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Abstract. Classical computational complexity theory (last semester) has resulted in a rich variety
of classes naturally capturing many practical computational problems. We also have established
several relations between these classes; but not a single non-trivial lower bound (other than, e.g.
Time(n) > n and Space(n) > logn) was obtained. The topics of this lecture describe several (more
or less successful) approaches to remedy this situation.
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1 Algorithmic Information Theory and Applications

0101010101010101 vs. 1011001011111001 Here X' :={0,1}.

Definition 1.1. Fiz a universal Turing machine U over alphabet X
and let, for # € X*, Ky(z) := min {|{(M, y)| : U((M),7) = z}.

Lemma 1.2 (Kolmogorov Complexity).

a) There exists ¢ € N such that, for every x € X*, Ky(z) < c+ |z|.
b) To UTMV there exists ¢ € N such that every & € X* has Ky (z) < ¢+ Ky ()
c) To every n, there exists T € X" with Ky (z) > n.

Strings = with K (z) ~ |z| are considered incompressible.

1.1 A Lower Bound for 1-Tape Turing Machines

Definition 1.3 (Crossing Sequence). Let M = (Q, X, I',§) denote a deterministic 1-
tape Turing machine (1-DTM) €X*, and s € Ny. Then CSx(Z,s) denotes the finite or
infinite sequence (q;) of states M is in when moving from tape cell #s-1 to #s or back.
We write | CSp(, s)| for its length.
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Fig. 1. a) Example of a Crossing Sequence b) Combining two computations with identical crossing sequences

Lemma 1.4 (Pumping). Let M as above.

a) Suppose both uv and yz are accepted by M and satisfy CSy(uv, |u|) = CSm(yZ, |y])-
Then M accepts also uz and yv.

b) Timem (Z) =D oo, | CSM(Z, 5)].
In particular, to every finite S C Ny, there exists s € S with | CSy(Z, s)| < Timen (7)/]5)].

c) Suppose M decides L := {i 0l z:z e E*}. Then, form < s < 2m and x,y € L™
with T # 1, it holds CSp (20, s) # CSpm(y0™y, s).

d) There is ¢ € N such that every & € X™ has Ky (z) < ¢+ c- Timey (20™Z) /m+logy(m).



Theorem 1.5. The language L from Lemma 1.4c)

a) can be decided by a deterministic 2-DTM in time O(n)
b) can be decided by a deterministic 1-DTM in time O(n?)
c¢) cannot be decided by a deterministic 1-DTM in time o(n?)

2 Time versus Space

For every f(n) > n,

a) DTIME (f(n)) € DSPACE (f(n))
b) DSPACE (f(n)) € DTIME (20U ().

Improving b): P versus N'P. This section improves a).
DTIME; (f(n)) depends on the number k of heads; DSPACE, (f(n)) does not.

2.1 Pebble Game: Time versus Space for Circuits
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Fig. 2. a) An arithmetic circuit b) Pyramid graph P,

Definition 2.1 (Pebble Game). Let G = (V, E) denote a directed acyclic graph (DAG)
andv € V. The goal of the game instance (V, E,v) is to eventually put a marker (‘pebble’)
on v, by a sequence of moves subject to the following rules:

e Fither remove a marker from some vertex u € V
e Or put a marker onto a vertexu € V,
provided that all direct predecessors of u are presently marked.

We count the number of steps as well as the number of (reusable) markers employed.



Example 2.2 The DAG in Figure 2a) can be played

a) with 5 markers in 17 steps
b) but not with 4 markers.

For m € N, the pyramid graph P,, from Figure 2b) can be played

c) with m + 1 markers
d) but not with m markers O

Lemma 2.3. Let (V, E) denote a DAG with indegree at most { € N and m := |E| edges.
Write Se(m) for the least number of markers sufficient to play every DAG of indegree < ¢
having < m edges.

a) There exists U C V such that F == EN (U x U) has m/2 —{ < |F| < m/2 and
En((V\U)xU) =

b) It holds S¢(m) < Sy (m/2 + 0) + |F'| with the abbreviation F' := EN (U x (V\U)).

