
Script Skeleton: Advanced Complexity Theory⋆

Martin Ziegler

ziegler@mathematik.tu-darmstadt.de

Abstract. Classical computational complexity theory (last semester) has resulted in a rich variety
of classes naturally capturing many practical computational problems. We also have established
several relations between these classes; but not a single non-trivial lower bound (other than, e.g.
Time(n) ≥ n and Space(n) ≥ log n) was obtained. The topics of this lecture describe several (more
or less successful) approaches to remedy this situation.

1 Algorithmic Information Theory and Applications 1
1.1 A Lower Bound for 1-Tape Turing Machines . 1

2 Time versus Space . 2
2.1 Pebble Game: Time versus Space for Circuits 2
2.2 Pebble Strategies and Computation . 3

3 Simple Diagonalization: Hartmanis’ Hierarchy Theorems 4
4 Relativization and Priority/Injury-Diagonalization:

Baker/Gill/Solovay and Friedberg/Muchnik . 4
5 Straight-Line Complexity . 5

5.1 Lower Bounds: Dimension, Volume, Transcendence Degree 6
5.2 Some Surprisingly Efficient Algorithms:

Preconditioning, Baur-Strassen, Multipoint Evaluation 7
5.3 Matrix Multiplication and Tensor Rank . 8

6 Branching Complexity . 10
6.1 Hyperplane Arrangements and Combinatorial Convex Geometry . . 10
6.2 Linear Branching Trees . 12

⋆ This is the synopsis to a lecture held in summer (mid of April to mid of July) 2011 at the TU Darmstadt.

1 Algorithmic Information Theory and Applications

0101010101010101 vs. 1011001011111001 Here Σ := {0, 1}.

Definition 1.1. Fix a universal Turing machine U over alphabet Σ
and let, for x̄ ∈ Σ∗, KU(x̄) := min

{

|〈M, ȳ〉| : U(〈M〉, ȳ) = x̄
}

.

Lemma 1.2 (Kolmogorov Complexity).

a) There exists c ∈ N such that, for every x̄ ∈ Σ∗, KU(x̄) ≤ c+ |x̄|.
b) To UTM V there exists c ∈ N such that every x̄ ∈ Σ∗ has KU(x̄) ≤ c+KV(x̄)
c) To every n, there exists x̄ ∈ Σn with KU(x̄) ≥ n.

Strings x̄ with K(x̄) ≈ |x̄| are considered incompressible.

1.1 A Lower Bound for 1-Tape Turing Machines

Definition 1.3 (Crossing Sequence). Let M = (Q,Σ, Γ, δ) denote a deterministic 1-
tape Turing machine (1-DTM) ∈̄Σ∗, and s ∈ N0. Then CSM(x̄, s) denotes the finite or
infinite sequence (qi) of states M is in when moving from tape cell #s-1 to #s or back.
We write |CSM(x̄, s)| for its length.

Head movements
of M on input x

1

0 1 2 3 4 5 7 8 9 ...6

qq

5
q

3
q

2q

6
q

4
q

Fig. 1. a) Example of a Crossing Sequence b) Combining two computations with identical crossing sequences

Lemma 1.4 (Pumping). Let M as above.

a) Suppose both ūv̄ and ȳz̄ are accepted by M and satisfy CSM(ūv̄, |ū|) = CSM(ȳz̄, |ȳ|).
Then M accepts also ūz̄ and ȳv̄.

b) TimeM(x̄) =
∑∞

s=1 |CSM(x̄, s)|.
In particular, to every finite S ⊆ N0, there exists s ∈ S with |CSM(x̄, s)| ≤ TimeM(x̄)/|S|.

c) Suppose M decides L :=
{

x̄ 0|x̄| x̄ : x̄ ∈ Σ∗
}

. Then, for m ≤ s < 2m and x̄, ȳ ∈ Σm

with x̄ 6= ȳ, it holds CSM(x̄0mx̄, s) 6= CSM(ȳ0mȳ, s).
d) There is c ∈ N such that every x̄ ∈ Σm has KU(x̄) ≤ c+ c ·TimeM(x̄0mx̄)/m+log2(m).

Theorem 1.5. The language L from Lemma 1.4c)

a) can be decided by a deterministic 2-DTM in time O(n)

b) can be decided by a deterministic 1-DTM in time O(n2)
c) cannot be decided by a deterministic 1-DTM in time o(n2)

2 Time versus Space

For every f(n) ≥ n,

a) DTIME
(

f(n)
)

⊆ DSPACE
(

f(n)
)

b) DSPACE
(

f(n)
)

⊆ DTIME
(

2O(f(n))
)

.

