Script Skeleton: Advanced Complexity Theory*

Martin Ziegler

ziegler@mathematik.tu-darmstadt.de

Abstract. Classical computational complexity theory (last semester) has resulted in a rich variety of classes naturally capturing many practical computational problems. We also have established several relations between these classes; but not a single non-trivial lower bound (other than, e.g. $\text{Time}(n) \ge n$ and $\text{Space}(n) \ge \log n$) was obtained. The topics of this lecture describe several (more or less successful) approaches to remedy this situation.

1	Algorithmic Information Theory and Applications	1
	1.1 A Lower Bound for 1-Tape Turing Machines	1
2	Time versus Space	2
	2.1 Pebble Game: Time versus Space for Circuits	2
	2.2 Pebble Strategies and Computation	3
3	Simple Diagonalization: Hartmanis' Hierarchy Theorems	4
4	Relativization and Priority/Injury-Diagonalization:	
	Baker/Gill/Solovay and Friedberg/Muchnik	4
5	Straight-Line Complexity	5
	5.1 Lower Bounds: Dimension, Volume, Transcendence Degree	6
	5.2 Some Surprisingly Efficient Algorithms:	
	Preconditioning, Baur-Strassen, Multipoint Evaluation	7
	5.3 Matrix Multiplication and Tensor Rank	8
6	Branching Complexity	10
	6.1 Hyperplane Arrangements and Combinatorial Convex Geometry	10
	6.2 Linear Branching Trees	12

 $^{^{\}star}$ This is the synopsis to a lecture held in summer (mid of April to mid of July) 2011 at the TU Darmstadt.

1 Algorithmic Information Theory and Applications

0101010101010101 vs. 1011001011111001 Here $\Sigma := \{0, 1\}.$

Definition 1.1. Fix a universal Turing machine \mathcal{U} over alphabet Σ and let, for $\bar{x} \in \Sigma^*$, $K_{\mathcal{U}}(\bar{x}) := \min \{ |\langle \mathcal{M}, \bar{y} \rangle| : \mathcal{U}(\langle \mathcal{M} \rangle, \bar{y}) = \bar{x} \}.$

Lemma 1.2 (Kolmogorov Complexity).

a) There exists $c \in \mathbb{N}$ such that, for every $\bar{x} \in \Sigma^*$, $K_{\mathcal{U}}(\bar{x}) \leq c + |\bar{x}|$.

b) To UTM \mathcal{V} there exists $c \in \mathbb{N}$ such that every $\bar{x} \in \Sigma^*$ has $K_{\mathcal{U}}(\bar{x}) \leq c + K_{\mathcal{V}}(\bar{x})$

c) To every n, there exists $\bar{x} \in \Sigma^n$ with $K_{\mathcal{U}}(\bar{x}) \ge n$.

Strings \bar{x} with $K(\bar{x}) \approx |\bar{x}|$ are considered *incompressible*.

1.1 A Lower Bound for 1-Tape Turing Machines

Definition 1.3 (Crossing Sequence). Let $\mathcal{M} = (Q, \Sigma, \Gamma, \delta)$ denote a deterministic 1tape Turing machine (1-DTM) $\in \Sigma^*$, and $s \in \mathbb{N}_0$. Then $CS_{\mathcal{M}}(\bar{x}, s)$ denotes the finite or infinite sequence (q_i) of states \mathcal{M} is in when moving from tape cell #s-1 to #s or back. We write $|CS_{\mathcal{M}}(\bar{x}, s)|$ for its length.

Fig. 1. a) Example of a Crossing Sequence b) Combining two computations with identical crossing sequences

Lemma 1.4 (Pumping). Let \mathcal{M} as above.

- a) Suppose both $\bar{u}\bar{v}$ and $\bar{y}\bar{z}$ are accepted by \mathcal{M} and satisfy $CS_{\mathcal{M}}(\bar{u}\bar{v}, |\bar{u}|) = CS_{\mathcal{M}}(\bar{y}\bar{z}, |\bar{y}|)$. Then \mathcal{M} accepts also $\bar{u}\bar{z}$ and $\bar{y}\bar{v}$.
- Then \mathcal{M} accepts also $\bar{u}\bar{z}$ and $\bar{y}\bar{v}$. b) Time_{\mathcal{M}} $(\bar{x}) = \sum_{s=1}^{\infty} |\operatorname{CS}_{\mathcal{M}}(\bar{x}, s)|$.

In particular, to every finite $S \subseteq \mathbb{N}_0$, there exists $s \in S$ with $|\operatorname{CS}_{\mathcal{M}}(\bar{x}, s)| \leq \operatorname{Time}_{\mathcal{M}}(\bar{x})/|S|$. c) Suppose \mathcal{M} decides $L := \{\bar{x} \ 0^{|\bar{x}|} \ \bar{x} : \bar{x} \in \Sigma^*\}$. Then, for $m \leq s < 2m$ and $\bar{x}, \bar{y} \in \Sigma^m$

with $\bar{x} \neq \bar{y}$, it holds $\operatorname{CS}_{\mathcal{M}}(\bar{x}0^m \bar{x}, s) \neq \operatorname{CS}_{\mathcal{M}}(\bar{y}0^m \bar{y}, s)$. d) There is $c \in \mathbb{N}$ such that every $\bar{x} \in \Sigma^m$ has $K_{\mathcal{U}}(\bar{x}) \leq c + c \cdot \operatorname{Time}_{\mathcal{M}}(\bar{x}0^m \bar{x})/m + \log_2(m)$.

Theorem 1.5. The language L from Lemma 1.4c)

- a) can be decided by a deterministic 2-DTM in time $\mathcal{O}(n)$
- b) can be decided by a deterministic 1-DTM in time $\mathcal{O}(n^2)$
- c) cannot be decided by a deterministic 1-DTM in time $o(n^2)$

2 Time versus Space

For every $f(n) \ge n$,

a) DTIME $(f(n)) \subseteq$ DSPACE (f(n))

b) DSPACE $(f(n)) \subseteq$ DTIME $(2^{\mathcal{O}(f(n))})$.