¢) It also holds Se(m) < Sy(m/2) + Sg(m/Q +0—|F'|) +¢.

d) It holds Sy(m) < max {S¢(m/2+ () + Se(m/2) + Se(m/2+ € — 22) + L} and, for
fized £, Sp(m) < O(m/logm).

e) (V, E) can be played with O(n/logn) markers for n := |V| and { considered fized.

logm’

2.2 Pebble Strategies and Computation

We encode a DAG (V, E) as a list of vertices and edges, i.e. such that N := [(V, E)| =
O(n -logn + m -logn) where n := |V| and m := |E|.

Lemma 2.4. a) A quadratically space-bounded DTM can, given (V,E, v,s,t), produce
some play for (V, E,v) using < s markers and < 2 steps, provided that such a play
exists.

b) Let M denote a k-tape Turing machine and £ € X™ an input on which M makes T
steps. Subdivide this computation into B € N phases of [T/ B] steps each; and subdivide
M’s tapes into B blocks of [T/B] cells each.

i) In each phase and on each tape, M wvisits at most 2 different blocks.
it) The computation of M(Z) in phase ¢ = 1,..., B depends on the contents of blocks
last modified in at most £ := k + 1 different previous phases.

¢) Choosing B = [T'3], the computation of M on T can be simulated by a Turing
machine using space O(T/logT).

Theorem 2.5 (Hopcroft, Paul, Valiant 1977). Let t(n) > n be constructible in space
t(n)/logt(n). Then DTIME (t(n )) C DSPACE (t(n)/logt(n)).



3 Simple Diagonalization: Hartmanis’ Hierarchy Theorems
Example 3.1 The following language is not semi-decidable:
D = {(M):DTM M does not accept (M )} C X*

We consider DTMs over arbitrary finite alphabets.
Proposition 3.2. Fiz f: N — N with f(n) > 2n.
a) It holds Ty ¢ DTIME (f(n)), where

Ty = {(M): DTM M does not accept (M) within f(|(M)|) steps }
b) It also holds Sy & DSPACE (f(n)) for the language

Sy == {(M): DTM M does not accept (M) using < f(|[(M)]) tape cells }

¢) If f is computable in space O(f(n)-logn), then Sy € DSPACE (f(n) -log f(n)).
d) If f is computable in time O(f(n)?), then Ty € DTIME (f(n)?).

Corollary 3.3. P C EXP, L C PSPACE.

Theorem 3.4 (Hartmanis et. al., Fiirer, Trakhtenbrot).

a) Let f(n) € o(g(n)) be computable in space O(f(n)). Then DSPACE (f(n)) € DSPACE (g(n)).
b) Let f(n) € o(g(n)) be computable in time O(f(n)). Then DTIME (f(n)) € DTIME (g(n)).
¢) There is a computable monotone function f(n) > n such that DTIME ( f(n)) = DTIME (2/®).

4 Relativization and Priority/Injury-Diagonalization:
Baker/Gill/Solovay and Friedberg/Muchnik

Example 4.1 a) The language
H = {(M,x): DTM M terminates on input x}

is i) semi-decidable but i) not decidable. Moreover iii) every semi-decidable problem
1s many-one reducible to H.

b) H is trivially decidable by an ODTM with oracle H; and so is D. But w.r.t. any oracle
O, the following language is not semi-decidable by an O-oracle machine:

DO = {(M"):ODTM M does not accept (M)} C X*

c¢) There is a countably infinite hierarchy (), H, H =: H',HH" = H" ... of languages;
each HY) semidecidable, but not decidable, relative to HU=.

For complexity class C and oracle O, generically understand C° to denote its relativization.



Scholium 4.2 For any oracle O C X*, the following holds:

a) For increasing f : N — N O-computable in time and space O(f(n)),
DTIME (f(n)) € NTIME(f(n)) C DSPACE(f(n)) C DTIME(O(2)"s"/M)

DSPACE (g(n)).

b) If f(n) € o(g(n)) is computable in space O(f(n)), then DSPACE (f
n TIME (g(n)).