Improving b): P versus NP. This section improves a).
DTIMEk

(

f(n)
)

depends on the number k of heads; DSPACEk

(

f(n)
)

does not.

2.1 Pebble Game: Time versus Space for Circuits

x
1 5

x
4

x
3

x
2

x

+

**

+++

1 2 3 4 5

6 7 8

9 10

11

Fig. 2. a) An arithmetic circuit b) Pyramid graph Pm

Definition 2.1 (Pebble Game). Let G = (V,E) denote a directed acyclic graph (DAG)
and v ∈ V . The goal of the game instance (V,E, v) is to eventually put a marker (‘pebble’)
on v, by a sequence of moves subject to the following rules:

• Either remove a marker from some vertex u ∈ V
• Or put a marker onto a vertex u ∈ V ,
provided that all direct predecessors of u are presently marked.

We count the number of steps as well as the number of (reusable) markers employed.

Example 2.2 The DAG in Figure 2a) can be played

a) with 5 markers in 17 steps

b) but not with 4 markers.

For m ∈ N, the pyramid graph Pm from Figure 2b) can be played

c) with m+ 1 markers

d) but not with m markers ⊓⊔

Lemma 2.3. Let (V,E) denote a DAG with indegree at most ℓ ∈ N and m := |E| edges.
Write Sℓ(m) for the least number of markers sufficient to play every DAG of indegree ≤ ℓ
having ≤ m edges.

a) There exists U ⊆ V such that F := E ∩ (U × U) has m/2 − ℓ ≤ |F | < m/2 and
E ∩

(

(V \ U)× U
)

= ∅.
b) It holds Sℓ(m) ≤ Sℓ(m/2 + ℓ) + |F ′| with the abbreviation F ′ := E ∩

(

U × (V \ U)
)

.

c) It also holds Sℓ(m) ≤ Sℓ(m/2) + Sℓ(m/2 + ℓ− |F ′|) + ℓ.

d) It holds Sℓ(m) ≤ max
{

Sℓ(m/2+ ℓ) + 2m
logm

, Sℓ(m/2)+ Sℓ(m/2+ ℓ− 2m
logm

) + ℓ
}

and, for

fixed ℓ, Sℓ(m) ≤ O(m/ logm).

e) (V,E) can be played with O(n/ logn) markers for n := |V | and ℓ considered fixed.

2.2 Pebble Strategies and Computation

We encode a DAG (V,E) as a list of vertices and edges, i.e. such that N := |〈V,E〉| =
Θ(n · log n+m · logn) where n := |V | and m := |E|.

Lemma 2.4. a) A quadratically space-bounded DTM can, given 〈V,E, v, s, t〉, produce
some play for (V,E, v) using ≤ s markers and ≤ 2t steps, provided that such a play
exists.

b) Let M denote a k-tape Turing machine and x̄ ∈ Σn an input on which M makes T
steps. Subdivide this computation into B ∈ N phases of ⌈T/B⌉ steps each; and subdivide
M’s tapes into B blocks of ⌈T/B⌉ cells each.

i) In each phase and on each tape, M visits at most 2 different blocks.

ii) The computation of M(x̄) in phase ϕ = 1, . . . , B depends on the contents of blocks
last modified in at most ℓ := k + 1 different previous phases.

c) Choosing B := ⌈T 1/3⌉, the computation of M on x̄ can be simulated by a Turing
machine using space O(T/ log T).

Theorem 2.5 (Hopcroft, Paul, Valiant 1977). Let t(n) ≥ n be constructible in space
t(n)/ log t(n). Then DTIME

(

t(n)
)

⊆ DSPACE
(

t(n)/ log t(n)
)

.

3 Simple Diagonalization: Hartmanis’ Hierarchy Theorems

Example 3.1 The following language is not semi-decidable:

D := {〈M〉 : DTM M does not accept 〈M 〉} ⊆ Σ∗

We consider DTMs over arbitrary finite alphabets.

Proposition 3.2. Fix f : N → N with f(n) ≥ 2n.

a) It holds Tf 6∈ DTIME
(

f(n)
)

, where

Tf :=
{

〈M〉 : DTM M does not accept 〈M〉 within f(|〈M〉|) steps
}

b) It also holds Sf 6∈ DSPACE
(

f(n)
)

for the language

Sf :=
{

〈M〉 : DTM M does not accept 〈M〉 using ≤ f(|〈M〉|) tape cells
}

c) If f is computable in space O
(

f(n) · logn
)

, then Sf ∈ DSPACE
(

f(n) · log f(n)
)

.
d) If f is computable in time O

(

f(n)3
)

, then Tf ∈ DTIME
(

f(n)3
)

.

