Advanced Complexity Theorie

SS 2011, Exercise Sheet \#8

EXERCISE 13:

Recall Exercise 10 on the n-dimensional discrete Fourier-transform \mathcal{F}_{n} and let $\mathcal{S}=\left(\mathbb{C}, \mathbb{S}^{1},(+, \times)\right)$.
a) For $\vec{x}=\left(x_{0}, \ldots, x_{n-1}\right), \vec{y} \in \mathbb{C}^{n}$, their (circular) convolution is defined as

$$
\vec{x} \otimes \vec{y}:=\left(\sum_{\ell=0}^{n-1} x_{k} \cdot y_{k-\ell \bmod n}\right)_{k=0 \ldots n-1} \in \mathbb{C}^{n}
$$

Show that $\mathcal{F}_{n}(\vec{x} \otimes \vec{y})=\left(\mathcal{F}_{n} \vec{x}\right) \cdot\left(\mathcal{F}_{n} \vec{y}\right)$ componentwise.
b) Describe a straight-line program over \mathcal{S} of length $\mathcal{O}(n \cdot \log n)$ solving the following problem: Given the lists $p_{0}, \ldots, p_{n-1}, q_{0}, \ldots, q_{n-1}$ of coefficients of two polynomials $p, q \in \mathbb{C}[X]$ of $\operatorname{deg}(p), \operatorname{deg}(q)<n$, calculate the list of coefficients of their product $p \cdot q$.
c) Describe a straight-line program over \mathcal{S} calculating the product of m univariate polynomials of degree $<n$. What length do you achieve?
d) Describe a straight-line program over \mathcal{S} calculating the sum of m univariate rational functions of degree (of both numerator and denominator) $<n$. What length do you achieve?