If f(n) € o(g(n)) is computable in time O(f(n)), then DTIME ( f(
¢) If s : N = N with s(n) > log(n) is O-computable in space O(s(n)),
then NSPACE? (s(n)) C DSPACE? (s(n)?).
d) For s : N — N with s(n) > log(n), it holds NSPACE? (s(n)) = coNSPACE? (s(n)).
e) BPP® C X,PO N IT,PO.

n)g
)) €D

In particular, £LO C NLP C PO C N'PY C PSPACE? = NPSPACE® C EXP®
and at least one inclusion is strict.

Theorem 4.3 (Baker, Gill, Solovay 1975).

a) There exists A C {0,1}* such that P4 = NP4,
b) There exists an oracle B C {0,1}* such that PP # N'PP.

Theorem 4.4 (Friedberg 1957/Muchnik 1956). There exist semidecidable A, B C
{0,1}* such that A is not decidable relative to B and B is not decidable relative to A.

5 Straight-Line Complexity

Definition 5.1 (Straight-Line Program). Let S = (S, (c;),(f;)) denote a structure
with constants ¢; € S and functions f; : S% — S of arities a; € N. A Straight-Line Pro-
gram Ps (over this structure and in variables Xi,..., X, ) is a finite sequence of assign-
ments Zy = ¢; and Zy := Xy (1 <0 <n) and Z) = fj(Zkl,...,Zkaj), 1<k, ... ke <k.
When assigned values x1, ..., x, € S to X1, ..., X,, the program computes (the set of results
consisting of (x1,...,x,) =: ® and of) Zy,..., Zx; the final result is Zx =: Ps(x). How-
ever if some intermediate operation fi(Zy,, ..., Zx, ) is undefined, then so is Ps(x) := L.
A cost function C' assigns to each f; some cost C(f;) > 0. The cost of a straight-line pro-
gram P is the sum of the costs of the f; occurring. The length of a straight-line program
means its cost with respect to constant cost function f; — 1.

Example 5.2 a) Let S := (R, R, (+, %)) be a commutative ring and p € R[X] a poly-
nomial. Horner’s Scheme gives rise to a straight-line program computing x — p(zx) of
length at most 2 - deg(p).

b) Consider the semi-group S := (N, (1), (+)). Every N € N can be computed by a straight-
line program over S of length at most 2 - |logy N|.



c) Consider the N-dimensional discrete Fourier-transform

1
Fn:CN 3 (x0,...,2n-1) = (Zezo exp(27ri~k~£/N)-:cg)k:0 c CV .

For N = 2", Fy can be computed by a straight-line program over (C, (0), (+, X, : ¢ €
SY) of length O(N -log N), where S' = {z € C : |z| = 1} denotes the complex unit
circle and x.: C — C, z — ¢ - z unary complex multiplication by c.

d) Let F denote a field and A an F-algebra. There is a straight-line program over (A, (), (+, xc
cE F)) which, for arbitrary but fived distinct xy, ..., x, € F and on input of yy, ..., y, €
A, calculates (the unique) ag, ..., a,_1 € A with ZZ;& ap - x5 =y, fort=1,... n.

e) Consider an infinite field F', n + m variables Ay, ..., An_1,Bo, ..., Bm_1, and the al-
gebra A = F[Aq, ..., By_1] with binary operations + and x : A x A — A as well as
unary X, : A — A (c € F), that is the structure (A, F (+,x,X.:¢c€ F)) The set
{ ZiJrj:Z Ai-Bj:0<l<n+m— 2} can be calculated from Ao, ..., Y1 by a straight-
line program using n +m — 1 operations “x” (and arbitrary many “+” and “x.”).

Straight-line programs as in b) are addition chains; c) refers to the fast Fourier transform.

5.1 Lower Bounds: Dimension, Volume, Transcendence Degree

Proposition 5.3. a) Any straight-line program computing N € N over (N, 1, (+, —)) has
length at least logy N. In particular the straight-line program from Example 5.2b) is
optimal up to a constant factor.

b) ForS = (F, F,(+,—, ><)) a field of characteristic 0 and 0 # p € F[X]|, any straight-line
program. computing x — p(x) over S contains at least log, deg(p) multiplications.

