a string. For some circular patterns,
different cuts will produce the same string pattern, namely if there is some
internal periodicity within the string.

Let us say that a circular pattern has period q if a shift through q positions
along the cycle does leave the pattern unchanged (every bead takes the place
of a bead of the same colour). For instance, if two colours alternate, all even
numbers are periods; if all beads are of the same colour then all numbers
are periods. Zero and the overall length n will always be periods. Also, the
smallest non-zero period must divide the length n (exercise!).

So if n = p is a prime, then the smallest period can only be 1 or p. If it is
1, the pattern consists of just one colour; otherwise it is p and every cutting
point yields a distinct string pattern.

(c) Now let n = p a prime and 1 6 a < p. Then K := C(p, a) − a is
the number of circular patterns that use more than one colour. These K
patterns give rise to pK distinct string patterns when we cut them open in
all possible positions. This number also is S(p, a) − a = ap − a. So we find

pK = ap − a.

As a divides the right-hand side, a must divide the left-hand side and there-
fore K: p is a prime, so unless a = 1, a does not divide p. So K = ak for
some k ∈ Z, and kp = ap−1 − 1. Hence ap−1 = 1 + kp and equation (6)
follows.

2
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4 Applications in cryptography

For a simple cryptographic setting, consider the problem of transmitting a
message M from B (Bob) to A (Alice) over some insecure channel in such
a way that even though someone might intercept the message, its contents
is not revealed to the eavesdropper. To achieve this, B has to encrypt the
message and only submit its encrypted form to the insecure channel; the
necessary assumptions being that (a) a potential eavesdropper who intercepts
the encrypted message cannot (or at least not easily) retrieve the original
message; but that (b) the legitimate recipient, A, can decrypt the encrypted
message to get at the original message.

Encryption and decryption are based on transformations of M which
require specific extra information, so-called keys, to be (feasibly) computed.
Of course, encryption and decryption are performed by means of matching
pairs of transformations, such that the decryption transformation inverts the
encryption transformation.

With simple symmetric schemes the same key is necessary for encryption
and matching decryption (compare section 1.1.4 in the lecture notes), which
raises the problem of making the key used by B (for encryption) available to
A (for decryption). This key exchange problem can be overcome in surprising
manners. We briefly look at two now classical mechanisms.

4.1 Interactive key exchange

The gist of the key exchange problem seems to be that in order to commu-
nicate securely, Alice and Bob must already share an exclusive secret (their
key) beforehand. Can this constraint be avoided?

Such methods rest on the assumption that certain functions are easy to
compute but hard to invert, so-called one-way functions. An important ex-
ample is provided by modular exponentiation (see above). Though not a
proven fact, there is good reason to assume that finding solutions to expo-
nential modular equations

gx = y (mod n)

for x is computationally hard (known as the discrete logarithm problem).
Modular exponentiation is used in a key exchange protocol idea due to

Diffie, Hellman and Merkle (1976) as follows.
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Alice and Bob agree (publicly) on suitable numbers n and g. In a session
in which they want to generate a common key for cryptographic purposes,
Alice and Bob independently choose numbers a and b. They do not reveal
the numbers a and b to each other, however. Instead Alice sends to Bob the
number ga mod n and Bob sends to Alice the number gb mod n. According to
the crucial complexity assumption, a and b are not accessible even to someone
who intercepts these messages. Now Alice chooses for her key the number
(gb mod n)a mod n = gab mod n, which she can compute from the number
received from Bob using her own secret a. Bob computes the same number
according to gab mod n = (ga mod n)b mod n from the number received from
Alice using his secret b.

Now Alice and Bob share the key gab mod n, without having communi-
cated any information from which this key could be extracted (if the discrete
logarithm is indeed not feasibly computable).

4.2 Public key systems

Public key cryptosystems like RSA overcome the key exchange problem by
letting each participant have two keys: one public to be used for encryption
by anyone who wants to communicate to the owner of this public key; and
one secret known only to its owner which is necessary to decrypt any message
thus encrypted.

So each participant is responsible for his or her own pair of matching keys,
only one of which is made available to the rest of the world. The theoretical
problem to be solved, once this idea is formulated, concerns a mechanism
according to which such key pairs can be generated such that one key cannot
feasibly be computed from the other (while at the same time, they can be
used to feasibly compute the encryption and decryption transformations).
Rivest, Shamir and Adleman (1977) devised the following scheme.

RSA is also based on modular exponentiation. We consider simple one-
way communication from B to A. With a pair of two distinct large primes p
and q (arbitrarily chosen by A) associate n = pq and N := (p − 1)(q − 1).
Assume that n is sufficiently large and that the message is (encoded as) a
natural number M < n.

A also chooses some integer e relatively prime to N , i.e., one such that
gcd(N, e) = 1. A then computes a solution d to the modular equation

ex = 1 (mod N).
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A’s keys are the pairs of numbers P = (n, e) (the public key) and S = (n, d)
(the secret key). The associated encryption and decryption transformations
for messages M,M ′ ∈ {0, . . . , n − 1} are:

Encryption based on the public key P = (n, e): M 7−→ M e mod n.

Decryption based on the secret key S = (n, d): M ′ 7−→ (M ′)d mod n.

We show that these transformations provide a matching encryption/de-
cryption pair:

Claim 4.1 For all M ∈ {0, . . . , n − 1}: (M e)d = M (mod n).

Proof. The proof uses Fermat’s Little Theorem (Theorem 3.1).
Since ed = 1 (mod N) for N = (p − 1)(q − 1), we have

ed = 1 + k(p − 1)(q − 1)

for suitable k ∈ Z. Therefore,

M ed = MM (p−1)(q−1)k (mod n).

Fermat’s little theorem, applied for each of the primes p and q separately,
implies that

M ed = M (mod p) and M ed = M (mod q).

Thus M ed = M + k1p = M + k2q for suitable ki ∈ Z. Now k1p = k2q for
distinct primes p and q implies that p|k2 and q|k1. Using for instance that
k2 = k3p for some k3 ∈ Z we find that

M ed = M + k2q = M + k3pq = M + k3n = M (mod n).

2

It is important to note that the arithmetic in key generation, encryption
and decryption is feasibly computable. We have indicated the crucial ingre-
dients above. Another essential is the availability of large primes p and q
to start with. For this one has randomised algorithms which feasibly gen-
erate (certified) primes. For security, RSA obviously relies on hardness of
the discrete logarithm and also on the assumption that factorisation of large
numbers into their prime factors is hard, for otherwise one could retrieve p
and q and hence all the key information from the public key.
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