Improving b): \mathcal{P} versus \mathcal{NP} . This section improves a). DTIME_k (f(n)) depends on the number k of heads; DSPACE_k (f(n)) does not.

2.1 Pebble Game: Time versus Space for Circuits

Fig. 2. a) An arithmetic circuit b) Pyramid graph P_m

Definition 2.1 (Pebble Game). Let G = (V, E) denote a directed acyclic graph (DAG) and $v \in V$. The goal of the game instance (V, E, v) is to eventually put a marker ('pebble') on v, by a sequence of moves subject to the following rules:

- Either remove a marker from some vertex $u \in V$
- Or put a marker onto a vertex u ∈ V, provided that all direct predecessors of u are presently marked.

We count the number of steps as well as the number of (reusable) markers employed.

Example 2.2 The DAG in Figure 2a) can be played

- a) with 5 markers in 17 steps
- b) but not with 4 markers.

For $m \in \mathbb{N}$, the pyramid graph P_m from Figure 2b) can be played

- c) with m + 1 markers
- d) but not with m markers

Lemma 2.3. Let (V, E) denote a DAG with indegree at most $\ell \in \mathbb{N}$ and m := |E| edges. Write $S_{\ell}(m)$ for the least number of markers sufficient to play every DAG of indegree $\leq \ell$ having $\leq m$ edges.

- a) There exists $U \subseteq V$ such that $F := E \cap (U \times U)$ has $m/2 \ell \leq |F| < m/2$ and $E \cap ((V \setminus U) \times U) = \emptyset$.
- b) It holds $S_{\ell}(m) \leq S_{\ell}(m/2 + \ell) + |F'|$ with the abbreviation $F' := E \cap (U \times (V \setminus U))$.
- c) It also holds $S_{\ell}(m) \leq S_{\ell}(m/2) + S_{\ell}(m/2 + \ell |F'|) + \ell$.
- d) It holds $S_{\ell}(m) \leq \max \left\{ S_{\ell}(m/2+\ell) + \frac{2m}{\log m}, S_{\ell}(m/2) + S_{\ell}(m/2+\ell-\frac{2m}{\log m}) + \ell \right\}$ and, for fixed $\ell, S_{\ell}(m) \leq \mathcal{O}(m/\log m).$
- e) (V, E) can be played with $\mathcal{O}(n/\log n)$ markers for n := |V| and ℓ considered fixed.

2.2 Pebble Strategies and Computation

We encode a DAG (V, E) as a list of vertices and edges, i.e. such that $N := |\langle V, E \rangle| = \Theta(n \cdot \log n + m \cdot \log n)$ where n := |V| and m := |E|.

- **Lemma 2.4.** a) A quadratically space-bounded DTM can, given $\langle V, E, v, s, t \rangle$, produce some play for (V, E, v) using $\leq s$ markers and $\leq 2^t$ steps, provided that such a play exists.
- b) Let \mathcal{M} denote a k-tape Turing machine and $\bar{x} \in \Sigma^n$ an input on which \mathcal{M} makes T steps. Subdivide this computation into $B \in \mathbb{N}$ phases of $\lceil T/B \rceil$ steps each; and subdivide \mathcal{M} 's tapes into B blocks of $\lceil T/B \rceil$ cells each.
 - i) In each phase and on each tape, \mathcal{M} visits at most 2 different blocks.
 - ii) The computation of $\mathcal{M}(\bar{x})$ in phase $\varphi = 1, \ldots, B$ depends on the contents of blocks last modified in at most $\ell := k + 1$ different previous phases.
- c) Choosing $B := [T^{1/3}]$, the computation of \mathcal{M} on \bar{x} can be simulated by a Turing machine using space $\mathcal{O}(T/\log T)$.

Theorem 2.5 (Hopcroft, Paul, Valiant 1977). Let $t(n) \ge n$ be constructible in space $t(n)/\log t(n)$. Then DTIME $(t(n)) \subseteq DSPACE(t(n)/\log t(n))$.

3 Simple Diagonalization: Hartmanis' Hierarchy Theorems

Example 3.1 The following language is not semi-decidable:

 $D := \{ \langle \mathcal{M} \rangle : DTM \mathcal{M} \text{ does not accept } \langle \mathcal{M} \rangle \} \subseteq \Sigma^*$

We consider DTMs over arbitrary finite alphabets.

Proposition 3.2. Fix $f : \mathbb{N} \to \mathbb{N}$ with $f(n) \ge 2n$.

a) It holds $T_f \notin \text{DTIME}(f(n))$, where

 $T_f := \{ \langle \mathcal{M} \rangle : DTM \mathcal{M} \text{ does not accept } \langle \mathcal{M} \rangle \text{ within } f(|\langle \mathcal{M} \rangle|) \text{ steps } \}$

b) It also holds $S_f \notin DSPACE(f(n))$ for the language

 $S_f := \{ \langle \mathcal{M} \rangle : DTM \mathcal{M} \text{ does not accept } \langle \mathcal{M} \rangle \text{ using } \leq f(|\langle \mathcal{M} \rangle|) \text{ tape cells } \}$

c) If f is computable in space $\mathcal{O}(f(n) \cdot \log n)$, then $S_f \in \text{DSPACE}(f(n) \cdot \log f(n))$.

d) If f is computable in time $\mathcal{O}(f(n)^3)$, then $T_f \in \text{DTIME}(f(n)^3)$.

Corollary 3.3. $\mathcal{P} \subsetneq \mathsf{EXP}, \mathcal{L} \subsetneq \mathsf{PSPACE}.$

Theorem 3.4 (Hartmanis et. al., Fürer, Trakhtenbrot).

a) Let $f(n) \in o(g(n))$ be computable in space $\mathcal{O}(f(n))$. Then DSPACE $(f(n)) \subsetneq$ DSPACE (g(n)).

b) Let $f(n) \in o(g(n))$ be computable in time $\mathcal{O}(f(n))$. Then DTIME $(f(n)) \subsetneq$ DTIME (g(n)).

c) There is a computable monotone function $f(n) \ge n$ such that DTIME (f(n)) =DTIME $(2^{f(n)})$.