Let F' denote a field and F(X) the field of univariate rational functions.
For coprime p(X), q(X) € F[X] define deg (p(X)/q(X)) := max { deg(p), deg(q)}.

¢) Every r(X) € F(X) can be calculated by a straight-line program over (F, F,(+, X, <))
of length at most 4 deg(r) + 1.

d) Conversely, any straight-line program over (F,F,(+,x,+)) computing r(X) € F(X)
has length at least log, deg(r).

Theorem 5.4 (Dimension Bound). Let F' C E denote fields and consider xy,. .., x,,
Y1y Ym € E and the induced F-vector spaces X := {\x1+- -+ \xy : N\ € F} andY =
{1 + -+ tm¥Ym : 1 € F'}. Moreover consider the structure S = (E, F (4, —, %, Xy :
A€ F)) where x : EXE — E and X, : E— E, e X -e.

a) Any straight-line program over & computing {y1,...,ym} from (z1,...,x,) contains at
least dimp(X +Y + F) — dimp(X + F) multiplications “x”.
b) The straight-line program from Ezample 5.2¢) is optimal.



Theorem 5.5 (Morgenstern’s Volume Bound). Fiz C' > 0 and consider a straight-
line program P over the structure ((C, C,(+,xx: N < C)) in n variables.

a) Each ‘line’ { of P computes an affine linear function ¢, : C" — C;
and P computes an affine linear map &p : C* > x +— Ap - x + b C*HPI,
where |P| denotes the length of P and the first n components are the identity.
b) Fora,...,a, € C" with m > n write

Alay,...,an) = max{|det(a;,...,a;,)|: 1 <ji,...,50 <m} .

Then, for 1 < k, ¢ < m and A € C, it holds A(ay,...,an, X a;) < |NA(aq,...,a,)
and A(aq, ..., Gy, a; +ap) < 2A(aq, ..., a,).

¢) The homogeneous linear map Ap : C* — C"HP| from a) satisfies A(Ap) < (2C)171.

d) The matriz (exp(2mi -k - E/n))0<k 1o, has determinant of absolute value n"/2,

e) The straight-line program from Exdmple 5.2¢) is asymptotically optimal.

Theorem 5.6 (Transcendence Degree Bound, Motzkin+Belaga). Let ' C E de-
note fields of characteristic 0 and F C E(X) a finite set of rational functions in inde-
terminates (Xi,...,X,) = X. For p;,q; € E[X]| coprime over F' and q; monic, define
Coeffp(p1/q1, - - - Pm/qm) as the field over F' generated by the coefficients from p1,. .., qmn.

a) Coeff p(F) is well-defined and coincides with F({f(x): @ € F", f € F}).
b) Foraj,bj, c;,w; € E[X] withb; # 0, Coeff p(w;+c;-a;/b; : j) C Coeff p(wj, ¢;,a;,b; : j).
c) Consider the structure 8’ = (E, F,(E,+, X, —)) Any straight-line program computing
F over 8" contains at least trdeg (Coeffp(]:)) constants from E.
d) Consider a straight-line program P over § := (E, E, (+, x, —)) computing (intermedi-
ate) results f1,..., fn-
i) There exist 0 # b;,a; € E[X], ¢; € E (j=1,...,N) such that f; = ¢; - a;/b; and
trdeg (COGHF<CL1, o bN)? is at most the number of additions in P.
ii) There exist 0 # v;,u; € E[X], w; € E (j=1,...,N) such that f; = w; + u;/v; and
trdegy (Coeff p(u1, ..., vy)) is at most twice P’s number of multiplications/divisions.
e) Any straight-line program computing F over S contains at least
trdeg (Coeff p(F)) — |F| additions and (trdegy ( Coeff #(F)) —|F|)/2 multiplications.