Corollary 3.3. P (EXP, L (PSPACE.

Theorem 3.4 (Hartmanis et. al., Fürer, Trakhtenbrot).

a) Let f(n) ∈ o
(

g(n)
)

be computable in space O
(

f(n)
)

. Then DSPACE
(

f(n)
)

(DSPACE
(

g(n)
)

.

b) Let f(n) ∈ o
(

g(n)
)

be computable in time O
(

f(n)
)

. Then DTIME
(

f(n)
)

(DTIME
(

g(n)
)

.

c) There is a computable monotone function f(n) ≥ n such that DTIME
(

f(n)
)

= DTIME
(

2f(n)
)

.

4 Relativization and Priority/Injury-Diagonalization:
Baker/Gill/Solovay and Friedberg/Muchnik

Example 4.1 a) The language

H := {〈M, x〉 : DTM M terminates on input x}

is i) semi-decidable but ii) not decidable. Moreover iii) every semi-decidable problem
is many-one reducible to H.

b) H is trivially decidable by an ODTM with oracle H; and so is D. But w.r.t. any oracle
O, the following language is not semi-decidable by an O-oracle machine:

DO := {〈M?〉 : ODTM MO does not accept 〈M?〉} ⊆ Σ∗

c) There is a countably infinite hierarchy ∅, H,HH =: H ′, HHH

=: H ′′, . . . of languages;
each H(j) semidecidable, but not decidable, relative to H(j−1).

For complexity class C and oracle O, generically understand CO to denote its relativization.

Scholium 4.2 For any oracle O ⊆ Σ∗, the following holds:

a) For increasing f : N → N O-computable in time and space O
(

f(n)
)

,

DTIME
(

f(n)
)

⊆ NTIME
(

f(n)
)

⊆ DSPACE
(

f(n)
)

⊆ DTIME
(

O(2)logn+f(n)
)

b) If f(n) ∈ o
(

g(n)
)

is computable in space O
(

f(n)
)

, then DSPACE
(

f(n)
)

(DSPACE
(

g(n)
)

.
If f(n) ∈ o

(

g(n)
)

is computable in time O
(

f(n)
)

, then DTIME
(

f(n)
)

(DTIME
(

g(n)
)

.

c) If s : N → N with s(n) ≥ log(n) is O-computable in space O
(

s(n)
)

,

then NSPACEO
(

s(n)
)

⊆ DSPACEO
(

s(n)2
)

.

d) For s : N → N with s(n) ≥ log(n), it holds NSPACEO
(

s(n)
)

= coNSPACEO
(

s(n)
)

.

e) BPPO ⊆ Σ2PO ∩Π2PO.

In particular, LO ⊆ NLO ⊆ PO ⊆ NPO ⊆ PSPACE
O = NPSPACE

O ⊆ EXP
O

and at least one inclusion is strict.

Theorem 4.3 (Baker, Gill, Solovay 1975).

a) There exists A ⊆ {0, 1}∗ such that PA = NPA.

b) There exists an oracle B ⊆ {0, 1}∗ such that PB 6= NPB.

Theorem 4.4 (Friedberg 1957/Muchnik 1956). There exist semidecidable A,B ⊆
{0, 1}∗ such that A is not decidable relative to B and B is not decidable relative to A.

5 Straight-Line Complexity

Definition 5.1 (Straight-Line Program). Let S =
(

S, (ci), (fj)
)

denote a structure
with constants ci ∈ S and functions fj : S

aj → S of arities aj ∈ N. A Straight-Line Pro-
gram PS (over this structure and in variables X1, . . . , Xn) is a finite sequence of assign-
ments Zk := ci and Zk := Xℓ (1 ≤ ℓ ≤ n) and Zk := fj(Zk1, . . . , Zkaj

), 1 ≤ k1, . . . , kaj < k.

When assigned values x1, . . . , xn ∈ S to X1, . . . , Xn, the program computes (the set of results
consisting of (x1, . . . , xn) =: x and of) Z1, . . . , ZK; the final result is ZK =: PS(x). How-
ever if some intermediate operation fj(Zk1, . . . , Zkaj

) is undefined, then so is PS(x) := ⊥.

A cost function C assigns to each fj some cost C(fj) ≥ 0. The cost of a straight-line pro-
gram P is the sum of the costs of the fj occurring. The length of a straight-line program
means its cost with respect to constant cost function fj 7→ 1.