4 Relativization and Priority/Injury-Diagonalization: Baker/Gill/Solovay and Friedberg/Muchnik

Example 4.1 a) The language

 $H := \{ \langle \mathcal{M}, x \rangle : DTM \ \mathcal{M} \ terminates \ on \ input \ x \}$

is i) semi-decidable but ii) not decidable. Moreover iii) every semi-decidable problem is many-one reducible to H.

b) H is trivially decidable by an ODTM with oracle H; and so is D. But w.r.t. any oracle O, the following language is not semi-decidable by an O-oracle machine:

$$D^O := \{\langle \mathcal{M}^? \rangle : ODTM \mathcal{M}^O \text{ does not accept } \langle \mathcal{M}^? \rangle\} \subseteq \Sigma$$

c) There is a countably infinite hierarchy \emptyset , H, $H^H =: H'$, $H^{H^H} =: H''$, ... of languages; each $H^{(j)}$ semidecidable, but not decidable, relative to $H^{(j-1)}$.

For complexity class \mathcal{C} and oracle O, generically understand \mathcal{C}^O to denote its relativization.

Scholium 4.2 For any oracle $O \subseteq \Sigma^*$, the following holds:

a) For increasing $f : \mathbb{N} \to \mathbb{N}$ O-computable in time and space $\mathcal{O}(f(n))$,

DTIME $(f(n)) \subseteq NTIME(f(n)) \subseteq DSPACE(f(n)) \subseteq DTIME(\mathcal{O}(2)^{\log n + f(n)})$

- b) If $f(n) \in o(g(n))$ is computable in space $\mathcal{O}(f(n))$, then DSPACE $(f(n)) \subsetneq$ DSPACE (g(n)). If $f(n) \in o(g(n))$ is computable in time $\mathcal{O}(f(n))$, then DTIME $(f(n)) \subsetneq$ DTIME (g(n)).
- c) If $s : \mathbb{N} \to \mathbb{N}$ with $s(n) \ge \log(n)$ is O-computable in space $\mathcal{O}(s(n))$, then $\mathrm{NSPACE}^O(s(n)) \subseteq \mathrm{DSPACE}^O(s(n)^2)$.
- d) For $s : \mathbb{N} \to \mathbb{N}$ with $s(n) \ge \log(n)$, it holds $\operatorname{NSPACE}^O(s(n)) = \operatorname{co} \operatorname{NSPACE}^O(s(n))$.
- e) $BPP^{O} \subseteq \Sigma_2 \mathcal{P}^{O} \cap \Pi_2 \mathcal{P}^{O}$.

In particular, $\mathcal{L}^{O} \subseteq \mathcal{NL}^{O} \subseteq \mathcal{P}^{O} \subseteq \mathcal{NP}^{O} \subseteq \mathsf{PSPACE}^{O} = \mathsf{NPSPACE}^{O} \subseteq \mathsf{EXP}^{O}$ and at least one inclusion is strict.

Theorem 4.3 (Baker, Gill, Solovay 1975).

- a) There exists $A \subseteq \{0,1\}^*$ such that $\mathcal{P}^A = \mathcal{N}\mathcal{P}^A$.
- b) There exists an oracle $B \subseteq \{0,1\}^*$ such that $\mathcal{P}^B \neq \mathcal{NP}^B$.

Theorem 4.4 (Friedberg 1957/Muchnik 1956). There exist semidecidable $A, B \subseteq \{0,1\}^*$ such that A is not decidable relative to B and B is not decidable relative to A.

5 Straight-Line Complexity

Definition 5.1 (Straight-Line Program). Let $S = (S, (c_i), (f_j))$ denote a structure with constants $c_i \in S$ and functions $f_j : S^{a_j} \to S$ of arities $a_j \in \mathbb{N}$. A Straight-Line Program P_S (over this structure and in variables X_1, \ldots, X_n) is a finite sequence of assignments $Z_k := c_i$ and $Z_k := X_\ell$ $(1 \le \ell \le n)$ and $Z_k := f_j(Z_{k_1}, \ldots, Z_{k_{a_j}}), 1 \le k_1, \ldots, k_{a_j} < k$. When assigned values $x_1, \ldots, x_n \in S$ to X_1, \ldots, X_n , the program computes (the set of results consisting of $(x_1, \ldots, x_n) =: \mathbf{x}$ and of) Z_1, \ldots, Z_K ; the final result is $Z_K =: P_S(\mathbf{x})$. However if some intermediate operation $f_j(Z_{k_1}, \ldots, Z_{k_{a_j}})$ is undefined, then so is $P_S(\mathbf{x}) := \bot$. A cost function C assigns to each f_j some cost $C(f_j) \ge 0$. The cost of a straight-line program P is the sum of the costs of the f_j occurring. The length of a straight-line program means its cost with respect to constant cost function $f_j \mapsto 1$.

Example 5.2 a) Let $S := (R, R, (+, \times))$ be a commutative ring and $p \in R[X]$ a polynomial. Horner's Scheme gives rise to a straight-line program computing $x \mapsto p(x)$ of length at most $2 \cdot \deg(p)$.

b) Consider the semi-group $S := (\mathbb{N}, (1), (+))$. Every $N \in \mathbb{N}$ can be computed by a straightline program over S of length at most $2 \cdot \lfloor \log_2 N \rfloor$. c) Consider the N-dimensional discrete Fourier-transform

$$\mathcal{F}_N: \mathbb{C}^N \ni (x_0, \dots, x_{N-1}) \mapsto \left(\sum_{\ell=0}^{N-1} \exp(2\pi i \cdot k \cdot \ell/N) \cdot x_\ell\right)_{k=0,\dots,N-1} \in \mathbb{C}^N$$

For $N = 2^n$, \mathcal{F}_N can be computed by a straight-line program over $(\mathbb{C}, (0), (+, \times_c : c \in \mathbb{S}^1))$ of length $\mathcal{O}(N \cdot \log N)$, where $\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$ denotes the complex unit circle and $\times_c : \mathbb{C} \to \mathbb{C}, z \mapsto c \cdot z$ unary complex multiplication by c.