5.2 Some Surprisingly Efficient Algorithms:
Preconditioning, Baur-Strassen, Multipoint Evaluation

Proposition 5.7 (Horner is not optimal with preconditioning).
Let E denote a field and f =377, a; X7 € E[X] a polynomial of degree n.

a) Suppose f = (X% = &) fi(X)+n € E[X] with &,n € E. Then f can be calculated
from X, X2 & n, f1(X) (the latter of degree n — 2) using 1 multiplication and 2 addi-
tions/subtractions.

b) Suppose that h := Z2€+1§n Qe 1 X' is either constant or a product of linear factors
in E[X]. Then there is a straight-line program computing f in E[X]| from X and
X? and some elements from E using at most |n/2| + 2 multiplications and n addi-
tions/subtractions.



c) Suppose E is algebraically closed (or real closed). Then there is a straight-line program
computing [ in E[X] from X and some elements of E using at most |n/2]+3 multipli-
cations and n + 1 additions/subtractions; and for ay, ..., a, algebraically independent,
this 1s optimal up to an additive constant.

Theorem 5.8 (Baur-Strassen). Fiz a field F' of characteristic 0, 0,1 € C C F, and let
P denote a straight-line program in n variables over S = (F, C, (+,—, X, —)) computing
feFr(Xy,...,Xn).

Then there exists a straight-line program P’ in n variables over S of length |P'| <5 - |P|
simultaneously computing all f,01f,...,0uf.

Theorem 5.9 (Multipoint Evaluation). Let S = (C, St (+, %, —)

a) Let F denote a field of characteristic 0 and u,v € F[X] such that @ -v = 1 mod X".
Then @ - (20 — 4 - v2) = 1 mod X?",

b) There is a straight-line program over S of length O(n-logn) which, given ug, uy, ..., Up_1 €
C with ug # 0, calculates the unique vy, . . ., v,_1 € C such that ( Z;é up XF)-( Z;é v XF) =
1 mod X™.

c) Let n > m. There is a straight-line program over S of length O(n -logn) which, given
ag, .- a, € C and by, ...,b,, € C with b,, # 0, calculates the unique qo, ..., qn_m € C
and rq, ..., Tm-1 € C such that

Z::0 a Xt = (Z:;O b XF) - (ZZ;;” G X*) + (Z::; reX®)

d) There is a straight-line program over S of length O(n-log® n) which, given ag, .. ., ap_1 €
C and x4, ...,x, € C, simultaneously calculates all Zz;é aprh, 1 <0< n.

5.3 Matrix Multiplication and Tensor Rank
Example 5.10 (Strassen) Let S = (R, (0,1), (+, x)) denote a ring.
a) For A= (A;j), B= (Bij) € R*? it holds A- B = C where

Cyn = My + My — Ms + My, Cio = M35 + Ms,
Ca1 = My + My, Coy = My — My + M;3 + Mg

My = (Aig + Ag) - (B + Ba), My = (A + Ag) - Bu,
Mj = Ay - (Bia — Ba1), My := Ag - (Bay — Bu), Ms:= (A + Auz) - Bag,
M = (Ay1 — A1) - (B + Bra), My = (A1a — Ayz) - (Ba + Baa)

b) Since R' := R™" is itself a ring, two matrices over R* " can be multiplied using 7
multiplications and a constant number of additions of n X n-matrices.
c¢) N x N matriz multiplication over R can be performed by a straight-line program over

S of length O(n'°%27) < O(n*81).



Example 5.11 (Matrix Rank and Tensors) Fiz a field F of characteristic 0.
a) For finite-dimensional F-vectors spaces X andY and a linear map T : X — 'Y, it holds

rank(7) = min{rEN‘Elal,...,areXEIbl,...breY: T:Zf 1bj.a;r.}.
=

b) Consider N,M,K € N and, fora € FN b e FM ¢ € FX, the (N x M x K)-hypermatrix

T = (tn,m,k)1gngw,1gmgzw,1gkgx With tymk = ap, - by, - C.
¢) Fiz finite-dimensional F-vector spaces X, Y, Z with respective bases (1, ..., ZN), (Y1, .-, Ynrr),
and (z1,...,2zK) and algebraic duals X*,Y*, Z*. A (N x M x K)-hypermatriz T €

FNXMXE gines rise to a bilinear map T : X* x Y* — Z via

N M K
X'xY" s (2% y") = Zn:1 Zm:1 Zk:1 tomk = X [Tn] - Y [Ym] - 28

And, conversely, any bilinear map T : X* X Y* — Z has a representation (w.r.t. fized
bases) as a N x M x K-hypermatrix.