Example 5.2 a) Let S :=
(

R,R, (+,×)
)

be a commutative ring and p ∈ R[X] a poly-
nomial. Horner’s Scheme gives rise to a straight-line program computing x 7→ p(x) of
length at most 2 · deg(p).

b) Consider the semi-group S :=
(

N, (1), (+)
)

. Every N ∈ N can be computed by a straight-
line program over S of length at most 2 · ⌊log2N⌋.

c) Consider the N-dimensional discrete Fourier-transform

FN : CN ∋ (x0, . . . , xN−1) 7→
(

∑N−1

ℓ=0
exp(2πi · k · ℓ/N) · xℓ

)

k=0,...,N−1
∈ CN .

For N = 2n, FN can be computed by a straight-line program over
(

C, (0), (+,×c : c ∈
S1)

)

of length O(N · logN), where S1 = {z ∈ C : |z| = 1} denotes the complex unit
circle and ×c : C → C, z 7→ c · z unary complex multiplication by c.

d) Let F denote a field and A an F -algebra. There is a straight-line program over
(

A, (), (+,×c :
c ∈ F)

)

which, for arbitrary but fixed distinct x1, . . . , xn ∈ F and on input of y1, . . . , yn ∈
A, calculates (the unique) a0, . . . , an−1 ∈ A with

∑n−1
k=0 ak · xk

ℓ = yℓ for ℓ = 1, . . . , n.

e) Consider an infinite field F , n + m variables A0, . . . , An−1, B0, . . . , Bm−1, and the al-
gebra A = F [A0, . . . , Bm−1] with binary operations + and × : A × A → A as well as
unary ×c : A → A (c ∈ F), that is the structure

(

A, F, (+,×,×c : c ∈ F)
)

. The set
{
∑

i+j=ℓAi ·Bj : 0 ≤ ℓ ≤ n+m−2
}

can be calculated from A0, . . . , Ym−1 by a straight-
line program using n+m− 1 operations “×” (and arbitrary many “+” and “×c”).

Straight-line programs as in b) are addition chains ; c) refers to the fast Fourier transform.

5.1 Lower Bounds: Dimension, Volume, Transcendence Degree

Proposition 5.3. a) Any straight-line program computing N ∈ N over
(

N, 1, (+,−)
)

has
length at least log2N . In particular the straight-line program from Example 5.2b) is
optimal up to a constant factor.

b) For S =
(

F, F, (+,−,×)
)

a field of characteristic 0 and 0 6= p ∈ F [X], any straight-line
program computing x 7→ p(x) over S contains at least log2 deg(p) multiplications.

Let F denote a field and F (X) the field of univariate rational functions.
For coprime p(X), q(X) ∈ F [X] define deg

(

p(X)/q(X)
)

:= max
{

deg(p), deg(q)
}

.

c) Every r(X) ∈ F (X) can be calculated by a straight-line program over
(

F, F, (+,×,÷)
)

of length at most 4 deg(r) + 1.

d) Conversely, any straight-line program over
(

F, F, (+,×,÷)
)

computing r(X) ∈ F (X)
has length at least log2 deg(r).

Theorem 5.4 (Dimension Bound). Let F ⊆ E denote fields and consider x1, . . . , xn,
y1, . . . , ym ∈ E and the induced F -vector spaces X := {λ1x1+· · ·+λnxn : λi ∈ F} and Y :=
{µ1y1 + · · ·+ µmym : µj ∈ F}. Moreover consider the structure S =

(

E, F, (+,−,×,×λ :
λ ∈ F)

)

where × : E × E → E and ×λ : E → E, e 7→ λ · e.

a) Any straight-line program over S computing {y1, . . . , ym} from (x1, . . . , xn) contains at
least dimF (X + Y + F)− dimF (X + F) multiplications “×”.

b) The straight-line program from Example 5.2e) is optimal.

Theorem 5.5 (Morgenstern’s Volume Bound). Fix C > 0 and consider a straight-
line program P over the structure

(

C,C, (+,×λ : |λ| ≤ C)
)

in n variables.

a) Each ‘line’ ℓ of P computes an affine linear function ϕℓ : C
n → C;

and P computes an affine linear map ΦP : Cn ∋ x 7→ AP · x+ b ∈ Cn+|P |,
where |P | denotes the length of P and the first n components are the identity.

b) For a1, . . . ,am ∈ Cn with m ≥ n write

∆(a1, . . . ,am) := max
{

| det(aj1, . . . ,ajn)| : 1 ≤ j1, . . . , jn ≤ m
}

.