- d) Let F denote a field and A an F-algebra. There is a straight-line program over $(\mathcal{A}, (), (+, \times_c : c \in F))$ which, for arbitrary but fixed distinct $x_1, \ldots, x_n \in F$ and on input of $y_1, \ldots, y_n \in \mathcal{A}$, calculates (the unique) $a_0, \ldots, a_{n-1} \in \mathcal{A}$ with $\sum_{k=0}^{n-1} a_k \cdot x_{\ell}^k = y_{\ell}$ for $\ell = 1, \ldots, n$.
- e) Consider an infinite field F, n + m variables $A_0, \ldots, A_{n-1}, B_0, \ldots, B_{m-1}$, and the algebra $\mathcal{A} = F[A_0, \ldots, B_{m-1}]$ with binary operations + and $\times : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ as well as unary $\times_c : \mathcal{A} \to \mathcal{A}$ ($c \in F$), that is the structure $(\mathcal{A}, F, (+, \times, \times_c : c \in F))$. The set $\{\sum_{i+j=\ell} A_i \cdot B_j : 0 \leq \ell \leq n+m-2\}$ can be calculated from A_0, \ldots, Y_{m-1} by a straight-line program using n + m 1 operations " \times " (and arbitrary many "+" and " \times_c ").

Straight-line programs as in b) are addition chains; c) refers to the fast Fourier transform.

5.1 Lower Bounds: Dimension, Volume, Transcendence Degree

- **Proposition 5.3.** a) Any straight-line program computing $N \in \mathbb{N}$ over $(\mathbb{N}, 1, (+, -))$ has length at least $\log_2 N$. In particular the straight-line program from Example 5.2b) is optimal up to a constant factor.
- b) For $S = (F, F, (+, -, \times))$ a field of characteristic 0 and $0 \neq p \in F[X]$, any straight-line program computing $x \mapsto p(x)$ over S contains at least $\log_2 \deg(p)$ multiplications.

Let F denote a field and F(X) the field of univariate rational functions. For coprime $p(X), q(X) \in F[X]$ define deg $(p(X)/q(X)) := \max \{ \deg(p), \deg(q) \}$.

- c) Every $r(X) \in F(X)$ can be calculated by a straight-line program over $(F, F, (+, \times, \div))$ of length at most $4 \deg(r) + 1$.
- d) Conversely, any straight-line program over $(F, F, (+, \times, \div))$ computing $r(X) \in F(X)$ has length at least $\log_2 \deg(r)$.

Theorem 5.4 (Dimension Bound). Let $F \subseteq E$ denote fields and consider x_1, \ldots, x_n , $y_1, \ldots, y_m \in E$ and the induced F-vector spaces $X := \{\lambda_1 x_1 + \cdots + \lambda_n x_n : \lambda_i \in F\}$ and $Y := \{\mu_1 y_1 + \cdots + \mu_m y_m : \mu_j \in F\}$. Moreover consider the structure $S = (E, F, (+, -, \times, \times_{\lambda} : \lambda \in F))$ where $\times : E \times E \to E$ and $\times_{\lambda} : E \to E$, $e \mapsto \lambda \cdot e$.

- a) Any straight-line program over S computing $\{y_1, \ldots, y_m\}$ from (x_1, \ldots, x_n) contains at least dim_F $(X + Y + F) \dim_F(X + F)$ multiplications " \times ".
- b) The straight-line program from Example 5.2e) is optimal.

Theorem 5.5 (Morgenstern's Volume Bound). Fix C > 0 and consider a straightline program P over the structure $(\mathbb{C}, \mathbb{C}, (+, \times_{\lambda} : |\lambda| \le C))$ in n variables.

- a) Each 'line' ℓ of P computes an affine linear function $\varphi_{\ell} : \mathbb{C}^n \to \mathbb{C}$; and P computes an affine linear map $\Phi_P : \mathbb{C}^n \ni \mathbf{x} \mapsto A_P \cdot \mathbf{x} + \mathbf{b} \in \mathbb{C}^{n+|P|}$, where |P| denotes the length of P and the first n components are the identity.
- b) For $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{C}^n$ with $m \ge n$ write

$$\Delta(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m) := \max\left\{ |\det(\boldsymbol{a}_{j_1},\ldots,\boldsymbol{a}_{j_n})| : 1 \le j_1,\ldots,j_n \le m \right\}$$

Then, for $1 \leq k, \ell \leq m$ and $\lambda \in \mathbb{C}$, it holds $\Delta(\mathbf{a}_1, \ldots, \mathbf{a}_m, \lambda \cdot \mathbf{a}_k) \leq |\lambda| \Delta(\mathbf{a}_1, \ldots, \mathbf{a}_m)$ and $\Delta(\mathbf{a}_1, \ldots, \mathbf{a}_m, \mathbf{a}_k + \mathbf{a}_\ell) \leq 2\Delta(\mathbf{a}_1, \ldots, \mathbf{a}_m)$.

- c) The homogeneous linear map $A_P : \mathbb{C}^n \to \mathbb{C}^{n+|P|}$ from a) satisfies $\Delta(A_P) \leq (2C)^{|P|}$.
- d) The matrix $\left(\exp(2\pi i \cdot k \cdot \ell/n)\right)_{0 \le k, \ell \le n}$ has determinant of absolute value $n^{n/2}$.
- e) The straight-line program from Example 5.2c) is asymptotically optimal.

Theorem 5.6 (Transcendence Degree Bound, Motzkin+Belaga). Let $F \subseteq E$ denote fields of characteristic 0 and $\mathcal{F} \subseteq E(\mathbf{X})$ a finite set of rational functions in indeterminates $(X_1, \ldots, X_n) = \mathbf{X}$. For $p_j, q_j \in E[\mathbf{X}]$ coprime over F and q_j monic, define $\operatorname{Coeff}_F(p_1/q_1, \ldots, p_m/q_m)$ as the field over F generated by the coefficients from p_1, \ldots, q_m .