Definition 5.12 (Tensor Rank). Fix a field F of characteristic 0 and finite-dimensional
F-vectorspaces X,Y, Z with algebraic duals X*,Y* Z*. A tensor is a bilinear map from
X*xY* to Z. A simple tensor is of the form

rRYRz: X" XY > (u,v) — u'x] vyl -z, reXyeYzeZ

and has rank < 1; rank = 0 iff (x,y) = 0 or z = 0. We denote by X ® Y ® Z the set of
tensors T : X* x Y* — Z. The rank of such a T is the least r € N such that T can be
written as the sum of r simple tensors.

Lemma 5.13. a) Fach trilinear functional T:X*xY*xZ*>F corresponds to a unique
tensor T : X* x Y* — Z and vice versa. (In the sequel we tacitly identify T with T. ..)
b) T € X®Y ® Z has the same rank as

T'eY®zZoX, (y2)— (X"s2z"— 2 [T(z"y")]eF)eX .

¢) EachT € X @Y ® Z has rank(T") < dim(X) dim(Y") and rank(7") > dimrange(7").
d) For X* :=Y*:=Z :=F"" the tensor of n X n-matrix multiplication

M,: XxY—-Z (A B)w—A-B

has rank(Ms) < 7 and rank(My,) < 7 - rank(M,,), hence rank(M,,) < nlls271,
e) Let Te XY ®Z and S € X' @Y' ® Z'. Then

ToS: XoX)xYoY)=ZaZ, (@, ),y y")—T(x"y") oS y"),
Tes:(XeX)xYeY)=zZeZ, (@ oz) @y «y”)-Ta,y)es@"y")
have rank(T & S) < rank(7) 4 rank(S) and rank(7T ® S) < rank(T") - rank(S).

Theorem 5.14 (Exponent of Matrix Multiplication). Fiz a field F' of characteristic
0 and w > 2 as well as the structure S = (F, F, (+, ><)) The following are equivalent:

i) To every € > 0 there exists a family P, of straight-line programs over S of length
O(n“*) which, given A, B € F™™, calculate A - B.
ii) To every € > 0, it holds rank(M,,) < O(n¥™).



6 Branching Complexity

Definition 6.1. Let S = (S, (¢;), (f), (Px)) denote a structure with relations Py :C S
or arities b, € N.

a) A Branching Tree Ts (over this structure and in variables Xy, ..., X, ) is basically a

straight-line program with the additional capability to branch based on whether a predi-
cate Py, applied to previously calculated results, holds or not.
More formally, it is a rooted binary tree whose outdegree-1 nodes u € Ts are each la-
belled with either a variable, a constant c¢; from S, or with a function f; applied to
results from a; outdegree-1 predecessor nodes of u; and each outdegree-2 node is labelled
with a predicate Py applied to by degree-1 predecessor nodes. Each leaf (=outdegree-0
node) is labelled either with some symbol o € X or with some finite tuple of degree-1
predecessor nodes.

b) When assigned values xq,...,x, € S to Xy,...,X, the tree calculates, starting from
the root, in outdegree-1 nodes intermediate results; and in outdegree-2 nodes branches
according to whether the predicate holds. Ts accepts input x € S™ if this process ends
in a leaf labelled + € X; it rejects if the leaf is labelled — € X, otherwise it computes the
specified (tuple of intermediate) value(s).

c) The size of a branching tree is its total number of nodes; similarly for the depth.

Example 6.2 (Sorting) Consider some totally ordered set S and the structure S =
(5,0,0,(<)). We say that a branching tree over & on n wvariables sorts if it computes
some function (f1,..., fn) = f:S™ = S™ such that, for every & = (x1,...,x,) € S",

[@) < @) <. < ful@) and Yy € S #{jay =yt =#{j: filzr, ... 20) =y}
(1)
a) For each n € N, both Bubble Sort and Quicksort give rise to branching trees over S in
n variables of depth O(n?).
b) Heap Sort gives rise to a branching tree over S in n variables of depth O(n -logn).
c) If |S| > n, then any branching tree over S in n variables has at least n! different leaves.
In particular, Heap Sort is asymptotically optimal.