Then, for 1 ≤ k, ℓ ≤ m and λ ∈ C, it holds ∆(a1, . . . ,am, λ · ak) ≤ |λ|∆(a1, . . . ,am)
and ∆(a1, . . . ,am,ak + aℓ) ≤ 2∆(a1, . . . ,am).

c) The homogeneous linear map AP : Cn → Cn+|P | from a) satisfies ∆(AP) ≤ (2C)|P |.
d) The matrix

(

exp(2πi · k · ℓ/n)
)

0≤k,ℓ<n
has determinant of absolute value nn/2.

e) The straight-line program from Example 5.2c) is asymptotically optimal.

Theorem 5.6 (Transcendence Degree Bound, Motzkin+Belaga). Let F ⊆ E de-
note fields of characteristic 0 and F ⊆ E(X) a finite set of rational functions in inde-
terminates (X1, . . . , Xn) = X. For pj, qj ∈ E[X] coprime over F and qj monic, define
CoeffF (p1/q1, . . . , pm/qm) as the field over F generated by the coefficients from p1, . . . , qm.

a) CoeffF (F) is well-defined and coincides with F
({

f(x) : x ∈ F n, f ∈ F
})

.
b) For aj , bj , cj, wj ∈ E[X] with bj 6= 0, CoeffF (wj+cj ·aj/bj : j) ⊆ CoeffF (wj, cj , aj, bj : j).
c) Consider the structure S ′ =

(

E, F, (E,+,×,÷)
)

. Any straight-line program computing
F over S ′ contains at least trdegF

(

CoeffF (F)
)

constants from E.
d) Consider a straight-line program P over S :=

(

E,E, (+,×,÷)
)

computing (intermedi-
ate) results f1, . . . , fN .
i) There exist 0 6= bj , aj ∈ E[X], cj ∈ E (j=1,. . . ,N) such that fj = cj · aj/bj and

trdegF
(

CoeffF (a1, . . . , bN)
)

is at most the number of additions in P .
ii) There exist 0 6= vj, uj ∈ E[X], wj ∈ E (j=1,. . . ,N) such that fj = wj + uj/vj and

trdegF
(

CoeffF (u1, . . . , vN)
)

is at most twice P ’s number of multiplications/divisions.
e) Any straight-line program computing F over S contains at least

trdegF
(

CoeffF (F)
)

−|F| additions and
(

trdegF
(

CoeffF (F)
)

−|F|
)

/2 multiplications.

5.2 Some Surprisingly Efficient Algorithms:
Preconditioning, Baur-Strassen, Multipoint Evaluation

Proposition 5.7 (Horner is not optimal with preconditioning).
Let E denote a field and f =

∑n
j=0 αjX

j ∈ E[X] a polynomial of degree n.

a) Suppose f = (X2 − ξ) · f1(X) + η ∈ E[X] with ξ, η ∈ E. Then f can be calculated
from X,X2, ξ, η, f1(X) (the latter of degree n − 2) using 1 multiplication and 2 addi-
tions/subtractions.

b) Suppose that h :=
∑

2ℓ+1≤n α2ℓ+1X
ℓ is either constant or a product of linear factors

in E[X]. Then there is a straight-line program computing f in E[X] from X and
X2 and some elements from E using at most ⌊n/2⌋ + 2 multiplications and n addi-
tions/subtractions.

c) Suppose E is algebraically closed (or real closed). Then there is a straight-line program
computing f in E[X] from X and some elements of E using at most ⌊n/2⌋+3 multipli-
cations and n+ 1 additions/subtractions; and for α0, . . . , αn algebraically independent,
this is optimal up to an additive constant.

Theorem 5.8 (Baur-Strassen). Fix a field F of characteristic 0, 0, 1 ∈ C ⊆ F , and let
P denote a straight-line program in n variables over S =

(

F,C, (+,−,×,÷)
)

computing
f ∈ F (X1, . . . , Xn).
Then there exists a straight-line program P ′ in n variables over S of length |P ′| ≤ 5 · |P |
simultaneously computing all f, ∂1f, . . . , ∂nf .

Theorem 5.9 (Multipoint Evaluation). Let S =
(

C, S1, (+,×,÷
)

.

a) Let F denote a field of characteristic 0 and ū, v̄ ∈ F[X] such that ū · v̄ ≡ 1 mod Xn.
Then ū · (2v̄ − ū · v̄2) ≡ 1 mod X2n.

b) There is a straight-line program over S of length O(n·log n) which, given u0, u1, . . . , un−1 ∈
C with u0 6= 0, calculates the unique v0, . . . , vn−1 ∈ C such that (

∑n−1
k=0 ukX

k)·(∑n−1
k=0 vkX

k) ≡
1 mod Xn.

c) Let n ≥ m. There is a straight-line program over S of length O(n · logn) which, given
a0, . . . , an ∈ C and b0, . . . , bm ∈ C with bm 6= 0, calculates the unique q0, . . . , qn−m ∈ C

and r0, . . . , rm−1 ∈ C such that

∑n

k=0
akX

k =
(

∑m

k=0
bkX

k
)

·
(

∑n−m

k=0
qkX

k
)

+
(

∑m−1

k=0
rkX

k
)

d) There is a straight-line program over S of length O(n·log2 n) which, given a0, . . . , an−1 ∈
C and x1, . . . , xn ∈ C, simultaneously calculates all

∑n−1
k=0 akx

k
ℓ , 1 ≤ ℓ ≤ n.