- a) Coeff_F(\mathcal{F}) is well-defined and coincides with $F(\{f(\boldsymbol{x}) : \boldsymbol{x} \in F^n, f \in \mathcal{F}\})$.
- b) For $a_j, b_j, c_j, w_j \in E[\mathbf{X}]$ with $b_j \neq 0$, Coeff $_F(w_j + c_j \cdot a_j/b_j : j) \subseteq \text{Coeff}_F(w_j, c_j, a_j, b_j : j)$.
- c) Consider the structure $S' = (E, F, (E, +, \times, \div))$. Any straight-line program computing \mathcal{F} over S' contains at least trdeg_F (Coeff_F(\mathcal{F})) constants from E.
- d) Consider a straight-line program P over $S := (E, E, (+, \times, \div))$ computing (intermediate) results f_1, \ldots, f_N .
 - i) There exist $0 \neq b_j, a_j \in E[\mathbf{X}], c_j \in E$ $(j=1,\ldots,N)$ such that $f_j = c_j \cdot a_j/b_j$ and $\operatorname{trdeg}_F(\operatorname{Coeff}_F(a_1,\ldots,b_N))$ is at most the number of additions in P.
 - ii) There exist $0 \neq v_j, u_j \in E[\mathbf{X}], w_j \in E$ $(j=1,\ldots,N)$ such that $f_j = w_j + u_j/v_j$ and $\operatorname{trdeg}_F\left(\operatorname{Coeff}_F(u_1,\ldots,v_N)\right)$ is at most twice P's number of multiplications/divisions.
- e) Any straight-line program computing \mathcal{F} over \mathcal{S} contains at least $\operatorname{trdeg}_F(\operatorname{Coeff}_F(\mathcal{F})) |\mathcal{F}|$ additions and $(\operatorname{trdeg}_F(\operatorname{Coeff}_F(\mathcal{F})) |\mathcal{F}|)/2$ multiplications.

5.2 Some Surprisingly Efficient Algorithms: Preconditioning, Baur-Strassen, Multipoint Evaluation

Proposition 5.7 (Horner is not optimal with preconditioning).

Let E denote a field and $f = \sum_{j=0}^{n} \alpha_j X^j \in E[X]$ a polynomial of degree n.

- a) Suppose $f = (X^2 \xi) \cdot f_1(X) + \eta \in E[X]$ with $\xi, \eta \in E$. Then f can be calculated from $X, X^2, \xi, \eta, f_1(X)$ (the latter of degree n 2) using 1 multiplication and 2 additions/subtractions.
- b) Suppose that $h := \sum_{2\ell+1 \le n} \alpha_{2\ell+1} X^{\ell}$ is either constant or a product of linear factors in E[X]. Then there is a straight-line program computing f in E[X] from X and X^2 and some elements from E using at most $\lfloor n/2 \rfloor + 2$ multiplications and n additions/subtractions.

c) Suppose E is algebraically closed (or real closed). Then there is a straight-line program computing f in E[X] from X and some elements of E using at most $\lfloor n/2 \rfloor + 3$ multiplications and n + 1 additions/subtractions; and for $\alpha_0, \ldots, \alpha_n$ algebraically independent, this is optimal up to an additive constant.

Theorem 5.8 (Baur-Strassen). Fix a field F of characteristic $0, 0, 1 \in C \subseteq F$, and let P denote a straight-line program in n variables over $S = (F, C, (+, -, \times, \div))$ computing $f \in F(X_1, \ldots, X_n)$.

Then there exists a straight-line program P' in n variables over S of length $|P'| \leq 5 \cdot |P|$ simultaneously computing all $f, \partial_1 f, \ldots, \partial_n f$.

Theorem 5.9 (Multipoint Evaluation). Let $S = (\mathbb{C}, \mathbb{S}^1, (+, \times, \div))$.

- a) Let \mathbb{F} denote a field of characteristic 0 and $\bar{u}, \bar{v} \in \mathbb{F}[X]$ such that $\bar{u} \cdot \bar{v} \equiv 1 \mod X^n$. Then $\bar{u} \cdot (2\bar{v} - \bar{u} \cdot \bar{v}2) \equiv 1 \mod X^{2n}$.
- b) There is a straight-line program over \mathcal{S} of length $\mathcal{O}(n \cdot \log n)$ which, given $u_0, u_1, \ldots, u_{n-1} \in \mathbb{C}$ with $u_0 \neq 0$, calculates the unique $v_0, \ldots, v_{n-1} \in \mathbb{C}$ such that $(\sum_{k=0}^{n-1} u_k X^k) \cdot (\sum_{k=0}^{n-1} v_k X^k) \equiv 1 \mod X^n$.
- c) Let $n \ge m$. There is a straight-line program over S of length $\mathcal{O}(n \cdot \log n)$ which, given $a_0, \ldots, a_n \in \mathbb{C}$ and $b_0, \ldots, b_m \in \mathbb{C}$ with $b_m \ne 0$, calculates the unique $q_0, \ldots, q_{n-m} \in \mathbb{C}$ and $r_0, \ldots, r_{m-1} \in \mathbb{C}$ such that

$$\sum_{k=0}^{n} a_k X^k = \left(\sum_{k=0}^{m} b_k X^k\right) \cdot \left(\sum_{k=0}^{n-m} q_k X^k\right) + \left(\sum_{k=0}^{m-1} r_k X^k\right)$$

d) There is a straight-line program over S of length $\mathcal{O}(n \cdot \log^2 n)$ which, given $a_0, \ldots, a_{n-1} \in \mathbb{C}$ and $x_1, \ldots, x_n \in \mathbb{C}$, simultaneously calculates all $\sum_{k=0}^{n-1} a_k x_{\ell}^k$, $1 \leq \ell \leq n$.

