Advanced Complexity Theorie

SS 2011, Exercise Sheet \#11

EXERCISE 17:

a) Describe a branching tree on n inputs over $\mathcal{S}=(\{0,1\},(),(),(<))$ sorting within depth $\mathcal{O}(n)$.
b) Let $[n]:=\{1, \ldots, n\}$ and suppose that branching tree T on n inputs over $\mathcal{S}=([n],(),(),(<))$ sorts. Show that T then also sorts over any other totally ordered structure $\mathcal{S}^{\prime}=(S,(),(),(<))$.
c) Let T_{n} denote a family branching tree on n inputs over $\mathcal{S}=([n],(),(),(<))$. Suppose that T_{n} sorts approximately in the sense that the function $\vec{f}:[n]^{n} \rightarrow[n]^{n}$ it computes satisfies

$$
f_{1}(\bar{x}) \leq f_{2}(\bar{x}) \leq \ldots \leq f_{n}(\bar{x}) \text { and } \forall y \in S: \operatorname{Card}\left\{j: x_{j}=y\right\}=\operatorname{Card}\left\{j: f_{j}\left(x_{1}, \ldots, x_{n}\right)=y\right\}
$$

(not necessarily for every, but only) for at least an 2^{-n}-fraction of all permutations $\left(x_{1}, \ldots, x_{n}\right)$. Conclude that, still, T_{n} must have asymptotic depth at least $\Omega(n \cdot \log n)$.

EXERCISE 18:

Recall Definition 6.3 from the script.
a) Describe a branching tree over $\mathcal{S}=(\mathbb{R}, \mathbb{R},(+, \times),(<))$ for the membership problem induced by \mathcal{H}. Estimate its depth and size in terms of d and $n=|\mathcal{H}|$.
b) Express the Knapsack problem as (the integer restriction of) a membership problem for affine hyperplanes.
c) Show that the arrangement from a) contains a cell with exponentially many facets.
d) Repeat b)+c) for the Travelling Salesperson problem.