6.1 Hyperplane Arrangements and Combinatorial Convex Geometry
Definition 6.3. Fix d € N.
a) A set X CR? is convex if

Ve,ye X e+ (1-NyeX (2)

holds for every 0 < X < 1. X s affine if Equation (2) holds for every A € R; equivalently:
X#Dand X —y :={x —y:x € X} is a vector space for some/everyy € X.

b) We call h € S*={y € R¥: |ly|| = 1} an oriented hyperplane. Its open halfspace H_p,
15 the set {:I: € R?: Zj zj-h; < ho}; the topological closure H<p, := H_}, its closed
halfspace. Finally write H_p, := H<p N H<_y, for its affine hyperplane.



¢) The dimension of X C R?, dim(X), is the affine dimension of ahull(X) := {\-x + (1 —
Ny :xy € X, A €R}; dim(D) := —oo. A (convex) polytope P C R? is the finite
intersection of finitely many open/closed halfspaces.

d) The membership problem associated with a finite family H of affine hyperplanes in R?
is the question of whether a given x € R belongs to |JH or not.

e) For h € S* and © € R?, write sgn(z, h) = sgn(d_; xj - hy — ho) € {+,0,—}.

f) The point location problem associated with a finite family H = {hY), ... R™} of ori-
ented hyperplanes is the function

RY 5 ¢ — sgn(z,H) = (sgn(z, h(k)))1gkgn € {+,0,—}" .
g) A face of H is a subset of R of the form
H(o) = {:13 cR?:sgn(z, H) = 6}, ge{+,0,—}" .
A face of dimension 0 is called a vertex; an edge is a face of dimension 1; a face of

dimension d is a cell; a facet is a face of dimension d —1; a face of dimension d — 2 is
called ridge.
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Fig.3. An arrangement of 4 lines in the plane inducing 6 intersections (=vertices), 16 line segments
(=edges=ridges=facets), and 11 cells.

Lemma 6.4. Fiz a finite family H of n oriented hyperplanes in R.

a) Each face of H is a polytope.
b) Each vertex of H is determined by (at least) d hyperplanes.
In particular, H has at most (Z) vertices.
c) For an arrangement of n hyperplanes in dimension d, the number of k-dimensional
. k -7 n
faces is at most y;_, (i_;) . (d_j)

d) and these numbers are attained by almost every arrangement.
Example 6.5 For2 < N € N, the following 2D arrangement has a cell with N facets:

h, := (1,cos Z2 sin 20) /v/2, 0<n< N .



6.2 Linear Branching Trees

Definition 6.6. A Linear Branching Tree for dimension d € N is a branching tree over the
structure S == (R%, (), (), (H=p, Hep - h € §7)).

Example 6.7 To each n-element family H of oriented hyperplanes in R?, there exists a
Linear Branching Tree of depth O(n) deciding the membership problem associated with H.

Lemma 6.8. Let T' denote a linear branching tree for dimension d and v a vertex of T
Write T(v) for the set of inputs & € R which, according to the semantics of Defini-
tion 6.1b), passes through v.

a) T(v) is a polytope. Each facet corresponds to an oriented hyperplanes queried by T on
the path from the root up to v.

b) For the leaves vy, ... ,vn of T, (T(UJ))j:1,___,N constitutes a partition of RY.

c¢) For any linear branching tree T over S solving membership to H, and for each leaf v of
T, T(v) is either a subset of some H_y, with h € H or of H(5) for some ¢ € {+, —}".

Theorem 6.9 (Ukkonen’83, Dobkin/Lipton’74, Meiser’93).
Fiz an n-element family H of oriented hyperplanes in dimension d.

a) Suppose H has N distinct cells. Then any linear branching tree over S deciding mem-
bership to H has depth at least log N .

b) Let H(c) denote a cell having m facets. Then any linear branching tree over
(Rd, 0,0, (Hep, Hcp, : h € 7—[)) deciding membership to H has depth at least m.

c) There ezists a linear branching tree over S of depth O(logn) solving the point location
problem for H.

d) There exists a linear branching tree over S of depth O(d°logn) solving the point location
problem for H.
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