5.3 Matrix Multiplication and Tensor Rank

Example 5.10 (Strassen) Let S =
(

R, (0, 1), (+,×)
)

denote a ring.

a) For A = (Aij), B = (Bij) ∈ R2×2 it holds A · B = C where

C11 = M1 +M4 −M5 +M7, C12 = M3 +M5,

C21 = M2 +M4, C22 = M1 −M2 +M3 +M6

M1 := (A12 + A22) · (B11 +B22), M2 := (A21 + A22) ·B11,

M3 := A11 · (B12 − B21), M4 := A22 · (B21 − B11), M5 := (A11 + A12) · B22,

M6 := (A21 − A11) · (B11 +B12), M7 := (A12 −A22) · (B21 +B22)

b) Since R′ := Rn×n is itself a ring, two matrices over R2n×2n can be multiplied using 7
multiplications and a constant number of additions of n× n-matrices.

c) N × N matrix multiplication over R can be performed by a straight-line program over
S of length O(nlog

2
7) ≤ O(n2.81).

Example 5.11 (Matrix Rank and Tensors) Fix a field F of characteristic 0.

a) For finite-dimensional F-vectors spaces X and Y and a linear map T : X → Y , it holds

rank(T) = min
{

r ∈ N
∣

∣

∣
∃a1, . . . ,ar ∈ X ∃b1, . . . br ∈ Y : T =

∑r

j=1
bj · a†

j

}

.

b) Consider N,M,K ∈ N and, for a ∈ FN , b ∈ FM , c ∈ FK , the (N ×M ×K)-hypermatrix

T = (tn,m,k)1≤n≤N,1≤m≤M,1≤k≤K
with tn,m,k := an · bm · ck.

c) Fix finite-dimensional F-vector spacesX, Y, Z with respective bases (x1, . . . ,xN), (y1, . . . ,yM),
and (z1, . . . , zK) and algebraic duals X∗, Y ∗, Z∗. A (N × M × K)-hypermatrix T ∈
FN×M×K gives rise to a bilinear map T : X∗ × Y ∗ → Z via

X∗ × Y ∗ ∋ (x∗,y∗) 7→
∑N

n=1

∑M

m=1

∑K

k=1
tn,m,k · x∗[xn] · y∗[ym] · zk .

And, conversely, any bilinear map T : X∗ × Y ∗ → Z has a representation (w.r.t. fixed
bases) as a N ×M ×K-hypermatrix.

Definition 5.12 (Tensor Rank). Fix a field F of characteristic 0 and finite-dimensional
F -vectorspaces X, Y, Z with algebraic duals X∗, Y ∗, Z∗. A tensor is a bilinear map from
X∗ × Y ∗ to Z. A simple tensor is of the form

x⊗ y ⊗ z : X∗ × Y ∗ ∋ (u∗, v∗) 7→ u∗[x] · v∗[y] · z, x ∈ X,y ∈ Y, z ∈ Z

and has rank ≤ 1; rank = 0 iff (x,y) = 0 or z = 0. We denote by X ⊗ Y ⊗ Z the set of
tensors T : X∗ × Y ∗ → Z. The rank of such a T is the least r ∈ N such that T can be
written as the sum of r simple tensors.

Lemma 5.13. a) Each trilinear functional T̂ : X∗×Y ∗×Z∗ → F corresponds to a unique
tensor T : X∗ × Y ∗ → Z and vice versa. (In the sequel we tacitly identify T̂ with T . . .)

b) T ∈ X ⊗ Y ⊗ Z has the same rank as

T ′ ∈ Y ⊗ Z ⊗X, (y∗, z∗) 7→
(

X∗ ∋ x∗ 7→ z∗[T (x∗,y∗)] ∈ F
)

∈ X .

c) Each T ∈ X ⊗ Y ⊗ Z has rank(T) ≤ dim(X) dim(Y) and rank(T) ≥ dim range(T).
d) For X∗ := Y ∗ := Z := Fn×n, the tensor of n× n-matrix multiplication