5.3 Matrix Multiplication and Tensor Rank

Example 5.10 (Strassen) Let $S = (R, (0, 1), (+, \times))$ denote a ring.

a) For $A = (A_{ij}), B = (B_{ij}) \in \mathbb{R}^{2 \times 2}$ it holds $A \cdot B = C$ where

$$C_{11} = M_1 + M_4 - M_5 + M_7, \qquad C_{12} = M_3 + M_5,$$

$$C_{21} = M_2 + M_4, \qquad C_{22} = M_1 - M_2 + M_3 + M_6$$

$$M_1 := (A_{12} + A_{22}) \cdot (B_{11} + B_{22}), \qquad M_2 := (A_{21} + A_{22}) \cdot B_{11},$$

$$M_3 := A_{11} \cdot (B_{12} - B_{21}), \qquad M_4 := A_{22} \cdot (B_{21} - B_{11}), \qquad M_5 := (A_{11} + A_{12}) \cdot B_{22},$$

$$M_6 := (A_{21} - A_{11}) \cdot (B_{11} + B_{12}), \qquad M_7 := (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

- b) Since $R' := R^{n \times n}$ is itself a ring, two matrices over $R^{2n \times 2n}$ can be multiplied using 7 multiplications and a constant number of additions of $n \times n$ -matrices.
- c) $N \times N$ matrix multiplication over R can be performed by a straight-line program over S of length $\mathcal{O}(n^{\log_2 7}) \leq \mathcal{O}(n^{2.81})$.

Example 5.11 (Matrix Rank and Tensors) Fix a field \mathbb{F} of characteristic 0.

a) For finite-dimensional \mathbb{F} -vectors spaces X and Y and a linear map $T: X \to Y$, it holds

$$\operatorname{rank}(T) = \min\left\{r \in \mathbb{N} \mid \exists \boldsymbol{a}_1, \dots, \boldsymbol{a}_r \in X \exists \boldsymbol{b}_1, \dots, \boldsymbol{b}_r \in Y : T = \sum_{j=1}^r \boldsymbol{b}_j \cdot \boldsymbol{a}_j^{\dagger}\right\}$$

- b) Consider $N, M, K \in \mathbb{N}$ and, for $\boldsymbol{a} \in \mathbb{F}^N, \boldsymbol{b} \in \mathbb{F}^M, \boldsymbol{c} \in \mathbb{F}^K$, the $(N \times M \times K)$ -hypermatrix $T = (t_{n,m,k})_{1 \leq n \leq N, 1 \leq m \leq M, 1 \leq k \leq K}$ with $t_{n,m,k} := a_n \cdot b_m \cdot c_k$.
- c) Fix finite-dimensional \mathbb{F} -vector spaces X, Y, Z with respective bases $(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_N), (\boldsymbol{y}_1, \ldots, \boldsymbol{y}_M),$ and $(\boldsymbol{z}_1, \ldots, \boldsymbol{z}_K)$ and algebraic duals X^*, Y^*, Z^* . A $(N \times M \times K)$ -hypermatrix $T \in \mathbb{F}^{N \times M \times K}$ gives rise to a bilinear map $T : X^* \times Y^* \to Z$ via

$$X^* \times Y^* \ni (\boldsymbol{x}^*, \boldsymbol{y}^*) \mapsto \sum_{n=1}^N \sum_{m=1}^M \sum_{k=1}^K t_{n,m,k} \cdot \boldsymbol{x}^*[\boldsymbol{x}_n] \cdot \boldsymbol{y}^*[\boldsymbol{y}_m] \cdot \boldsymbol{z}_k \quad .$$

And, conversely, any bilinear map $T: X^* \times Y^* \to Z$ has a representation (w.r.t. fixed bases) as a $N \times M \times K$ -hypermatrix.

Definition 5.12 (Tensor Rank). Fix a field \mathbb{F} of characteristic 0 and finite-dimensional *F*-vectorspaces X, Y, Z with algebraic duals X^*, Y^*, Z^* . A tensor is a bilinear map from $X^* \times Y^*$ to Z. A simple tensor is of the form

$$\boldsymbol{x} \otimes \boldsymbol{y} \otimes \boldsymbol{z} : X^* \times Y^* \ni (\boldsymbol{u}^*, \boldsymbol{v}^*) \mapsto \boldsymbol{u}^*[\boldsymbol{x}] \cdot \boldsymbol{v}^*[\boldsymbol{y}] \cdot \boldsymbol{z}, \qquad \boldsymbol{x} \in X, \boldsymbol{y} \in Y, \boldsymbol{z} \in Z$$

and has rank ≤ 1 ; rank = 0 iff $(\boldsymbol{x}, \boldsymbol{y}) = 0$ or $\boldsymbol{z} = 0$. We denote by $X \otimes Y \otimes Z$ the set of tensors $T : X^* \times Y^* \to Z$. The rank of such a T is the least $r \in \mathbb{N}$ such that T can be written as the sum of r simple tensors.

Lemma 5.13. a) Each trilinear functional $\hat{T} : X^* \times Y^* \times Z^* \to \mathbb{F}$ corresponds to a unique tensor $T : X^* \times Y^* \to Z$ and vice versa. (In the sequel we tacitly identify \hat{T} with $T \dots$) b) $T \in X \otimes Y \otimes Z$ has the same rank as

$$T' \in Y \otimes Z \otimes X, \quad (\boldsymbol{y}^*, \boldsymbol{z}^*) \mapsto (X^* \ni \boldsymbol{x}^* \mapsto \boldsymbol{z}^*[T(\boldsymbol{x}^*, \boldsymbol{y}^*)] \in F) \in X$$

c) Each $T \in X \otimes Y \otimes Z$ has rank $(T) \leq \dim(X) \dim(Y)$ and rank $(T) \geq \dim \operatorname{range}(T)$.

