Advanced Complexity Theorie

SS 2011, Exercise Sheet #8

EXERCISE 13:

Recall Exercise 10 on the *n*-dimensional discrete Fourier-transform \mathcal{F}_n and let $S = (\mathbb{C}, \mathbb{S}^1, (+, \times))$.

a) For $\vec{x} = (x_0, \dots, x_{n-1}), \vec{y} \in \mathbb{C}^n$, their (circular) convolution is defined as

$$ec{x}\otimesec{y}:=\left(\sum_{\ell=0}^{n-1}x_k\cdot y_{k-\ell \mod n}
ight)_{k=0\dots n-1}\in\mathbb{C}^n$$
.

Show that $\mathcal{F}_n(\vec{x} \otimes \vec{y}) = (\mathcal{F}_n \vec{x}) \cdot (\mathcal{F}_n \vec{y})$ componentwise.

- b) Describe a straight-line program over S of length $\mathcal{O}(n \cdot \log n)$ solving the following problem: Given the lists $p_0, \ldots, p_{n-1}, q_0, \ldots, q_{n-1}$ of coefficients of two polynomials $p, q \in \mathbb{C}[X]$ of $\deg(p), \deg(q) < n$, calculate the list of coefficients of their product $p \cdot q$.
- c) Describe a straight-line program over S calculating the product of *m* univariate polynomials of degree < n. What length do you achieve?
- d) Describe a straight-line program over S calculating the sum of *m* univariate rational functions of degree (of both numerator and denominator) < n. What length do you achieve?