Mn : X × Y → Z, (A,B) 7→ A · B
has rank(M2) ≤ 7 and rank(M2n) ≤ 7 · rank(Mn), hence rank(Mn) ≤ n⌈log

2
7⌉.

e) Let T ∈ X ⊗ Y ⊗ Z and S ∈ X ′ ⊗ Y ′ ⊗ Z ′. Then

T ⊕ S : (X ⊕X ′)× (Y ⊕ Y ′) → Z ⊕ Z ′,
(

(x∗,x′∗), (y∗,y′∗)
)

7→ T (x∗,y∗)⊕ S(x′∗,y′∗),

T ⊗ S : (X ⊗X ′)× (Y ⊗ Y ′) → Z ⊗ Z ′,
(

(x∗ ⊗ x′∗), (y∗ ⊗ y′∗)
)

7→ T (x∗,y∗)⊗ S(x′∗,y′∗)

have rank(T ⊕ S) ≤ rank(T) + rank(S) and rank(T ⊗ S) ≤ rank(T) · rank(S).
Theorem 5.14 (Exponent of Matrix Multiplication). Fix a field F of characteristic
0 and ω ≥ 2 as well as the structure S =

(

F, F, (+,×)
)

. The following are equivalent:

i) To every ǫ > 0 there exists a family Pn of straight-line programs over S of length
O(nω+ǫ) which, given A,B ∈ F n×n, calculate A ·B.

ii) To every ǫ > 0, it holds rank(Mn) ≤ O(nω+ǫ).

6 Branching Complexity

Definition 6.1. Let S =
(

S, (ci), (fj), (Pk)
)

denote a structure with relations Pk :⊆ Sbk

or arities bk ∈ N.

a) A Branching Tree TS (over this structure and in variables X1, . . . , Xn) is basically a
straight-line program with the additional capability to branch based on whether a predi-
cate Pk, applied to previously calculated results, holds or not.
More formally, it is a rooted binary tree whose outdegree-1 nodes u ∈ TS are each la-
belled with either a variable, a constant ci from S, or with a function fj applied to
results from aj outdegree-1 predecessor nodes of u; and each outdegree-2 node is labelled
with a predicate Pk applied to bk degree-1 predecessor nodes. Each leaf (=outdegree-0
node) is labelled either with some symbol σ ∈ Σ or with some finite tuple of degree-1
predecessor nodes.

b) When assigned values x1, . . . , xn ∈ S to X1, . . . , Xn the tree calculates, starting from
the root, in outdegree-1 nodes intermediate results; and in outdegree-2 nodes branches
according to whether the predicate holds. TS accepts input x ∈ Sn if this process ends
in a leaf labelled + ∈ Σ; it rejects if the leaf is labelled - ∈ Σ; otherwise it computes the
specified (tuple of intermediate) value(s).

c) The size of a branching tree is its total number of nodes; similarly for the depth.

Example 6.2 (Sorting) Consider some totally ordered set S and the structure S =
(

S, (), (), (<)
)

. We say that a branching tree over S on n variables sorts if it computes
some function (f1, . . . , fn) = f̄ : Sn → Sn such that, for every x̄ = (x1, . . . , xn) ∈ Sn,

f1(x̄) ≤ f2(x̄) ≤ . . . ≤ fn(x̄) and ∀y ∈ S : #{j : xj = y} = #{j : fj(x1, . . . , xn) = y}
(1)

a) For each n ∈ N, both Bubble Sort and Quicksort give rise to branching trees over S in
n variables of depth O(n2).

b) Heap Sort gives rise to a branching tree over S in n variables of depth O(n · log n).
c) If |S| ≥ n, then any branching tree over S in n variables has at least n! different leaves.

In particular, Heap Sort is asymptotically optimal.

6.1 Hyperplane Arrangements and Combinatorial Convex Geometry

Definition 6.3. Fix d ∈ N.

a) A set X ⊆ Rd is convex if

∀x,y ∈ X : λx+ (1− λ)y ∈ X (2)

holds for every 0 ≤ λ ≤ 1. X is affine if Equation (2) holds for every λ ∈ R; equivalently:
X 6= ∅ and X − y := {x− y : x ∈ X} is a vector space for some/every y ∈ X.

b) We call h ∈ Sd = {y ∈ Rd+1 : ‖y‖ = 1} an oriented hyperplane. Its open halfspace H<h

is the set
{

x ∈ Rd :
∑

j xj · hj < h0

}

; the topological closure H≤h := H<h its closed

halfspace. Finally write H=h := H≤h ∩H≤−h for its affine hyperplane.