d) For $X^* := Y^* := Z := \mathbb{F}^{n \times n}$, the tensor of $n \times n$ -matrix multiplication

$$\mathcal{M}_n: X \times Y \to Z, \quad (A, B) \mapsto A \cdot B$$

has rank(\mathcal{M}_2) ≤ 7 and rank(\mathcal{M}_{2n}) $\leq 7 \cdot \operatorname{rank}(\mathcal{M}_n)$, hence rank(\mathcal{M}_n) $\leq n^{\lceil \log_2 7 \rceil}$. e) Let $T \in X \otimes Y \otimes Z$ and $S \in X' \otimes Y' \otimes Z'$. Then

$$T \oplus S : (X \oplus X') \times (Y \oplus Y') \to Z \oplus Z', \quad ((\boldsymbol{x}^*, \boldsymbol{x}'^*), (\boldsymbol{y}^*, \boldsymbol{y}'^*)) \mapsto T(\boldsymbol{x}^*, \boldsymbol{y}^*) \oplus S(\boldsymbol{x}'^*, \boldsymbol{y}'^*),$$

$$T \otimes S : (X \otimes X') \times (Y \otimes Y') \to Z \otimes Z', \quad ((\boldsymbol{x}^* \otimes \boldsymbol{x}'^*), (\boldsymbol{y}^* \otimes \boldsymbol{y}'^*)) \mapsto T(\boldsymbol{x}^*, \boldsymbol{y}^*) \otimes S(\boldsymbol{x}'^*, \boldsymbol{y}'^*)$$

have
$$\operatorname{rank}(T \oplus S) \leq \operatorname{rank}(T) + \operatorname{rank}(S)$$
 and $\operatorname{rank}(T \otimes S) \leq \operatorname{rank}(T) \cdot \operatorname{rank}(S)$.

Theorem 5.14 (Exponent of Matrix Multiplication). Fix a field F of characteristic 0 and $\omega \ge 2$ as well as the structure $S = (F, F, (+, \times))$. The following are equivalent:

- i) To every $\epsilon > 0$ there exists a family P_n of straight-line programs over S of length $\mathcal{O}(n^{\omega+\epsilon})$ which, given $A, B \in F^{n \times n}$, calculate $A \cdot B$.
- ii) To every $\epsilon > 0$, it holds rank $(\mathcal{M}_n) \leq \mathcal{O}(n^{\omega + \epsilon})$.

6 Branching Complexity

Definition 6.1. Let $S = (S, (c_i), (f_j), (P_k))$ denote a structure with relations $P_k :\subseteq S^{b_k}$ or arities $b_k \in \mathbb{N}$.

- a) A Branching Tree T_S (over this structure and in variables X₁,...,X_n) is basically a straight-line program with the additional capability to branch based on whether a predicate P_k, applied to previously calculated results, holds or not. More formally, it is a rooted binary tree whose outdegree-1 nodes u ∈ T_S are each labelled with either a variable, a constant c_i from S, or with a function f_j applied to results from a_j outdegree-1 predecessor nodes of u; and each outdegree-2 node is labelled with a predicate P_k applied to b_k degree-1 predecessor nodes. Each leaf (=outdegree-0 node) is labelled either with some symbol σ ∈ Σ or with some finite tuple of degree-1 predecessor nodes.
- b) When assigned values $x_1, \ldots, x_n \in S$ to X_1, \ldots, X_n the tree calculates, starting from the root, in outdegree-1 nodes intermediate results; and in outdegree-2 nodes branches according to whether the predicate holds. T_S accepts input $\mathbf{x} \in S^n$ if this process ends in a leaf labelled $\mathbf{+} \in \Sigma$; it rejects if the leaf is labelled $\mathbf{-} \in \Sigma$; otherwise it computes the specified (tuple of intermediate) value(s).
- c) The size of a branching tree is its total number of nodes; similarly for the depth.

Example 6.2 (Sorting) Consider some totally ordered set S and the structure S = (S, (), (), (<)). We say that a branching tree over S on n variables sorts if it computes some function $(f_1, \ldots, f_n) = \overline{f} : S^n \to S^n$ such that, for every $\overline{x} = (x_1, \ldots, x_n) \in S^n$,

$$f_1(\bar{x}) \le f_2(\bar{x}) \le \dots \le f_n(\bar{x}) \text{ and } \forall y \in S : \#\{j : x_j = y\} = \#\{j : f_j(x_1, \dots, x_n) = y\}$$
(1)

- a) For each $n \in \mathbb{N}$, both Bubble Sort and Quicksort give rise to branching trees over S in n variables of depth $\mathcal{O}(n^2)$.
- b) Heap Sort gives rise to a branching tree over S in n variables of depth $O(n \cdot \log n)$.
- c) If $|S| \ge n$, then any branching tree over S in n variables has at least n! different leaves. In particular, Heap Sort is asymptotically optimal.

6.1 Hyperplane Arrangements and Combinatorial Convex Geometry

Definition 6.3. *Fix* $d \in \mathbb{N}$ *.*

a) A set $X \subseteq \mathbb{R}^d$ is convex if

$$\forall \boldsymbol{x}, \boldsymbol{y} \in X: \ \lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y} \in X \tag{2}$$

holds for every $0 \le \lambda \le 1$. X is affine if Equation (2) holds for every $\lambda \in \mathbb{R}$; equivalently: $X \ne \emptyset$ and $X - \mathbf{y} := \{\mathbf{x} - \mathbf{y} : \mathbf{x} \in X\}$ is a vector space for some/every $\mathbf{y} \in X$.

b) We call $h \in \mathbb{S}^d = \{ y \in \mathbb{R}^{d+1} : ||y|| = 1 \}$ an oriented hyperplane. Its open halfspace $H_{<h}$ is the set $\{ x \in \mathbb{R}^d : \sum_j x_j \cdot h_j < h_0 \}$; the topological closure $H_{\leq h} := \overline{H_{<h}}$ its closed halfspace. Finally write $H_{=h} := H_{\leq h} \cap H_{\leq -h}$ for its affine hyperplane.

