Advanced Complexity Theorie

SS 2011, Exercise Sheet \#10

EXERCISE 15:

a) Formulate and prove an extension/generalization of Theorem 5.8 (Baur-Strassen) in the script to the structure $\mathcal{S}=(\mathbb{R}, C,(+,-, \times, \div, \exp , \log , \sqrt{)})$.
b) Let F denote a field of characteristic 0 . Suppose $\operatorname{det}_{n}: F^{n \times n} \rightarrow F$ can be calculated by some straight-line program P_{n} over $\mathcal{S}=(F, C,(+,-, \times, \div))$. Conclude that $\operatorname{Inv}_{n}: \operatorname{GL}(F, n) \rightarrow$ $\mathrm{GL}(F, n), A \mapsto A^{-1}$ can be calculated by a straight-line program over \mathcal{S} of length $\mathcal{O}\left(\left|P_{n}\right|\right)$.

EXERCISE 16:

a) Describe an algorithm for approximating the inverse of a given matrix or floating point number a using only additions and multiplications by finding a root x of $f(x)=a-x^{-1}$. Compare it with Theorem $5.9 \mathrm{a}+\mathrm{b}$) from the script.
b) A Toeplitz Matrix of size $n \times n$ has the form

$$
T=\left(\begin{array}{cccccc}
a_{0} & a_{-1} & a_{-2} & \cdots & a_{-n+2} & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ddots & \ddots & a_{-n+2} \\
a_{2} & a_{1} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2} \\
\vdots & & \ddots & a_{1} & a_{0} & a_{-1} \\
a_{n-1} & \cdots & \cdots & a_{2} & a_{1} & a_{0}
\end{array}\right)
$$

with $2 n-1$ parameters $a_{-n+1}, a_{-n+2}, \ldots, a_{-1}, a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}$. Show that, given complex numbers for these parameters and for x_{1}, \ldots, x_{n}, one can calculate $T \cdot \vec{x}$ within $\mathcal{O}(n \cdot \log n)$ arithmetic steps.
Hint: First suppose $a_{-n+j}=a_{j}$ for $1 \leq j<n$ and recall Exercise 13.
c) Show that a given complex $n \times n$ Vandermode matrix can be multiplied to a given vector in $\mathcal{O}\left(n \cdot \log ^{2} n\right)$ arithmetic steps.