c) The dimension of X ⊆ Rd, dim(X), is the affine dimension of ahull(X) := {λ ·x+(1−
λ) · y : x,y ∈ X, λ ∈ R}; dim(∅) := −∞. A (convex) polytope P ⊆ Rd is the finite
intersection of finitely many open/closed halfspaces.

d) The membership problem associated with a finite family H of affine hyperplanes in Rd

is the question of whether a given x ∈ Rd belongs to
⋃H or not.

e) For h ∈ Sd and x ∈ Rd, write sgn(x,h) := sgn(
∑

j xj · hj − h0) ∈ {+, 0,−}.
f) The point location problem associated with a finite family H = {h(1), . . . ,h(n)} of ori-

ented hyperplanes is the function

Rd ∋ x 7→ sgn(x,H) :=
(

sgn(x,h(k))
)

1≤k≤n
∈ {+, 0,−}n .

g) A face of H is a subset of Rd of the form

H(σ̄) :=
{

x ∈ Rd : sgn(x,H) = σ̄
}

, σ̄ ∈ {+, 0,−}n .

A face of dimension 0 is called a vertex; an edge is a face of dimension 1; a face of
dimension d is a cell; a facet is a face of dimension d− 1; a face of dimension d− 2 is
called ridge.

x

H

H

H

H

1

2

3

4

Fig. 3. An arrangement of 4 lines in the plane inducing 6 intersections (=vertices), 16 line segments
(=edges=ridges=facets), and 11 cells.

Lemma 6.4. Fix a finite family H of n oriented hyperplanes in Rd.

a) Each face of H is a polytope.
b) Each vertex of H is determined by (at least) d hyperplanes.

In particular, H has at most
(

n
d

)

vertices.
c) For an arrangement of n hyperplanes in dimension d, the number of k-dimensional

faces is at most
∑k

j=0

(

d−j
k−j

)

·
(

n
d−j

)

d) and these numbers are attained by almost every arrangement.

Example 6.5 For 2 < N ∈ N, the following 2D arrangement has a cell with N facets:

hn := (1, cos 2πn
N

, sin 2πn
N

)/
√
2, 0 ≤ n < N .

6.2 Linear Branching Trees

Definition 6.6. A Linear Branching Tree for dimension d ∈ N is a branching tree over the
structure S :=

(

Rd, (), (), (H=h, H<h : h ∈ Sd)
)

.

Example 6.7 To each n-element family H of oriented hyperplanes in Rd, there exists a
Linear Branching Tree of depth O(n) deciding the membership problem associated with H.

Lemma 6.8. Let T denote a linear branching tree for dimension d and v a vertex of T .
Write T (v) for the set of inputs x ∈ Rd which, according to the semantics of Defini-
tion 6.1b), passes through v.

a) T (v) is a polytope. Each facet corresponds to an oriented hyperplanes queried by T on
the path from the root up to v.

b) For the leaves v1, . . . , vN of T ,
(

T (vj)
)

j=1,...,N
constitutes a partition of Rd.

c) For any linear branching tree T over S solving membership to H, and for each leaf v of
T , T (v) is either a subset of some H=h with h ∈ H or of H(σ̄) for some σ̄ ∈ {+,−}H.

Theorem 6.9 (Ukkonen’83, Dobkin/Lipton’74, Meiser’93).
Fix an n-element family H of oriented hyperplanes in dimension d.

a) Suppose H has N distinct cells. Then any linear branching tree over S deciding mem-
bership to H has depth at least logN .

b) Let H(σ̄) denote a cell having m facets. Then any linear branching tree over
(

Rd, (), (), (H=h, H<h : h ∈ H)
)

deciding membership to H has depth at least m.
c) There exists a linear branching tree over S of depth O(log n) solving the point location

problem for H.
d) There exists a linear branching tree over S of depth O(d5 logn) solving the point location

problem for H.

References

1. M. Li, P. Vitányi: “An Introduction to Kolmogorov Complexity and its Applications”, Springer
2. F. Meyer auf der Heide: “Skript zu Komplexitätstheorie II”,

http://www.upb.de/cs/ag-madh/vorl/KomplexII99 (1999)
3. C. Papadimitriou: “Computational Complexity”, Addison-Wesley (1995).
4. K.R. Reischuk: “Komplexitätstheorie”, Teubner (1999)
5. U. Schöning, R. Pruim: “Gems of Theoretical Computer Science”, Springer (1998).
6. P. Bürgisser, M. Clausen, A. Shokrollahi: “Algebraic Complexity Theory”, Springer (1997).
7. H. Edelsbrunner: “Algorithms in Combinatorial Geometry”, Springer EATCS Monographs vol.10 (1987).