- c) The dimension of $X \subseteq \mathbb{R}^d$, dim(X), is the affine dimension of ahull $(X) := \{\lambda \cdot \boldsymbol{x} + (1 \lambda) \cdot \boldsymbol{y} : \boldsymbol{x}, \boldsymbol{y} \in X, \lambda \in \mathbb{R}\}$; dim $(\emptyset) := -\infty$. A (convex) polytope $P \subseteq \mathbb{R}^d$ is the finite intersection of finitely many open/closed halfspaces.
- d) The membership problem associated with a finite family \mathcal{H} of affine hyperplanes in \mathbb{R}^d is the question of whether a given $\boldsymbol{x} \in \mathbb{R}^d$ belongs to $\bigcup \mathcal{H}$ or not.
- e) For $\mathbf{h} \in \mathbb{S}^d$ and $\mathbf{x} \in \mathbb{R}^d$, write $\operatorname{sgn}(x, \mathbf{h}) := \operatorname{sgn}(\sum_j x_j \cdot h_j h_0) \in \{+, 0, -\}.$
- f) The point location problem associated with a finite family $\mathcal{H} = \{\mathbf{h}^{(1)}, \dots, \mathbf{h}^{(n)}\}$ of oriented hyperplanes is the function

$$\mathbb{R}^d \ni \boldsymbol{x} \mapsto \operatorname{sgn}(\boldsymbol{x}, \mathcal{H}) := \left(\operatorname{sgn}(x, \boldsymbol{h}^{(k)})\right)_{1 \le k \le n} \in \{+, 0, -\}^n$$
.

g) A face of \mathcal{H} is a subset of \mathbb{R}^d of the form

$$\mathcal{H}(\bar{\sigma}) := \left\{ \boldsymbol{x} \in \mathbb{R}^d : \operatorname{sgn}(\boldsymbol{x}, \mathcal{H}) = \bar{\sigma} \right\}, \qquad \bar{\sigma} \in \{+, 0, -\}^n$$

A face of dimension 0 is called a vertex; an edge is a face of dimension 1; a face of dimension d is a cell; a facet is a face of dimension d - 1; a face of dimension d - 2 is called ridge.

Fig. 3. An arrangement of 4 lines in the plane inducing 6 intersections (=vertices), 16 line segments (=edges=ridges=facets), and 11 cells.

Lemma 6.4. Fix a finite family \mathcal{H} of n oriented hyperplanes in \mathbb{R}^d .

- a) Each face of \mathcal{H} is a polytope.
- b) Each vertex of \mathcal{H} is determined by (at least) d hyperplanes. In particular, \mathcal{H} has at most $\binom{n}{d}$ vertices.
- c) For an arrangement of n hyperplanes in dimension d, the number of k-dimensional faces is at most $\sum_{j=0}^{k} {d-j \choose k-j} \cdot {n \choose d-j}$
- d) and these numbers are attained by almost every arrangement.

Example 6.5 For $2 < N \in \mathbb{N}$, the following 2D arrangement has a cell with N facets:

$$\boldsymbol{h}_n := (1, \cos\frac{2\pi n}{N}, \sin\frac{2\pi n}{N})/\sqrt{2}, \quad 0 \le n < N$$

6.2 Linear Branching Trees

Definition 6.6. A Linear Branching Tree for dimension $d \in \mathbb{N}$ is a branching tree over the structure $S := (\mathbb{R}^d, (), (), (H_{=h}, H_{< h} : h \in \mathbb{S}^d)).$

Example 6.7 To each n-element family \mathcal{H} of oriented hyperplanes in \mathbb{R}^d , there exists a Linear Branching Tree of depth $\mathcal{O}(n)$ deciding the membership problem associated with \mathcal{H} .

Lemma 6.8. Let T denote a linear branching tree for dimension d and v a vertex of T. Write T(v) for the set of inputs $x \in \mathbb{R}^d$ which, according to the semantics of Definition 6.1b), passes through v.

- a) T(v) is a polytope. Each facet corresponds to an oriented hyperplanes queried by T on the path from the root up to v.
- b) For the leaves v_1, \ldots, v_N of T, $(T(v_j))_{j=1,\ldots,N}$ constitutes a partition of \mathbb{R}^d .
- c) For any linear branching tree T over S solving membership to \mathcal{H} , and for each leaf v of T, T(v) is either a subset of some $H_{=h}$ with $h \in H$ or of $\mathcal{H}(\bar{\sigma})$ for some $\bar{\sigma} \in \{+, -\}^{\mathcal{H}}$.

Theorem 6.9 (Ukkonen'83, Dobkin/Lipton'74, Meiser'93).

Fix an n-element family \mathcal{H} of oriented hyperplanes in dimension d.

- a) Suppose \mathcal{H} has N distinct cells. Then any linear branching tree over \mathcal{S} deciding membership to \mathcal{H} has depth at least log N.
- b) Let $\mathcal{H}(\bar{\sigma})$ denote a cell having *m* facets. Then any linear branching tree over $(\mathbb{R}^d, (), (), (H_{=\mathbf{h}}, H_{<\mathbf{h}} : \mathbf{h} \in \mathcal{H}))$ deciding membership to \mathcal{H} has depth at least *m*.
- c) There exists a linear branching tree over S of depth $\mathcal{O}(\log n)$ solving the point location problem for \mathcal{H} .
- d) There exists a linear branching tree over S of depth $\mathcal{O}(d^5 \log n)$ solving the point location problem for \mathcal{H} .

References

- 1. M. LI, P. VITÁNYI: "An Introduction to Kolmogorov Complexity and its Applications", Springer
- F. MEYER AUF DER HEIDE: "Skript zu Komplexitätstheorie II", http://www.upb.de/cs/ag-madh/vorl/KomplexII99 (1999)
- 3. C. PAPADIMITRIOU: "Computational Complexity", Addison-Wesley (1995).
- 4. K.R. REISCHUK: "Komplexitätstheorie", Teubner (1999)
- 5. U. SCHÖNING, R. PRUIM: "Gems of Theoretical Computer Science", Springer (1998).
- 6. P. BÜRGISSER, M. CLAUSEN, A. SHOKROLLAHI: "Algebraic Complexity Theory", Springer (1997).
- 7. H. EDELSBRUNNER: "Algorithms in Combinatorial Geometry", Springer EATCS Monographs vol.10 (1987).